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Abstract: - We show how the addition of co-evolution to genetic programming (GP) overcomes the current 
limitations of GP as well as GP augmented with automatically defined functions (GP+ADF) with a method 
called co-evolutionary automatically defined functions (GP+CADF). We demonstrate that GP+CADF requires 
a lower computational effort to solve the parity, sum of bits, image recognition, lawn coverage and the 
bumblebee problems. To further improve GP+CADF, we discover that using elitism lowers the computational 
effort required. We also discover ways to improve the initial population and initial best individuals used for 
evaluation. 
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1   Introduction 
Drawing inspiration from the concept of evolution 
has proven to be successful in solving challenging 
problems with genetic programming (GP). The 
addition of functions or subroutines to GP is an idea 
that allows a program to reuse modular 
functionality. It has been shown that when genetic 
programming is augmented with automatically 
defined functions (GP+ADF) we can solve problems 
beyond the capability of standard GP [1]. This is due 
to the fact that ADFs exploit underlying regularities 
and repetitions in the solutions of a problem. 
However, even with the addition of ADFs some 
problems eventually become too hard to solve. 
There is a certain threshold of difficulty where the 
GP algorithms require too much time and 
computation to yield an answer in any reasonable 
amount of time. In other words, the problem is how 
to keep discovering solutions where GP+ADF is 
unable to do so. This paper will explore how we can 
answer this challenge with the introduction of co-
evolution to genetic programming where we devise 
multiple populations to work together toward 
solving a problem. 

We do so with a method called co-evolutionary 
automatically defined functions in genetic 
programming, abbreviated as GP+CADF. The value 
of the contribution is that GP+CADF requires less 
computational effort to discover a solution than 
standard GP or GP+ADF. A comparative analysis of 
standard GP, GP+ADF and GP+CADF is performed 
on a wide variety of different problems that include 
up to 14-even-parity, sum of bits, image recognition, 

lawn coverage and the bumblebee problems. In 
addition, methods to improve GP+CADF are 
discovered which include improvements of initial 
populations, improvements in best individuals used 
for evaluation, effect of elitism and effect of 
multiple best individuals. 
 
 
2   Description of Method 
The following sections will review automatically 
defined functions and what their drawbacks may be. 
Following this, the GP+CADF algorithm will be 
introduced and we will describe in detail how fitness 
evaluation is performed in this multi-population 
system. Lastly, several techniques will be proposed 
as potential improvements for GP+CADF. We will 
also review earlier work in co-evolutionary GP. 
 
 
2.1 Problems with ADFs 
Genetic programming with automatically defined 
functions described by Koza in [1] is an attempt to 
improve GP by recognizing that many problems can 
be more readily solved by decomposing them into 
sub problems and assembling the sub problems into 
the final solution. An analysis by Koza of the 
Boolean Parity, Lawnmower, Bumblebee, Impulse 
Response Function, Artificial Ant, Obstacle-
Avoiding Robot, Minesweeper, Letter Recognition 
and Transmembrane Domain Prediction in Proteins 
[1] among other problems has demonstrated that it is 
indeed easier to discover a subroutine and reuse it 
many times within a main body, than it is to 
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discover one complete tree as in the traditional GP 
approach. Nevertheless, there may be some 
problems that arise when subroutines are utilized in 
genetic programming. 
 
 
2.1.1   Poor Main Body and Useful ADF  
It may happen that a useful ADF has been 
discovered through evolution, but the main body 
calls it in the wrong place. The fitness of the 
individual will still be determined to be low. There 
is no partial credit given to the individual based on 
the fact that this ADF is useful. In point of fact, 
there is not even any way to determine if this ADF is 
useful because we would need to couple it with a 
main body that is able to exploit it to the fullest to 
determine its usefulness.  
 
 
2.1.2   Fit Main Body and Poor ADF 
It may also be the case that the main body is very fit 
but the ADF does not do anything useful. In this 
case there is no partial credit given to the good main 
body. In fact, without a fitting ADF, it can not even 
be determined how useful a main body is, assuming 
the main body relies on using ADFs. Another time, 
we see the importance of coupling ADFs and main 
bodies that work well together. 

Other problems that may arise could be that a 
fit main body and a fit ADF do not fit together, 
ADFs are not called at all or that an ADF is passed 
the wrong arguments.  
 
 
2.1.3 Consequences of Miss Fitting ADFs and 
Main Bodies 
The consequence is that good parts of an individual 
may be lost in following generations since their 
worth was not recognized. We claim that the right 
coupling of an ADF and a main body is just as 
important as discovering useful subroutines. In 
addition, due to the architecture of the GP+ADF 
approach, an ADF is always constrained to a single 
individual. If a very fit main body or ADF is found 
in one individual, this discovery may not even be 
recognized since only one other counterpart is used 
to couple and evaluate it. Furthermore, these good 
subroutines and main bodies will not be available to 
all the other individuals except with crossover 
exchange of some parts in very few other 
individuals. With these considerations in mind, we 
can proceed to describe the co-evolutionary 
approach and how we will try to overcome these 
limitations. 
 

2.2 Description of the GP+CADF Algorithm 
The GP+CADF algorithm works with n populations 
P0…Pn where P0 is the main body population and 
P1..Pn are the ADF populations. There are as many 
ADF populations as the number of ADFs we choose 
to have in our architecture. The total number of 
individuals in all populations is M, and therefore the 
number of individuals in each population is M/n.  
Figure 1 presents the basic GP+CADF algorithm: 
 
1: Let Bi be random individual of Pi for i=0..n 
2: For G generations or until solution found: 
3: Update Bi to be the best individuals found so far 
in Pi for i=0..n 
4: Evaluate each individual in Pi by coupling it with 
Bj where j=0..n and j≠i 
5: Breed each population and apply genetic 
operators 
Fig. 1 - Basic GP+CADF algorithm 
 

One problem that becomes apparent is that the 
individuals in the main body and ADF populations 
can not be evaluated just by themselves. We need to 
have all the ADFs for a main body and we also need 
a main body and all other ADFs for an ADF in order 
to couple them together and form a complete 
individual that can be evaluated as stated in line 4. 
 
 
2.2.1   Fitness Evaluation of Individuals in the 
GP+CADF Approach  
Suppose that we decide in our architecture that we 
will have two ADFs. Then, let us say we decide that 
there will be a total of 3 populations each with M/3 
individuals. If we consider all the ways that these 
individuals can be coupled, there are a total of 
M3/27 combinations. If we wanted to evaluate all of 
these combinations at every generation this would 
quickly become infeasible due to exponentially 
increasing evaluation times.  

A solution to this problem is to couple all of 
the individuals in a population with just one 
individual Bi from all other i populations. It is 
immediately apparent that this choice of Bi is very 
important since this individual will be used in all 
fitness evaluations. Furthermore, the fitness will be 
an evaluation of how well an individual fits with all 
our chosen Bi. A reasonable assumption is that a 
good choice for Bi would be the current best 
individual found so far in each of the populations. 
This choice makes sense because the best individual 
has the highest fitness and does most of what is 
required by our problem. 
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2.2.2   How to Evaluate ADFs and Main Bodies 
Figure 2 shows a diagram of how evaluation of 
ADFs is done in the co-evolutionary multi-
population system. The setup for that example is that 
we have one main body and two ADFs. Therefore, 
there will be a total of 3 populations: one for the 
main body and one for each ADF. In the top row are 
the best individuals from each population. In the 
diagram, the best main body is a 6 node program 
tree and it calls both ADFs in its terminals. The best 
ADFs are both 3 node program trees in this 
example.  

 
Fig. 2. Evaluating ADFs in a multi-population 
system. 
 

The ADF0 population is represented as a 
column of individuals and for the sake of simplicity 
there are only the first three individuals shown. The 
diagram shows how individual 2 would be 
evaluated: it will be plugged into the best main body 
along with the best ADF1. This complete individual 
will be evaluated and the fitness will be assigned to 
individual 2. The same process will be repeated for 
all individuals in the ADF0 population. Similarly, 
this process will be applied to all the individuals 
from the ADF1 population with Best ADF0 used 
where ADF0 is called. 

Following this method we may also evaluate all 
individuals in the main body population by coupling 
them with the best ADFs. 

3 Improvements for GP+CADF 
The next sections will examine potential 
improvements for the GP+CADF method. These 
include using elitism in evaluation, finding better 
initial best individuals and generating a better initial 
population.  
 
 
3.1 A. Co-evolutionary Elitism 
One strategy for evaluating individuals is to use the 
best individuals that were determined from the 
previous generation as our Bi. The motivation for 
this design decision is that the best individuals must 
be updated as evolution progresses in order to use 
better, newly evolved ADFs and main bodies and to 
find the best coupling between them.  

On the other hand, we could also use an elitist 
strategy where we only keep track of the best 
individual found so far in the entire evolutionary 
run. The motivation here would be that we want to 
use the absolute best main body and ADF that we 
can find in the entire run. In addition, another 
hypothesis would be that this will have a stabilizing 
effect because the best individuals we are trying to 
couple and fit with all other individuals will not 
change as rapidly.  

Experimental results with the parity problem 
showed that the elitist strategy was better by an 
order of magnitude and provided better stability by 
changing the best individuals less often. 

 
 

3.2 Better than Random Initial Best 
Individuals 

One way to boot start the process of evaluation is to 
choose the initial best individuals randomly from 
generation 0. The problem with this approach is that 
since these individuals are random, they might be 
particularly unfit and it might not be worthwhile to 
start the evolution process with these poor 
individuals. A different approach would be to 
initially try M couplings between all individuals and 
choose as best those individuals that produced the 
highest fitness when coupled together. This would 
amount to sacrificing one generation of evaluation in 
order to determine better initial best individuals. 

Experimentation with the parity problem 
concluded that the computation effort was reduced 
by a factor of 1.6 when choosing the initial best 
individuals after M couplings. 
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3.3 Checking for ADF Calls 
Since using ADFs and coupling main bodies and 
ADFs is the heart of the GP+CADF approach, then 
it is essential that ADFs be used by main bodies. 
This is because most of the computational effort in 
GP+CADF is spent in evaluating couplings between 
best individuals and populations. It will be wasted 
effort to couple a main body with all ADFs in an 
ADF population when an ADF is not even 
referenced. 

Therefore, an improvement to the initial 
population would be to regenerate a main body that 
does not call ADFs until one is made with ADF 
references. Experimentation with the parity problem 
concluded that this strategy reduced the 
computational effort by a factor of 1.7. 

 
 

4 Earlier Work with Co-Evolutionary 
GP 
The literature in both competitive and co-operative 
co-evolution was surveyed for both GA and GP 
approaches. Most works dealt with competitive co-
evolution of host-parasite systems. Issues that arise 
in competitive co-evolution such as disengagement 
and determination of the appropriate test set were 
dealt with in a number of works. [4, 5, 6]. 

Our GP+CADF method stands firmly in the 
less explored co-operative realm of co-evolution. 
The main challenges in co-operation are of problem 
decomposition and methods of individual interaction 
which are explored in existing works [7, 8, and 9]. 
The co-operative co-evolution approach we take to 
decomposing problems into multiple co-operating 
populations is with ADF subroutines in GP. 

The idea of co-evolving main bodies and ADFs 
in GP has already been dealt with in [3] by Aler. In 
our approach, an n population system will be set up 
to have M/n individuals in each population where M 
is the total number of individuals desired in all 
populations. Aler’s approach is to have M 
individuals in each population but run each 
population for G/n generations where G is the total 
number of generations desired. In order to 
compensate for the larger number of evaluations 
required in GP+CADF we reduce the number of 
individuals in each population while Aler reduces 
the number of generations that each population is 
run. In all approaches: this, Aler’s and GP+ADF, 
there are the same number of evaluations per 
generation performed.  

Consequently, Aler experiments with a small 
population and long runs, which means that M is 
200 and 400, and G is 150. The large number of 

generations used in his setup also compensates for 
the design decision that each population is run for 
G/n generations. 

In addition, while Aler only experiments with 5 
and 6-parity we perform a comparative analysis on a 
wide range of problems. Lastly, we implement and 
test a number of improvements for the GP+CADF 
method as outlined in the previous sections. 
Experimental results with the parity problem 
showed that the elitist strategy was better by an 
order of magnitude and provided better stability by 
changing the best individuals less often. 

 
 

5   Experimental Results 
In order to demonstrate that the GP+CADF method 
has an advantage over standard GP and GP+ADF, 
we tested a wide variety of problems that include 
even-n-parity, sum of bits, image recognition, lawn 
coverage and the bumblebee problem. A 
comparative analysis between the methods was 
performed for each problem that utilized the metric 
of computational effort for comparison. 
 
 
5.1 The Even-n-Parity Problem 
The even-n Boolean parity problem is the task of 
recognizing whether a bit string of length n 
consisting of 1’s and 0’s contains an even number of 
1’s. We see that if even just one bit is changed in the 
bit string, then the output changes. Additionally, in 
order to find the output we need to consider all of 
the inputs. For that reason, the parity function is 
hard to learn for machine learning algorithms as 
discussed in [2]. Furthermore, Koza reports that not 
a single program solved the even-3-parity function 
in a blind random search of 10,000,000 programs 
that work with 3 input bits and the Boolean 
functions AND, OR, NAND, NOR [1].  

Table 2 shows the minimum computational 
efforts obtained in the experimental comparison of 
standard GP, GP+ADF and GP+CADF for the even-
n-parity problem. There were no solutions obtained 
for standard GP with 300 runs past even-6-parity, 
and GP+CADF was the only method to yield 
solutions after 300 trials past even-10-parity. 

The immediate conclusion is that as we 
increase n, the computational effort increases most 
quickly for regular GP followed by GP+ADF and 
GP+CADF. Correspondingly, there is always less 
computational effort required to solve the even-n-
parity problem with GP+CADF than with GP+ADF. 
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Problem Even n-parity 
Number of bits (n) 3 to 14 
Population Size (M) 1800 for n<=13, 3800 for 

n=14 
Generations (G) 60 
Runs 300 for n > 6, 500 for n <=6 
Number of ADFs 2 
Function Set (no ADF) D0 to D13, AND, NAND, 

NOR, OR 
Function Set (with 
ADF) Main Body 

D0 to D13, AND, NAND, 
NOR, OR, ADF0, ADF1 

Function Set for ADF0 AND, OR, NAND, NOR, 
ARG0, ARG1 

Function Set for ADF1 AND, OR, NAND, NOR, 
ARG0, ARG1, ARG2 

Fitness Cases All 2n possible bit strings 
Fitness 2n – correct outputs 
Success Predicate 0 (all fitness cases must be 

perfect for 0 fitness) 
Table 1 – Experimental setup for the even-n-parity 
problem. 
 
 

n Runs GP GP+ADF GP+CADF 
3 500 14,400 75,600 45,000 

4 500 234,000 182,700 126,000 

5 500 No solution 553,500 302,400 

6 500 219,515,400 1,357,200 446,400 

7 300 No solution 2,754,000 693,000 

8 300 No solution 4,050,000 1,044,000 

9 300 No solution 10,054,800 1,461,600 

10 300 No solution 24,786,000 3,240,000 

11 300 No solution No solution 4,248,000 

12 300 No solution No solution 9,720,000 

13 80 No solution No solution 16,380,000 

14 67 n/a n/a 22,572,000 

Table 2 – Minimum computational efforts for the 
even-n-parity problem for all 3 methods. 
 

The GP+CADF method successfully solved 
the even-n-parity problem up to n=14. We could not 
proceed further not because GP+CADF was not able 
to solve even-15-parity, but because increasing 
evaluation times made it infeasible to accumulate a 
sufficient number of trials to obtain a successful run. 
 
 
 

5.2 The Sum Of Bits Problem 
The n-s-sum of bits problem takes as input a bit 
string of length n and a desired sum s. The goal is to 
find all those bit strings where the number of 1’s 
adds up exactly to the sum s. We invented this 
problem specifically for the purpose of comparing 
the different GP methods with a problem that is 
harder than the even-n-parity problem and that is 
also scalable in the same way. 

Concerning scalability, the difficulty of this 
problem is directly proportional to n and the 
problem is also hardest when s is half the value of n. 

The results showed that computation effort was 
exponentially increasing with n and that GP+CADF 
was the only method to solve the sum-of-bits 
problem for 6-s-sum of bits where s is between 2 
and 4. 
 
 
5.3 The Image Recognition Problem 
The letter recognition problem is based on work 
done by Koza in chapter 15 of [1]. The inputs to the 
problem consist of a grid of 6x4 pixels. For the 
purposes of this problem, we will only use the letters 
I and L. The reason we only use I, L and various 
samples that are neither is that we are not interested 
in a genuine letter recognition task. Rather, we are 
examining a problem where we want to recognize 
two things perfectly among many samples. The 
main motivation is the discovery of solutions though 
subroutines that examine local pixel neighborhoods 
and the goal of the experiment will be to see if 
GP+CADF improves on GP+ADF. The inputs will 
include the letters I and L and 75 other images that 
represent a range of possibilities; some resembling 
the letters, and some that look very different. In 
other words, we will have two positive and 75 
negative cases. Fig. 6 shows the set of images that 
will be used in this problem. The goal for the 
program will be to correctly identify the two letters 
and dismiss all other cases as negatives. 
 

M SP Regular GP GP+ADF GP+CADF 

4000 3 No Solution 8,880,000 5,760,000 

3000 1 No Solution 60,888,000 40,356,000 

3000 1 No Solution 40,356,000 30,780,000 

Table 3 – Minimum computational efforts for the 
image recognition problem. SP denotes success 
predicate which is how many fitness cases are 
allowed to be wrong and still obtain perfect fitness. 
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The experimental results are given in Table 3 
and show that GP+CADF yielded a lower 
computational effort in all tests. 
 
 
5.4 Additional Experiments 
Experiments were also performed on the 
lawnmower, obstacle avoiding robot, minesweeper 
and bumblebee problems as described by Koza in 
[1]. The results obtained from these experiments 
also confirm that GP+CADF requires less 
computational effort than regular GP or GP+ADF. 
 
Problem Regular GP GP+ADF GP+CADF 

Lawnmower No Solution 12,000 6,600 

Obstacle 
Avoiding Robot 

No Solution 264,600 126,000 

Minesweeper No Solution 4,176,900 2,318,400 

Bumblebee No Solution 172,800 148,800 

Table 4 – Minimum computational efforts for lawn 
coverage (lawnmower, obstacle avoiding robot and 
minesweeper) and bumblebee problems. 
 
 
6   Conclusion 
This work began by asking whether the addition of 
co-evolution to genetic programming would help to 
overcome the current limitations of the standard GP 
approach as well as GP augmented with 
automatically defined functions. We have shown 
that GP+CADF is a feasible co-evolutionary 
approach that continues discovery of solutions 
where regular GP and GP+ADF reach their limits. 
We have shown that GP+CADF yields solutions for 
up to 14-even-parity and 6-3 sum of bits problems 
where other methods find no solutions. We have 
also shown that GP+CADF requires a lower 
computational effort to solve the parity, sum of bits, 
image recognition, lawn coverage and the 
bumblebee problems. 

To further improve GP+CADF, we discovered 
that using elitism and a single best evaluation 
coupling lowers the computational effort even 
further. In addition, improving the initial population 
by regenerating individuals with no ADF calls and 
choosing best initial individuals after M couplings, 
where M is the population size, also leads to a 
lowered computational effort. 
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