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Abstract: - In this paper we tried to group in three classes the companies listed without interruption for 6 years from 
Bucharest Stock Exchange. We used cluster analysis, namely an iterative method of clustering, the k-means algorithm. 
Using data results, we have made tests for the three classes of prediction using discriminant analysis. Fisher's functions 
have helped us to make predictions on the affiliation of a new listed company on one of the 3 classes of risk. In this 
study, emphasis was placed on the liquidity of companies, but also on how efficient are used the raw materials, the 
basic elements in the current financial crisis. This should give us a clearer picture of companies that are ready to get 
over this difficult time. 
Key-Words: - Discriminant analysis, Cluster analysis, Pattern recognition, Stock exchange, Portfolio analysis, 
Classifiers. 
 
1.   Introduction 

In most human activities appears the need to 
surround, to make the difference, to group or classify 
certain objects in the form of categories whose 
determination must be very clear and very natural. 

Research aimed at structuring and differentiation of 
many items on specific categories or classes, depending 
on the fundamental properties of objects, are known 
under various names, such as grading, clustering, group 
or discrimination. 

In general, we can say that discrimination and 

clustering represent activities of arranging objects, 
individuals or observations, in the form of groups, 
classes or categories, depending on the degree of 
similarity or contrast between them.  

The overall aim of the pattern recognition theory is 
identifying at the level of many complex and 
heterogeneous forms or objects of structures, groups, 
classes or clusters existing at the latent level in that 
crowd and those who shape in a natural way, depending 
on the similarities and differences between many of 
these items. 
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2. The Separation of Classes in Forms 
Space  

The first and most difficult problem to be solved in 
the discriminant analysis is the separation of classes in 
the prediction of the  Ω  set. The most direct way of 
separating Ω set classes is represented by defining the 
space of separation surfaces or decision surfaces. These 
areas of separation are those which cause the offset of 
the classes of prediction kωωω ~,...,~,~

21  and it pass, 
necessarily, by the set of objects belonging to the 
intersection of the classes that separate them.  

For reasons like simplification of the classification 
process, usually, there are used linear separation 
surfaces, like straight lines, planes or hyperplanes[1]. 
Separation surfaces are defined by functions known as 
discriminant functions. Finding an effective way to 
separate the set elements on disjunctive classes is a 
difficult problem, especially because of the existence in 
the set Ω of some objects that belong simultaneously to 
two different real classes. Affecting of this kind of 
objects to a class or another could be possible only 
through the probabilistic calculus 

The main problem to be solved in the discriminant 
analysis is that of constructing criteria or rules of 
classification, and based on it, we can make predictions 
about affiliation of new forms, with initially unknown 
affiliation.  

Criteria for classification are known as classifiers, 
and the deduction of these criteria is called training of 
the classifier. The classifier is actually an algorithm 
which determines the most likely affiliation of a form to 
a prediction class. The training of the classifier is based 
on the information contained in a sample form whose 
affiliation is known before and which is called training 
set. 
 
2.1. Linear Classifier  

The first way of approaching problems with 
classification of discriminant analysis techniques dates 
from 1933 and it was proposed by Fisher. Subsequently 
such approaches have developed steadily, and 
applications based on discriminant analysis were 
extended to even more areas of activity and have 
diversified increasingly more. 

Most of them and the most useful application of 
discriminant analysis based on Fisher's criterion are met 
in the financial-banking field, area in which these kind 
of techniques are called credit-scoring techniques and 
they are the most important tools to substantiate 
decisions on granting loans. 

Method of discriminant analysis proposed by Fisher 
is a parametric method, characterized by simplicity and 
robustness, and offers possibilities of interpretation very 
useful for analysis. The simplicity of this method stems 

from the fact that using it does require only the 
evaluation of estimations of population and its classes 
parameters, parameters represented by averages, variants 
or covariants.  This is a very important advantage of 
Fisher’s discriminant analysis, in comparison, for 
example, with Bayes’s techniques, whose use involves 
knowing of the aprioric probabilities. 

The theoretical basis of Fisher’s discriminant 
analysis is represented by the variant analysis. Fisher's 
Criterion defines a way to deduct the discriminant 
functions on the basis of comparative analysis between  
intragroup variability and intergroup variability, at the 
level of classes or analyzed population groups. The 
discriminant functions deducted on the basis of Fisher's 
criteria are  called also score functions and they are 
linear functions. 

From a certain point of view, the discriminant 
analysis can be considered as similar to principal 
components analysis, which aims to identify general 
axes relative to the variability of objects to be 
maximum[2]. The main difference between discriminant 
analysis and principal components analysis is related to 
the fact that in principal components analysis the causal 
space is considered in its entirety, without making any 
differentiation between its elements in terms of a 
specific criteria. 

In case of principal components analysis, the 
variability is viewed as a general characteristic of the 
population analyzed, without taking into account the 
existence of any structure on this population group or 
class. Consequently, the variability which is the object of 
principal components analysis is considered as a whole, 
without any possibility of decomposition in relation to a 
certain structure of causal space analyzed. 

In contrast, in case of discriminant analysis it is 
considered that population is divided into groups or 
classes, and the variability of this population can be split 
in two components: intergroup variability and intragroup 
variability.  

In addition to the difference mentioned before, in 
the discriminant analysis the new directions to be 
identified should not necessarily be orthogonal, unlike 
principal components analysis in which the directions of 
maximum variability should check the orthogonal 
property.  

The most important issue of the Fisher’s criterion 
of discrimination between classes of a population is 
related to the decomposition of variability of this 
population[3]. We will detail how to split the population 
variability in relation to the two meanings of it: simple 
variability ¬ expressed through the total amount of 
square deviations and mixed or composed variability ¬ 
measured through mixed products of deviations matrix. 
It is obvious that mixed variability can be defined only 
for multidimensional objects. 
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2.2. Defining Fisher's discriminant functions  
A Fisher discriminant function is determined as a 

linear combination of discriminant variables, whose 
combination coefficients are components of the 
eigenvector of the matrix ∑∑ ⋅

−

bw

1
. From this way 

of defining, result, by default, that it can be identified 
more discriminant functions. The maximum number of 
possible discriminant functions that can be identified on 
Fisher's is equal to the number of the distinct and strictly 
positive values of the matrix ∑∑ ⋅

−

bw

1
. 

Since this matrix has the size nn× , when it is 
strictly positive defined and it has the maximum rank, 
the result is that the total number of discriminant 
functions that can be determined is equal to ″n″. We will 
present next the way it can be determined all possible 
discriminant functions.  

For this we will note the  ″n″  values  of  the matrix 

∑∑ ⋅
−

bw

1
with λ1,λ2,…,λn and we will assume that 

they are ordered in terms of values that they have as 
follows:  

λ1 > λ2 >…> λn > 0   (1) 
We note with    β(1),β(2),…,β(n), its own ″n″ vectors 

of the matrix ∑∑ ⋅
−

bw

1
, associates, in order, with 

their own values λ1,λ2,…,λn. The first discriminant 
function is defined using the vector itself, which 
corresponds to the higher own value, and has the 
following form: 

nn xxxxD ⋅++⋅+⋅+= )1(
2

)1(
21

)1(
1

)1(
01 ...)( ββββ   (2) 

Since this function corresponds to the highest 
possible value of the report between the intergroup 
variant and intragroup variant, it provides the best 
separability of the classes, in terms of mixed criterion 
mentioned above. This means that the object projections 
on the new axe determined by the vector of coefficients 
β(1) can be separated into classes that differentiate in the 
greatest degree possible and that has the highest possible 
degree of homogenity. 

Similarly, the second discriminant function is 
defined using the eigenvector which corresponding to 
the second eigenvalues, namely: 

nn xxxxD ⋅++⋅+⋅+= )2(
2

)2(
21

)2(
1

)2(
02 ...)( ββββ   (3) 

Being determined on the basis of the second 
eigenvalues of the matrix ∑∑ ⋅

−

bw

1
, this discriminant 

function corresponds to a smaller value of the report 
between the intergroup variant and intragroup variant. 
Consequently, it provides a smaller resolution in terms 
of separability leave of the set. From this point of view, 
it is possible that projections of objects on the new axe 
which has the vector as support to match the classes that 
are less homogeneous and differentiate less between 

them. 
Finally, with eigenvector associated with the lower 

eigenvalue, that is vector β(n), it determines the last 
discriminant function, namely: 

n
n

n
nnn

n xxxxD ⋅++⋅+⋅+= )(
2

)(
21

)(
1

)(
0 ...)( ββββ    (4) 

By comparison with other discriminant functions, 
this latter discriminant function ensures the poorest 
separability between classes of the Ω set. The effective 
number of discriminant functions that must be retained 
in the analysis depends directly on the number of classes 
and the number of discriminant variables. 
 

 
3.  The Bucharest Stock Exchange case. 

An analysis of 45 companies listed permanently on 
Bucharest Stock Exchange (BSE) in 2002-2006 has 
already been done[4]. In an attempt to group them using 
cluster analysis techniques, it were used hierarchical 
clustering methods, like single linkage method or    
Ward 's method and iterative methods of clustering. The 
results were satisfactory for k-means algorithm, an 
iterative refinement heuristic, invented in 1956 [5] and 
later developed by Loyd[6]. K means algorithm is an 
algorithm that tries to group n objects in k clusters, 
where k <n. The objective is to minimize total 
intracluster variance or to maximize the intercluster 
variance. 

For each case were used 8 variabiles, defined as: 
liquidity ratios (current ratio) ; solvability ratios (debt-
to-equity ratio, total debt ratio) ; efficiency ratios (total 
assets turnover) ; profitability ratios (return on assets, 
return on equity, net profit Margin) ; indicators of 
market value (earnings per share). 
 
3.1. What is new 

In today's global crisis, we thought it would be 
interesting to add two new differentiation variables. The 
first would be cash ratio, which is the most conservative 
liquidity ratio, which relates only the cash items (cash 
and short-term financial assets) to current liabilities. 
With regard to current accounts, measures of liquidity 
alone are generally inadequate because differences in the 
structure of a firm's current assets and current liabilities 
can significantly affect its "true" liquidity so the second 
variable is Inventory turnover. This ratio indicates the 
efficiency with which the firm uses its inventory. At the 
same time, the implied ratio indicates the processing 
time of the company's products. Generally, the higher 
the value of the ratio, the higher the efficiency of using 
inventory, but, as in the case of the previous ratio, this 
ratio is strictly dependent on the industry. Also, it is 
important to note that a low value for this ratio is 
problematic, since it might be a sign of capital being tied 
up in inventory and problems with selling the final 

Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '09)

ISSN: 1790-5109 497 ISBN: 978-960-474-051-2



products. 
Thus, having 10 variables, we standardized and we 

applied again k-means algorithm. Noting that splitting 
into 4 classes offers 2 classes almost similar, we tried a 
partitioning of the objects in only 3 categories for 38 
companies listed permanently between 2002-2007.  
 
3.2. Results obtained 

Thus, in 2007 we got the first class that is 
composed of  Financial Investment Companies (FICs) 
and several other companies. Members of this class are 
characterized by the following aspects: solvability rates 
have the lowest values which indicate a low level of 
indebtedness, normally for financial investment 
companies, total debt ratio has the lowest value, return 
on assets and return on equity values are the most closer 
to 0, namely those close to the general average, so 
natural for these companies that own shares in several 
companies. Also, net profit margin and earnings per 
share recorded the highest values. As you see, 
investments in FIC sites are the most profitable. 

The 2nd Cluster is a clusters of average. Net profit 
margin, earnings per share and total assets turnover have 
comparable values in standardized variables.  

As the difference between the first two classes 
would be that the first comprises less indebted 
companies, which have a noticeably high liquidity, 
profitability and a slightly higher. In other words, we can 
find in the second group companies with good levels of 
liquidity and profitability, but under the FICs. Obviously 
the second option would be investing in companies of 
the 2nd cluster. 

The last category includes companies that have real 
problems 
 

Plot of Means for Each Cluster
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Companies in the latter cluster were the lowest 
solvability ratios, lowest liquidity ratios and lowest 
profitability. In figure 1 you can see the attributes of 

clusters determined with the k-means algorithm. 
We have repeated all these operations for the last 5 

years and tried to see how companies have evolved as 
they migrated from one cluster to another. We could see 
that FICs were part of the same class every year, even if 
previous years were joined by other companies. 
 
3.3. Discriminant analysis 

After finding a proper way to separate the elements 
of  the  Ώ  set  (those  38  companies)  on  classes  of 
prediction  ω1, ω2, ω3 (the 3 classes found), the main task 
of discriminant analysis is to decide on the membership 
of th e 3  classes o f n ew ob jects fro m th e  Ώ set or to  
make predictions concerning the affiliation of these 
objects. This means that the problem of classification 
using discriminant analysis can be made as follows: 

Giving an object that is known vector x of values of 
its characteristics, is required to determine the object 
belonging to one of the 3 classes possible, ω1, ω2, ω3 of 
the set Ώ. 

We are trying to verify the data obtained by the K-
means algorithm. Classification Matrix (generated by 
statistics 7.1) checks how many cases were good 
predictioned  and how many were wrong. Thus, for each 
element Aij, we can interpret: Item A was calculated as 
belonging to the class i and actually belong to the class j. 
Figure exposed below (table 1) noted that besides the 
main diagonal, all the matrix elements are equal to 0. As 
seen, prediction is considered 100% correct. 
 

Group 

Classification Matrix (Stefan_IND_11) 
Rows: Observed classifications 
Clolumns: Predicted classifications 
Percent 
Correct 

G_1:1 
p=.44737 

G_2:2 
p=.21053 

G_3:3 
p=.34211 

G_1:1 100,000 17 0 0 
G_2:2 100,000 0 8 0 
G_3:3 100,000 0 0 13 
Total 100,000 17 8 13 

Table 1 
 

3.4. Mahalanobis distances: 
In table 2 appear the distances between centroids of the 3 
classes. Obviously, the main diagonal is zero. 
 

Var_Clas 

Squared Mahalanobis Distances 
(Stefan_IND_11) 

G_1:1 G_2:2 G_3:3 
G_1:1 0.00000 23.46597 30.84500 
G_2:2 23.46597 0.00000 27.93896 
G_3:3 30.84500 27.93896 0.00000 

Table 2 
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We could also generate a table in which in the first 
two columns are showed the cases and belonging to the 
groups determined by the K-means algorithm. 
Mahalanobis distances of the following 3 columns are 
the distances from each firm to centroid of each class. 
We can notice that for all those 38 companies, the 
smallest distance corresponds the cluster centroid of 
which belongs the company. (for lack of space we can 
not reproduce than a few lines of this table) 

 

 

Observed 

Classif. 

1 Mah. 

Distances 

2 Mah. 

Distances 

3 Mah. 

Distances 

OtelInox 2 67,24908 23,58100 68,67287 

Azomures 1 10,08497 27,23722 47,59443 

Turbomecanica 3 38,10748 42,20765 5,17626 

Table 3 
 

Interesting is that for any case, a new company, can 
predict belonging to a class calculating the for 
Mahalanobis distances. Obviously, the minimum will 
show which class belongs to the newcomer. 
 
3.5. Discriminant Functions 

The main problem to be solved within discriminant 
analysis is the construction of criteria or rules of 
classification, from which it can make predictions 
concerning the affiliation of new forms, with initial 
affiliation unknown. Criteria for classification are known 
as the classifiers, and the deduction of these criteria is 
called training of the classifiers. 

The classifier is actually using an algorithm which 
determines the most likely belong to a form to a certain 
class of prediction. The training of the classifier is based 
on the information contained in a sample form whose 
affiliation is known aprioric which is called training set. 

Determination of discriminant function is 
equivalent to finding some directions, or vectors, in 
relation with whom the intragroup variability would be 
minimal, and intergroup variability to be high.  

These directions will define the axes of 
discriminant space against and can be identified in the 
form of linear combinations of descriptions variables 
selected in the analysis. 

In conclusion, we can say that Fisher’s discriminant 
functions are linear functions with the following form:  

D(X) = β0 + β1X1 + β2X2 +…+ βnXn    (5) 
Where )...( 22110 nn µβµβµββ ⋅++⋅+⋅−=  is 

the free element, and coefficients β1, β2,…, βn are 
components of an eigenvector of the matrix 

∑∑ ⋅
−

bw

1
. 

Classification Function parameters, calculated 
using Statistics 7.1 appear in table 4: 

Variable 

Classification Functions; Grouping 
Var_Clas(Stefan_IND_11) 

G_1:1 
p=.44737 

G_2:2 
p=.21053 

G_3:3 
p=.34211 

Lich_CRT -2.42295 0.72274 2.72371 
Lich_Imd 0.68960 3.00506 -2.75105 

Indator 1.79983 -2.46766 -0.83506 
Acop_Dob -1.63140 -0.84026 2.65045 
Vrot_Deb -1.83965 -1.87618 3.56026 
Vrot_ActC 1.12591 -0.94167 -0.89285 
Vrot_ActT 1.14229 2.86493 -3.25680 

Rentab_Cap -1.98692 1.05747 1.94753 
Mrj_Br_V -2.07831 1.25443 1.94583 
Rez_Act 1.74793 -0.62868 -1.89887 
Constant -3.82054 -6.67595 -6.01773 

 Table 4 
 

The discriminant functions will be: 
D1(X) = -3,82 – 2,42X1 + 0,69X2 + … +1,75X10  (6) 
D2(X) = -6,68 + 0,72X1 + 3,01X2 + … - 0,63X10  (7) 
D3(X) = -6,02 + 2,72X1 – 2,75X2 + … - 1,90X10  (8) 

The coefficients for the first discriminant function 
are derived so as to maximize the differences between 
the group means. The coefficients for the second 
function are also derived to maximize the difference 
between the group means, but the values of the functions 
are not correlated. The second function is orthogonal to 
the first and the third is orthogonal to the second. 
Variables will be even values of the 10 indicators 
normalized. 

What is most interesting about the functions of 
classification is that it may set belonging to a set of 
classes for any new company whose indicators are 
known but unknown membership. 
 
3.6. The a prioric and posterior probabilities: 

To estimate the aprioric probabilities P1, P2, P3, is 
calculated the number of cases or the number of firms in 
each class using the information on the K-means 
algorithm. Then we determine Ti which represents the 
number of firms in class i and then calculate the relative 
frequencies Pi = Ti / T. 
 

Class 

Prior Probabilities of Classifications 
(Stefan_IND_11) 

1 
N=17,000 

2 
N=8,000 

3 
N=13,000 

Probability 0,447368 0,210526 0,342105 

Table 5 
 

We will assume that the probability density of the 
classes are normal, in other words are like the following: 
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i=1,2 (9) 
 
a posterior probability will be: 
 

     i = 1, 2, 3   (10) 
 
 
In the following tables we have in the first two 

columns firms and classes predicted using the K-means 
algorithm. Thus, the next 3 columns are presented as a 
posterior probability object to belong to the class 1, 2 or 
3 and in the second table, the last three columns can be 
found standings probability, for example classes which 
belongs to the highest probability. 

Note that the algorithm K has been very precisely, 
in most cases with a probability of over 99% 
respectively as subject to belong to the predicted class of 
K-means  algorithm. (for lack of space we can not 
reproduce than a few lines of this tables) 
 

 
Observed 
Classif. 

1 
prob. 

2 
prob. 

3 
prob. 

OtelInox 2 0,0000 1,0000 0,0000 

Azomures 1 0,9999 0,0000 0,0000 

Turbomecanica 3 0,0000 0,0000 1,0000 

Table 6 
 

 
Observed 
Classif. 

Highest 
Prob. 

Second 
Highest 

Third 
Highest 

OtelInox 2 2 1 3 

Azomures 1 1 2 3 

Turbomecanica 3 3 1 2 

Table 7 
 
 

4   Conclusion 
With discriminant analysis model assumptions we 

have checked K-means algorithm and we have 
succeeded in calculating the classification of features 
that may help in future predictions. 

The most useful application of discriminant 
analysis are seen in the banking area in which techniques 
are called and credit-scoring wich are the most important 
tools for the decision on the granting of loans. Such 
firms can be divided into classes of trust and credit 
decision to make depending on membership class. 

Another area would be marketing, clients can be 
divided into different classes of interest for those who do 
studies. Last but not least the establishment of 
development areas can be based on algorithms presented 
in this paper. 

This is an important step towards the following 
researches and also represents an efficient instrument in 
the context of the global financial crisis. given that the 
last period were recorded depreciation on all markets, 
BSE has not been an exception, remains to be seen if the 
clusters found will remain approximately similar to or 
will change radically. 

Remains a bad opinion of the authors for the 
Romanian economy is not fully reflected in BSE, many 
companies are not listed. 
 
 
5.   What to do 

As a continuation of this work, with application on 
the capital market, we can see the following points: 
• an analysis of evolution in the dynamic; observation of 

clusters changing from one year to another and 
explanations of migration cases from one cluster to 
another; 

• combination of companies with indicators on the 
evolution of capital market. to view the indicators that 
most influence the decision to invest; 

• determining the structural movement of the Romanian 
economy depending on size and performance of firms; 

• deduction of certain classes of risk and that the risk 
classes of companies listed on BSE; 

• construction of models for character developments 
phenomenon Romanian scholar; building portfolios 
based on clusters, instead of the classical. 
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