
Quick Parser Development Using Modified Compilers and
Generated Syntax Rules

KAZUAKI MAEDA
Department of Business Administration

and Information Science, Chubu University
1200 Matsumoto, Kasugai, Aichi, JAPAN

kaz@acm.org

Abstract: This paper describes some ideas about quick parser development from source code of popular free
and libre open source (called FLOSS) compilers using modified parser generator. Parser development is time-
consuming and laborious according to traditional approaches. In this paper’s approach, a specialized scanner is
built using FLOSS compilers. The scanner reads source code, analyzes it, and writes a sequence of tokens in XML.
The parser generator is modified so that it generates a specialized parser and syntax rules with code to read the
tokens in XML for quick parser development. In the author’s experiences, it takes within one hour to implement a
simple recognizer which reads C# source code, writes a sequence of tokens in XML and analyzes it.

Key–Words: Parser Development , Parser Generator, FLOSS Compiler, Syntax Rule

1 Introduction
For centuries past, innovations (e.g. in industrial rev-
olution) had drastically changed industrial environ-
ments. Vinod Khosla said “ Science has the poten-
tial to do something not 10 percent better or 20 per-
cent better but 100 times better, and that power is
what is so exciting to me[1].” Free and Libre Open
Source Software (called FLOSS) has the potential to
improve something 100 times better, and that power is
expected to excite software developers.

FLOSS has been adopted by many companies, or-
ganizations and governments. An important reason
for the proliferation of FLOSS is lower costs. Typ-
ical consumers can work on computers if operating
systems and office suites are installed on their com-
puters. Nowadays, we can freely download Linux as
an operating system and OpenOffice as office suites.
As a result of adapting FLOSS, the initial cost to ob-
tain software is becoming drastically lower. In addi-
tion, many FLOSS products are already available on
multi-platforms, e.g. Linux, Windows and Mac OS
X. If we develop applications on top of FLOSS, tasks
for porting the applications from a FLOSS platform
to another one are easier than traditional commercial
platforms.

There are many FLOSS projects for improving
the software productivity. Those are middleware, Web
frameworks, programming languages, integrated de-
velopment environments and so on. If developers
master how to use the software, they can improve pro-
ductivity of software development. Developers, how-

ever, use the software as just only a black box.
The origin of the term “Free and Libre Open

Source Software” is that source code is freely avail-
able. The source code is, however, not effectively
used to improve the productivity of developing an-
other software.

This paper describes an effective method to reuse
source code of popular FLOSS compilers and to de-
velop parsers quickly. The method has two features.

• Implementation of a scanner to write a sequence
of tokens in XML

Most of compilers does not produce lexical in-
formation to developers. If compilers write a se-
quence of tokens, we can easily implement token
based software tools.

• Customization of parser generators for produc-
ing syntax rules and source code to read tokens
written by the scanner

We can use the syntax rules without modifi-
cation so that we can develop our own parser
quickly. Source code of FLOSS compilers is
checked by world wide software developers to
improve the quality and functionality. Therefore
if the FLOSS compilers are mature, the parser
becomes reliable.

In section 2, parser and scanner development and
FLOSS compilers are explained. In section 3, special-
ized scanners and customized parser generators are
explained. The final section provides a summary of
this paper.

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 410 ISBN: 978-960-474-071-0

2 Scanners and Parsers in Compilers

Most of compilers read plain text, analyze it and build
a tree to represent the hierarchical structure of source
code. The first phase is a lexical analyzer (called scan-
ner), and the second phase is a syntax analyzer (called
parser). This section describes the scanner, the parser,
and FLOSS compilers.

2.1 Scanners

The scanner reads a sequence of characters, recog-
nizes chunks of the characters (called tokens), passes
them to the parser. For example, Figure 1 shows that
the scanner reads a sequence of characters “1 + 2 * 3”,
discards white spaces, produces 5 tokens: three num-
bers and two operators. Developers usually define the
token patterns using regular expressions to design the
scanner. The regular expressions are used to represent
just only patterns of a sequence of characters so that
we sometimes need syntactic and semantic informa-
tion to decide what kind of token it is.

Figure 1: Tokens produced by the scanner

The patterns using regular expressions are used
for scanner generators. Lex[2] is a traditional scanner
generator, which reads descriptions of possible tokens
and generates a scanner written in the C programming
language. Scanner development using Lex is usually
easier than scanners by hand. But in my best knowl-
edge, scanners for typical FLOSS compilers and inter-
preters (e.g. GCC[3], Mono C# compiler[4] and Ruby
interpreter[5]) are developed not by the scanner gen-
erator, but by hand. Because the scanners need fine
grained customization.

These scanners are developed only for compilers.
It is difficult to extract only the scanners to reuse for
other purposes, for example, to build token based soft-
ware tools such as pretty printers or token based clone
code detectors[6]. Because they are tightly coupled
with parsers and symbol table handlers in the compil-
ers.

2.2 Development of Parsers Using Parser
Generators

The parser reads a sequence of tokens, recognizes
a syntactic structure, and build an abstract syntax
tree[7]. For example, Figure 2 shows that the parser
reads 5 tokens, analyzes them in according to the syn-
tactic structure, and build the abstract syntax tree to
represent the arithmetic expression.

Figure 2: Abstract syntax tree produced by parsers

In the 1970s, the parser generator Yacc[8] was de-
veloped, which made parser development much eas-
ier. Yacc reads user-defined syntax rules with action
codes to be invoked when the syntax rules are rec-
ognized, and it generates an LALR (lookahead LR)
parser[7] written in the C programming language.

At invoking the syntax rules, the action codes re-
lated with the rules are also invoked. The require-
ments to the parser are implemented using the action
codes. For example, if we calculate the simple arith-
metic expression, we can define the syntax rules with
the action codes shown in Figure 3. The action codes
are surrounding by curly braces. $$ is a symbol to
represent an attribute with the left-hand side of each
rule. $1 is a symbol to represent an attribute with the
first symbol of the right-hand side, and $3 is a symbol
to represent an attribute with the third symbol.

It is easy to define simple syntax rules as shown
in Figure 3. But if we develop parsers to analyze
source code in modern programming languages (i.e.
C# or Java), it is very difficult to define complete
syntax rules without reduce/reduce conflicts[7]. Let
us consider writing syntax rules for the C# program-
ming language. The author’s experience shows that,
straight according to the specification written in the
C# book[9], 718 syntax rules for C# were defined but
they include 149 reduce/reduce conflicts. Let us con-

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 411 ISBN: 978-960-474-071-0

E : E Plus T
{ $$ = $1 + $3; }
| T
{ $$ = $1; }
;

T : T Mult Num
{ $$ = $1 + $3; }
| Num
{ $$ = $1; }
;

Figure 3: Syntax rules with actions for a simple arith-
metic expression

sider writing syntax rules for the Java programming
language. In the same way, according to the Java
specification[10], 526 syntax rules for Java were writ-
ten but they include 372 reduce/reduce conflicts.

It is desirable to modify the conflicted rules. If
a parser reads one symbol and more than one syn-
tax rule can be reduced, reduce/reduce conflict occurs
among the syntax rules. We need to keep all rules con-
sistent without reduce/reduce conflicts, but it is time-
consuming and laborious to do so. Because the spec-
ification of modern popular programming language is
very complicated. For example, in my experience, it
took about one week to modify the syntax rules for
Java and complete the parser without reduce/reduce
conflicts. In addition, we need to spend much time for
writing code to build an abstract syntax tree.

Based on the author’s experience of constructing
many parsers, there are two approaches to develop
parsers quickly.

1. To get syntax rules from major web sites

There are some web sites including collec-
tions of syntax rules for major programming
languages[11]. The collections in the web sites
are very useful to improve the productivity of
parser development. On the other hand, many
syntax rules contain some errors and there is no
guarantee that they are strictly correct. As a re-
sult, we must laboriously test the syntax rules to
improve the quality.

2. To extract source code of the parser from FLOSS
compilers

There are many high-quality FLOSS compilers
available such as GCC and Mono C# compiler.
These compilers, however, have been developed
only to generate object code from source code.
It is difficult to extract only the parser to reuse
for other purposes because it is tightly coupled

with other modules in the compiler (e.g. lexical
analyzer and symbol table handler).

This paper describes another approach, that is,
to modify scanners and parser generators for writing
reusable information. Functionality for writing tokens
is embedded in scanners and functionality for writing
syntax rules and lexical information is embedded in
parser generators. If we use the modified scanner and
parser, we can develop parsers quickly.

2.3 FLOSS Compilers

Mono and GCC are the most important compilers in
FLOSS.

Mono is a UNIX implementation of the Mi-
crosoft .NET development environment and devel-
opment tools[4]. It is a FLOSS project commer-
cially supported by Novell. The objective of the
Mono project is to enable UNIX developers to build
and deploy cross-platform .NET applications. Mono
is currently available on major operating systems
of Linux, Mac OS X, and Microsoft Windows. It
implements various technologies developed by Mi-
crosoft that have been submitted to the ECMA Inter-
national. The Mono distribution includes C# com-
pilers, a VB.NET compiler, the class libraries, and
runtime environments including a class loader, just-
in-time compiler and a garbage collector.

In the core distribution, the total source code ex-
ceeds 3M lines of code, while that for the Mono C#
compiler (called Mcs in this paper) exceeds 70K lines
of code. The conceptual structure of the Mcs is shown
in Figure 4. The parser for Mcs is developed using
a parser generator Jay[12]. Jay reads syntax rules for
the C# programming language and generates a parser
written in C# to analyze C# source code.

GCC is a GNU Compiler Collection[3]. It basi-
cally supports C, C++, Objective-C, Fortran, Java and
Ada. To compiler Java source code, we use GCJ writ-
ten in the C programming language. One of the ad-
vantages is that GCJ can generate both native code
and bytecode from Java source code. Many applica-
tions have already been developed with GCJ. For ex-
ample, all of the major GNU/Linux distributions use
GCJ to distribute programs like OpenOffice, Eclipse
and Tomcat.

The parser for GCJ was developed using a parser
generator Bison[13]. In the case of GCJ, Bison reads
syntax rules for the Java programming language and
generates a parser written in the C programming lan-
guage to analyze Java source code. Bison is used to
develop many parsers (e.g. the parser for Ruby).

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 412 ISBN: 978-960-474-071-0

case of GCJ, Bison reads syntax rules for the Java pro-
gramming language and generates a parser written in
the C programming language to analyze Java source
code. Bison was modified to implement modified ver-
sion of GCJ. The modified Bison reads syntax rules
for the Java programming language and generates a
special parser which contains functionality to produce
the tokens.

The parser of Ruby interpreter is also developed
using Bison. Source code of Ruby interpreter was ob-
tained and modified in the same way as GCJ to pro-
duce a sequence of tokens from Ruby source code.

As previous described, scanners for typical com-
pilers and interpreters are developed by hand. More-
over, there are no standard way to pass lexical infor-
mation from the scanner to the parser. Therefore, the
author have read all source code of the scanners for
three language processors (i.e. C#, Java and Ruby)
one by one, and modified source code to get lexical
information of each token.

3.2 Parsers Generated from Extracted Syn-
tax Rules

Mocs plays a role of a scanner, the next phase to
develop is a parser. Using syntax rules and code
generated by Mojay, we can develop our own parser
quickly.

Mojay reads the specification for C# and gener-
ates the parser. In addition, it generates syntax rules
with source code to read tokens. Figure 8 shows frag-
ment of the syntax rules. The rules do not have any
action code as shown in Figure 3. All action code and
other description are eliminated from the original in-
put for jay.

outer_declarations : outer_declaration
| outer_declarations outer_declaration
;

outer_declaration : extern_alias_directive
| using_directive
| namespace_member_declaration
;

using_directives : using_directive
| using_directives using_directive
;

using_directive : using_alias_directive
| using_namespace_directive
;

using_namespace_directive :
USING namespace_name SEMICOLON

;

Figure 8: Fragment of the syntax rules generated by
Mojay

If we build an abstract syntax tree to pass it to
another phase, we need to embed the action codes in

public static void RegisterToken(HashMap hashToken) {
hashToken.put("EOF",Token.EOF);
hashToken.put("NONE",Token.NONE);
hashToken.put("ERROR",Token.ERROR);
hashToken.put("FIRST_KEYWORD",Token.FIRST_KEYWORD);
hashToken.put("ABSTRACT",Token.ABSTRACT);
hashToken.put("AS",Token.AS);
hashToken.put("ADD",Token.ADD);
hashToken.put("ASSEMBLY",Token.ASSEMBLY);
hashToken.put("BASE",Token.BASE);
hashToken.put("BOOL",Token.BOOL);
hashToken.put("BREAK",Token.BREAK);
hashToken.put("BYTE",Token.BYTE);
hashToken.put("CASE",Token.CASE);

Figure 9: Fragment of generated code by Mojay

appropriate syntax rules in the same manner as tradi-
tional parser development using the parser generator.

3.3 Software Tool Development Using Mocs
and Generated Syntax Rules

In the author’s experiences, it takes within one hour to
implement a simple recognizer which reads C# source
code, writes a sequence of tokens in XML and ana-
lyzes it as shown in Figure 10. If we develop a sim-
ple reverse engineering tool for C#, we should im-
plement the simple recognizer at first and then build
some functions into it to analyze relationship between
classes and to generate class diagrams.

Figure 10: Our own C# parser

The author have already developed a commercial
based reverse engineering tool. It reads C# source
code and generates the class information. The re-
verse engineering tool consists of 6,750 lines of C#
source code and the syntax rules consists of 2,115
lines. Some classes were implemented to build an ab-

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 414 ISBN: 978-960-474-071-0

stract syntax tree. The tool was developed on Mac OS
X using Mono. After completing the development of
the production quality version, the source code was
transferred to another PC (running on Windows XP),
and the author attempted to build the executable file
using Cygwin and Visual Studio 2005. This building
work was very simple, and it was carried out without
any problems. This is because XML and C# function
independently of operating systems and computers.

4 Summary
This paper described some ideas about quick parser
development from source code FLOSS using mod-
ified parser generator. Development of parsers is
time-consuming and laborious according to traditional
parser development. We can develop parsers quickly
using the specialized scanner and the modified parser
generator.

An advantage of this method is that source code
of FLOSS compilers is publicly opened to distributed
software developers and checked by them to improve
the quality and functionality. We can get the most
up-to-date source code of FLOSS compilers with high
quality so that the parsers developed using this method
have high quality. However, we should pay attention
to the fact that everything is inherited from the orig-
inal FLOSS compilers. If the FLOSS compilers are
under GPL (GNU General Public License), the devel-
oped parsers are also under GPL. We must separate
the parser from other modules, if we need to escape
from GPL.

References:

[1] Vinod Khosla,
On“ science”and climate“meltdown,”
http://venturebeat.com/2006/10/15/vinod-
khosla-on-science-and-climate-meltdown/.

[2] John R Levine, Tony Mason and Doug Brown,
LEX & YACC, Second Edition, O’Reilly, 1992.

[3] Free Software Foundation. GCC,
the GNU Compiler Collection – GNU Project,.
http://gcc.gnu.org/.

[4] Main Page - Mono.
http://www.mono-project.com/.

[5] Ruby Programming Language,
http://www.ruby-lang.org/en/

[6] Toshihiro Kamiya, Shinji Kusumoto and Kat-
suro Inoue, CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large
Scale Source Code, IEEE transaction of Soft-
ware Engineering, vol.28, no.7, pp.654–670,
2002.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi and
Jeffrey D. Ullman, Compilers : principles, tech-
niques, and tools, 2nd Ed., Pearson Education,
2006.

[8] Steven C. Johnson, Yacc: Yet another compiler
compiler, In UNIX Programmer’s Manual, vol-
ume 2, 353–387, 1979.

[9] Anders Hejlsberg, Mads Torgersen and others,
The C# Programming Language, Third Edition,
Addison-Wesley, 2009.

[10] The Java Language Specification, Third Edition,
http://java.sun.com/docs/books/jls/index.html.

[11] Grammar List,
http://www.antlr.org/grammar/list.

[12] jay (Language Processing),
http://www.cs.rit.edu/ ats/projects/lp/doc/jay/.

[13] Bison – GNU parser generator,
http://www.gnu.org/software/bison/

RECENT ADVANCES IN APPLIED MATHEMATICS AND COMPUTATIONAL AND INFORMATION SCIENCES - Volume II

ISSN: 1790-5117 415 ISBN: 978-960-474-071-0

