
Co-Evolutionary Automatically Defined Functions in Genetic
Programming

ANTHONY LUKAS, FRANZ OPPACHER
School of Computer Science

Carleton University
1233 Colonel By Drive

CANADA
alukas2@connect.carleton.ca, franzo1@mac.com

Abstract: - We show how the addition of co-evolution to genetic programming (GP) overcomes the current
limitations of GP as well as GP augmented with automatically defined functions (GP+ADF) with a method
called co-evolutionary automatically defined functions (GP+CADF). We demonstrate that GP+CADF requires
a lower computational effort to solve the parity, sum of bits, image recognition, lawn coverage and the
bumblebee problems. To further improve GP+CADF, we discover that using elitism lowers the computational
effort required. We also discover ways to improve the initial population and initial best individuals used for
evaluation.

Key-Words: - Genetic programming, co-evolution, automatically defined functions

1 Introduction
Drawing inspiration from the concept of evolution
has proven to be successful in solving challenging
problems with genetic programming (GP). The
addition of functions or subroutines to GP is an idea
that allows a program to reuse modular
functionality. It has been shown that when genetic
programming is augmented with automatically
defined functions (GP+ADF) we can solve problems
beyond the capability of standard GP [1]. This is due
to the fact that ADFs exploit underlying regularities
and repetitions in the solutions of a problem.
However, even with the addition of ADFs some
problems eventually become too hard to solve.
There is a certain threshold of difficulty where the
GP algorithms require too much time and
computation to yield an answer in any reasonable
amount of time. In other words, the problem is how
to keep discovering solutions where GP+ADF is
unable to do so. This paper will explore how we can
answer this challenge with the introduction of co-
evolution to genetic programming where we devise
multiple populations to work together toward
solving a problem.

We do so with a method called co-evolutionary
automatically defined functions in genetic
programming, abbreviated as GP+CADF. The value
of the contribution is that GP+CADF requires less
computational effort to discover a solution than
standard GP or GP+ADF. A comparative analysis of
standard GP, GP+ADF and GP+CADF is performed
on a wide variety of different problems that include
up to 14-even-parity, sum of bits, image recognition,

lawn coverage and the bumblebee problems. In
addition, methods to improve GP+CADF are
discovered which include improvements of initial
populations, improvements in best individuals used
for evaluation, effect of elitism and effect of
multiple best individuals.

2 Description of Method
The following sections will review automatically
defined functions and what their drawbacks may be.
Following this, the GP+CADF algorithm will be
introduced and we will describe in detail how fitness
evaluation is performed in this multi-population
system. Lastly, several techniques will be proposed
as potential improvements for GP+CADF. We will
also review earlier work in co-evolutionary GP.

2.1 Problems with ADFs
Genetic programming with automatically defined
functions described by Koza in [1] is an attempt to
improve GP by recognizing that many problems can
be more readily solved by decomposing them into
sub problems and assembling the sub problems into
the final solution. An analysis by Koza of the
Boolean Parity, Lawnmower, Bumblebee, Impulse
Response Function, Artificial Ant, Obstacle-
Avoiding Robot, Minesweeper, Letter Recognition
and Transmembrane Domain Prediction in Proteins
[1] among other problems has demonstrated that it is
indeed easier to discover a subroutine and reuse it
many times within a main body, than it is to

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 354 ISBN: 978-960-474-051-2

discover one complete tree as in the traditional GP
approach. Nevertheless, there may be some
problems that arise when subroutines are utilized in
genetic programming.

2.1.1 Poor Main Body and Useful ADF
It may happen that a useful ADF has been
discovered through evolution, but the main body
calls it in the wrong place. The fitness of the
individual will still be determined to be low. There
is no partial credit given to the individual based on
the fact that this ADF is useful. In point of fact,
there is not even any way to determine if this ADF is
useful because we would need to couple it with a
main body that is able to exploit it to the fullest to
determine its usefulness.

2.1.2 Fit Main Body and Poor ADF
It may also be the case that the main body is very fit
but the ADF does not do anything useful. In this
case there is no partial credit given to the good main
body. In fact, without a fitting ADF, it can not even
be determined how useful a main body is, assuming
the main body relies on using ADFs. Another time,
we see the importance of coupling ADFs and main
bodies that work well together.

Other problems that may arise could be that a
fit main body and a fit ADF do not fit together,
ADFs are not called at all or that an ADF is passed
the wrong arguments.

2.1.3 Consequences of Miss Fitting ADFs and
Main Bodies
The consequence is that good parts of an individual
may be lost in following generations since their
worth was not recognized. We claim that the right
coupling of an ADF and a main body is just as
important as discovering useful subroutines. In
addition, due to the architecture of the GP+ADF
approach, an ADF is always constrained to a single
individual. If a very fit main body or ADF is found
in one individual, this discovery may not even be
recognized since only one other counterpart is used
to couple and evaluate it. Furthermore, these good
subroutines and main bodies will not be available to
all the other individuals except with crossover
exchange of some parts in very few other
individuals. With these considerations in mind, we
can proceed to describe the co-evolutionary
approach and how we will try to overcome these
limitations.

2.2 Description of the GP+CADF Algorithm
The GP+CADF algorithm works with n populations
P0…Pn where P0 is the main body population and
P1..Pn are the ADF populations. There are as many
ADF populations as the number of ADFs we choose
to have in our architecture. The total number of
individuals in all populations is M, and therefore the
number of individuals in each population is M/n.
Figure 1 presents the basic GP+CADF algorithm:

1: Let Bi be random individual of Pi for i=0..n
2: For G generations or until solution found:
3: Update Bi to be the best individuals found so far
in Pi for i=0..n
4: Evaluate each individual in Pi by coupling it with
Bj where j=0..n and j≠i
5: Breed each population and apply genetic
operators
Fig. 1 - Basic GP+CADF algorithm

One problem that becomes apparent is that the
individuals in the main body and ADF populations
can not be evaluated just by themselves. We need to
have all the ADFs for a main body and we also need
a main body and all other ADFs for an ADF in order
to couple them together and form a complete
individual that can be evaluated as stated in line 4.

2.2.1 Fitness Evaluation of Individuals in the
GP+CADF Approach
Suppose that we decide in our architecture that we
will have two ADFs. Then, let us say we decide that
there will be a total of 3 populations each with M/3
individuals. If we consider all the ways that these
individuals can be coupled, there are a total of
M3/27 combinations. If we wanted to evaluate all of
these combinations at every generation this would
quickly become infeasible due to exponentially
increasing evaluation times.

A solution to this problem is to couple all of
the individuals in a population with just one
individual Bi from all other i populations. It is
immediately apparent that this choice of Bi is very
important since this individual will be used in all
fitness evaluations. Furthermore, the fitness will be
an evaluation of how well an individual fits with all
our chosen Bi. A reasonable assumption is that a
good choice for Bi would be the current best
individual found so far in each of the populations.
This choice makes sense because the best individual
has the highest fitness and does most of what is
required by our problem.

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 355 ISBN: 978-960-474-051-2

2.2.2 How to Evaluate ADFs and Main Bodies
Figure 2 shows a diagram of how evaluation of
ADFs is done in the co-evolutionary multi-
population system. The setup for that example is that
we have one main body and two ADFs. Therefore,
there will be a total of 3 populations: one for the
main body and one for each ADF. In the top row are
the best individuals from each population. In the
diagram, the best main body is a 6 node program
tree and it calls both ADFs in its terminals. The best
ADFs are both 3 node program trees in this
example.

Fig. 2. Evaluating ADFs in a multi-population
system.

The ADF0 population is represented as a
column of individuals and for the sake of simplicity
there are only the first three individuals shown. The
diagram shows how individual 2 would be
evaluated: it will be plugged into the best main body
along with the best ADF1. This complete individual
will be evaluated and the fitness will be assigned to
individual 2. The same process will be repeated for
all individuals in the ADF0 population. Similarly,
this process will be applied to all the individuals
from the ADF1 population with Best ADF0 used
where ADF0 is called.

Following this method we may also evaluate all
individuals in the main body population by coupling
them with the best ADFs.

3 Improvements for GP+CADF
The next sections will examine potential
improvements for the GP+CADF method. These
include using elitism in evaluation, finding better
initial best individuals and generating a better initial
population.

3.1 A. Co-evolutionary Elitism
One strategy for evaluating individuals is to use the
best individuals that were determined from the
previous generation as our Bi. The motivation for
this design decision is that the best individuals must
be updated as evolution progresses in order to use
better, newly evolved ADFs and main bodies and to
find the best coupling between them.

On the other hand, we could also use an elitist
strategy where we only keep track of the best
individual found so far in the entire evolutionary
run. The motivation here would be that we want to
use the absolute best main body and ADF that we
can find in the entire run. In addition, another
hypothesis would be that this will have a stabilizing
effect because the best individuals we are trying to
couple and fit with all other individuals will not
change as rapidly.

Experimental results with the parity problem
showed that the elitist strategy was better by an
order of magnitude and provided better stability by
changing the best individuals less often.

3.2 Better than Random Initial Best
Individuals

One way to boot start the process of evaluation is to
choose the initial best individuals randomly from
generation 0. The problem with this approach is that
since these individuals are random, they might be
particularly unfit and it might not be worthwhile to
start the evolution process with these poor
individuals. A different approach would be to
initially try M couplings between all individuals and
choose as best those individuals that produced the
highest fitness when coupled together. This would
amount to sacrificing one generation of evaluation in
order to determine better initial best individuals.

Experimentation with the parity problem
concluded that the computation effort was reduced
by a factor of 1.6 when choosing the initial best
individuals after M couplings.

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 356 ISBN: 978-960-474-051-2

3.3 Checking for ADF Calls
Since using ADFs and coupling main bodies and
ADFs is the heart of the GP+CADF approach, then
it is essential that ADFs be used by main bodies.
This is because most of the computational effort in
GP+CADF is spent in evaluating couplings between
best individuals and populations. It will be wasted
effort to couple a main body with all ADFs in an
ADF population when an ADF is not even
referenced.

Therefore, an improvement to the initial
population would be to regenerate a main body that
does not call ADFs until one is made with ADF
references. Experimentation with the parity problem
concluded that this strategy reduced the
computational effort by a factor of 1.7.

4 Earlier Work with Co-Evolutionary
GP
The literature in both competitive and co-operative
co-evolution was surveyed for both GA and GP
approaches. Most works dealt with competitive co-
evolution of host-parasite systems. Issues that arise
in competitive co-evolution such as disengagement
and determination of the appropriate test set were
dealt with in a number of works. [4, 5, 6].

Our GP+CADF method stands firmly in the
less explored co-operative realm of co-evolution.
The main challenges in co-operation are of problem
decomposition and methods of individual interaction
which are explored in existing works [7, 8, and 9].
The co-operative co-evolution approach we take to
decomposing problems into multiple co-operating
populations is with ADF subroutines in GP.

The idea of co-evolving main bodies and ADFs
in GP has already been dealt with in [3] by Aler. In
our approach, an n population system will be set up
to have M/n individuals in each population where M
is the total number of individuals desired in all
populations. Aler’s approach is to have M
individuals in each population but run each
population for G/n generations where G is the total
number of generations desired. In order to
compensate for the larger number of evaluations
required in GP+CADF we reduce the number of
individuals in each population while Aler reduces
the number of generations that each population is
run. In all approaches: this, Aler’s and GP+ADF,
there are the same number of evaluations per
generation performed.

Consequently, Aler experiments with a small
population and long runs, which means that M is
200 and 400, and G is 150. The large number of

generations used in his setup also compensates for
the design decision that each population is run for
G/n generations.

In addition, while Aler only experiments with 5
and 6-parity we perform a comparative analysis on a
wide range of problems. Lastly, we implement and
test a number of improvements for the GP+CADF
method as outlined in the previous sections.
Experimental results with the parity problem
showed that the elitist strategy was better by an
order of magnitude and provided better stability by
changing the best individuals less often.

5 Experimental Results
In order to demonstrate that the GP+CADF method
has an advantage over standard GP and GP+ADF,
we tested a wide variety of problems that include
even-n-parity, sum of bits, image recognition, lawn
coverage and the bumblebee problem. A
comparative analysis between the methods was
performed for each problem that utilized the metric
of computational effort for comparison.

5.1 The Even-n-Parity Problem
The even-n Boolean parity problem is the task of
recognizing whether a bit string of length n
consisting of 1’s and 0’s contains an even number of
1’s. We see that if even just one bit is changed in the
bit string, then the output changes. Additionally, in
order to find the output we need to consider all of
the inputs. For that reason, the parity function is
hard to learn for machine learning algorithms as
discussed in [2]. Furthermore, Koza reports that not
a single program solved the even-3-parity function
in a blind random search of 10,000,000 programs
that work with 3 input bits and the Boolean
functions AND, OR, NAND, NOR [1].

Table 2 shows the minimum computational
efforts obtained in the experimental comparison of
standard GP, GP+ADF and GP+CADF for the even-
n-parity problem. There were no solutions obtained
for standard GP with 300 runs past even-6-parity,
and GP+CADF was the only method to yield
solutions after 300 trials past even-10-parity.

The immediate conclusion is that as we
increase n, the computational effort increases most
quickly for regular GP followed by GP+ADF and
GP+CADF. Correspondingly, there is always less
computational effort required to solve the even-n-
parity problem with GP+CADF than with GP+ADF.

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 357 ISBN: 978-960-474-051-2

Problem Even n-parity
Number of bits (n) 3 to 14
Population Size (M) 1800 for n<=13, 3800 for

n=14
Generations (G) 60
Runs 300 for n > 6, 500 for n <=6
Number of ADFs 2
Function Set (no ADF) D0 to D13, AND, NAND,

NOR, OR
Function Set (with
ADF) Main Body

D0 to D13, AND, NAND,
NOR, OR, ADF0, ADF1

Function Set for ADF0 AND, OR, NAND, NOR,
ARG0, ARG1

Function Set for ADF1 AND, OR, NAND, NOR,
ARG0, ARG1, ARG2

Fitness Cases All 2n possible bit strings
Fitness 2n – correct outputs
Success Predicate 0 (all fitness cases must be

perfect for 0 fitness)
Table 1 – Experimental setup for the even-n-parity
problem.

n Runs GP GP+ADF GP+CADF
3 500 14,400 75,600 45,000

4 500 234,000 182,700 126,000

5 500 No solution 553,500 302,400

6 500 219,515,400 1,357,200 446,400

7 300 No solution 2,754,000 693,000

8 300 No solution 4,050,000 1,044,000

9 300 No solution 10,054,800 1,461,600

10 300 No solution 24,786,000 3,240,000

11 300 No solution No solution 4,248,000

12 300 No solution No solution 9,720,000

13 80 No solution No solution 16,380,000

14 67 n/a n/a 22,572,000

Table 2 – Minimum computational efforts for the
even-n-parity problem for all 3 methods.

The GP+CADF method successfully solved
the even-n-parity problem up to n=14. We could not
proceed further not because GP+CADF was not able
to solve even-15-parity, but because increasing
evaluation times made it infeasible to accumulate a
sufficient number of trials to obtain a successful run.

5.2 The Sum Of Bits Problem
The n-s-sum of bits problem takes as input a bit
string of length n and a desired sum s. The goal is to
find all those bit strings where the number of 1’s
adds up exactly to the sum s. We invented this
problem specifically for the purpose of comparing
the different GP methods with a problem that is
harder than the even-n-parity problem and that is
also scalable in the same way.

Concerning scalability, the difficulty of this
problem is directly proportional to n and the
problem is also hardest when s is half the value of n.

The results showed that computation effort was
exponentially increasing with n and that GP+CADF
was the only method to solve the sum-of-bits
problem for 6-s-sum of bits where s is between 2
and 4.

5.3 The Image Recognition Problem
The letter recognition problem is based on work
done by Koza in chapter 15 of [1]. The inputs to the
problem consist of a grid of 6x4 pixels. For the
purposes of this problem, we will only use the letters
I and L. The reason we only use I, L and various
samples that are neither is that we are not interested
in a genuine letter recognition task. Rather, we are
examining a problem where we want to recognize
two things perfectly among many samples. The
main motivation is the discovery of solutions though
subroutines that examine local pixel neighborhoods
and the goal of the experiment will be to see if
GP+CADF improves on GP+ADF. The inputs will
include the letters I and L and 75 other images that
represent a range of possibilities; some resembling
the letters, and some that look very different. In
other words, we will have two positive and 75
negative cases. Fig. 6 shows the set of images that
will be used in this problem. The goal for the
program will be to correctly identify the two letters
and dismiss all other cases as negatives.

M SP Regular GP GP+ADF GP+CADF

4000 3 No Solution 8,880,000 5,760,000

3000 1 No Solution 60,888,000 40,356,000

3000 1 No Solution 40,356,000 30,780,000

Table 3 – Minimum computational efforts for the
image recognition problem. SP denotes success
predicate which is how many fitness cases are
allowed to be wrong and still obtain perfect fitness.

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 358 ISBN: 978-960-474-051-2

The experimental results are given in Table 3
and show that GP+CADF yielded a lower
computational effort in all tests.

5.4 Additional Experiments
Experiments were also performed on the
lawnmower, obstacle avoiding robot, minesweeper
and bumblebee problems as described by Koza in
[1]. The results obtained from these experiments
also confirm that GP+CADF requires less
computational effort than regular GP or GP+ADF.

Problem Regular GP GP+ADF GP+CADF

Lawnmower No Solution 12,000 6,600

Obstacle
Avoiding Robot

No Solution 264,600 126,000

Minesweeper No Solution 4,176,900 2,318,400

Bumblebee No Solution 172,800 148,800

Table 4 – Minimum computational efforts for lawn
coverage (lawnmower, obstacle avoiding robot and
minesweeper) and bumblebee problems.

6 Conclusion
This work began by asking whether the addition of
co-evolution to genetic programming would help to
overcome the current limitations of the standard GP
approach as well as GP augmented with
automatically defined functions. We have shown
that GP+CADF is a feasible co-evolutionary
approach that continues discovery of solutions
where regular GP and GP+ADF reach their limits.
We have shown that GP+CADF yields solutions for
up to 14-even-parity and 6-3 sum of bits problems
where other methods find no solutions. We have
also shown that GP+CADF requires a lower
computational effort to solve the parity, sum of bits,
image recognition, lawn coverage and the
bumblebee problems.

To further improve GP+CADF, we discovered
that using elitism and a single best evaluation
coupling lowers the computational effort even
further. In addition, improving the initial population
by regenerating individuals with no ADF calls and
choosing best initial individuals after M couplings,
where M is the population size, also leads to a
lowered computational effort.

References:
[1] J.R. Koza, Genetic programming II: Automatic

discovery of reusable programs, MIT Press.
1994.

[2] W. B. Langdon and R. Poli, Foundations Of
Genetic Programming, Springer-Verlag New
York, Inc., New York, NY, 2002

[3] R. Aler, Immediate transfer of global
improvements to all individuals in a population
compared to Automatically Defined Functions
for the EVEN-5,6-PARITY problems, Springer
Berlin Heidelberg, 1998.

[4] W. Daniel Hillis, Co-evolving parasites improve
simulated evolution as an optimization
procedure, Physica D, v.42 n.1-3, p.228-234,
June 1990.

[5] N. Williams , M. Mitchell, Investigating the
success of spatial coevolution, Proceedings of
the 2005 conference on Genetic and evolutionary
computation, June 25-29, 2005.

[6] Edwin D. De Jong, Jordan B. Pollack, Ideal
Evaluation from Coevolution, Evolutionary
Computation, v.12 n.2, p.159-192, June 2004.

[7] Mitchell A. Potter , Kenneth A. De Jong, A
Cooperative Coevolutionary Approach to
Function Optimization, Proceedings of the
International Conference on Evolutionary
Computation. The Third Conference on Parallel
Problem Solving from Nature: Parallel Problem
Solving from Nature, p.249-257, 1994.

[8] Mitchell A. Potter , Kenneth A. De Jong,
Cooperative Coevolution: An Architecture for
Evolving Coadapted Subcomponents, ,
Evolutionary Computation, v.8 n.1, p.1-29, 2000.

[9] Tulai, A. F. and Oppacher, F., Combining
Competitive And Cooperative Coevolution For
Training Cascade Neural Networks, In
Proceedings of the Genetic and Evolutionary
Computation Conference 2002.

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 359 ISBN: 978-960-474-051-2

