
Design of A 100MHz 64-Point FFT Processor in 0.35µm Standard
CMOS Technology

HOJAT MOJARAD, HASSAN HAJGHASSEM
Department of electrical engineering

Shahid Beheshti University
Tehran
IRAN

Hojat_mojarad_alman@yahoo.com

Abstract: applications such as digital spectrum analyzers, digital filtering, image processing, and video
transmission need to compute the Discrete Fourier Transform (DFT). A Chip architecture to compute a 64-
point DFT using radix-4 algorithm every 18.87 µs at 100MHz clock rate is designed. This processor
incorporates static memory, controller, and combinational operating unit (COU). Input data and output data are
10-bit and 54-bit words, respectively. A 10-bit × 27-bit multiplier is used inside the processor. Two’s
complement is used to present negative data. This processor is implemented in 0.35µm tsmc standard CMOS
process.

Key-Words: DFT, decimation in time, radix-4, COU, complex multiplier, decimation in frequency

1 Introduction

To perform frequency analysis on a discrete-time
signal {x(n)}, we convert the time-domain sequence
to an equivalent frequency-domain representation.
Such a representation is given by the Fourier
transform of the sequence {x(n)}. In particular,
important computational algorithms, called fast
Fourier transform (FFT), is presented for computing
the DFT when the size N is a power of 4.

 Basically, DFT is to compute a sequence {X(K)}
of N complex-valued numbers, given another
sequence of data {x(n)} of length N, according to
the formula :

 X (K) = ∑ ������
�	�
�

	�
 , 0≤ k ≤N-1 (1)

Where

�� � �
���/� (2)

In general, the data sequence x (n) is also assumed
to be complex valued.

We observe that for each value of k, direct
computation of X (K) involves N complex

multiplications (4N real multiplications) and N-1
complex additions (4N-2 real additions).
Consequently, to compute all N values of the DFT,
we need N2 complex multiplication and N2-N
complex additions.
Direct computation of the DFT is basically
inefficient, because it does not exploit the symmetry
and periodicity properties of the phase factor WN. In
particular these properties are:

Symmetry: ��
���/� � ���

� (3)

Periodicity: ��

��� � ��
� (4)

The computationally efficient algorithms known as
FFT algorithms, exploit these two basic properties
of the phase factor.

2 Divide-and-Conquer Approach
This approach is based on the decomposition of

an N-point DFT into successively smaller DFT’s.
To illustrate the basic notations consider the
computation of an N-point DFT, where N can be
factored as a product of two integers, that is,

 N=LM (5)

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 87 ISBN: 978-960-474-085-7

Column index m

The assumption that N is not a prime number is
not restrictive, since we can pad any sequence with
zeros to ensure a factorization of the form
mentioned.

Now the sequence x (n), 0≤ n ≤ N-1 can be stored
in either a one-dimensional array indexed by n or as
a two-dimensional array indexed by l and m, where
0≤ l ≤L-1 and 0≤ m ≤M-1 as illustrated in Fig.1.

 n=0 n=1 n=2 ……... n=N-1

(a)

Fig.1.a. One-directional array

(b)

Fig.1.b. Two-dimensional array

Thus the sequence x(n) can be stored in a
rectangular array in a variety of ways each of which
depends on the mapping of index n to the indexes
(l,m).

A similar arrangement can be used to store the
computed DFT values. In particular, the mapping is
from the index k to a pair of indices (p,q), where
0≤ p≤ L-1 and 0≤q≤M-1. If we select the mapping:

k=Mp+q (6)

The DFT is stored on a row-wise basis, where the
first row contains the first M elements of the DFT
X(K), the second row contains the next set of M
elements, and so on. On the other hand, the
mapping:

k=qL+p (7)
results in a column wise storage of X(K). Now
suppose that x (n) is mapped into the rectangular
array x (l, m) and X (K) is mapped into a
corresponding rectangular array X (p, q). Thus the
DFT can be expressed as a double sum over the
elements of rectangular array multiplied by the

corresponding phase factors. Then: X (p, q) =

∑ ∑ ���, ����
�������������
�

��

�
�
��
 (8)

But

 ��
������������ � ��

������
�����

�����
�� (9)

However, ��
��� � ��/�

�� � ��
��, and ��

��� �
��/�

�� � ��
�� .

With these simplification (8) can be expressed as:

�� , !� � ∑ "��

���
�
��
 #∑ ���, ����

��$%��
���
�

��
 (10)

The expression (10) involves the computation of
DFT’s of length M and length L. to elaborate, let us
subdivide the computation into three steps:

1. First, we compute the M-point DFT’s:

'��, !� � ∑ ���, ����
�� 0) !) * � 1�
�

��
 (11)

For each of the rows l=0, 1, 2,…..…, L-1.
2. Second, we compute a new rectangular array

G(l, q) defined as:

,��, !� � ��
��'��, !� 0) �) - � 1 (12)

 0) !) * � 1
3. Finally, we compute the L-point DFT’s

�� , !� � ∑ ,��, !���

���
�
��
 (13)

For each column q=0, 1, 2, ….., M-1 of the
array G (l, q).

First it seems that the computational procedure
described above is more complex than direct
computation of the DFT. However, let us evaluate
the complexity of (10). The first step involves the
computation of L DFT’s, each of M points. Hence
this step requires -*� complex multiplication and
LM(M-1) complex additions. The second step
requires LM complex multiplications and third step
requires M-� complex multiplications and ML(L-1)
complex additions. Therefore the total number of
computational complexity is:

Complex multiplications: N (M+L+1)

Complex additions: N (M+L-2)

Where N=LM. Thus the number of multiplications
has been reduced from N2 to N(M+L+1) and the
number of complex additions has been reduced from
N (N-1) to N (M+L-2). In the following section the
divide-and-conquer approach is exploited to derive
fast algorithms when the size N is a power of 4.

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 88 ISBN: 978-960-474-085-7

3 Radix-4 Algorithm

When the number of data points N in the DFT is a
power of 4, we can use radix-4 algorithm for
computations which is more efficient.

Let us begin by describing a radix-4 decimation-
in-time FFT algorithm, which is obtained by
selecting L=4 and M=N/4 in the divide-and-conquer
approach described in previous section. For this
choice of L and M, we have l, p= 0, 1, 2, 3 and m,
q=0, 1, 2,…,(N/4)-1 and n=4m+l and k=(N/4) p+q.
Thus we split or decimate the N- point input
sequence into four sub sequences, x(4n), x(4n+1),
x(4n+2), x(4n+3), n=0, 1, 2,…,(N/4)-1.

By applying (10):

�� , !� � ∑ #.

��
 ��
��'��, !�$�/

�� , � 0,1,2,3 (14)

Where '��, !� is given by (11), that is:

'��, !� � ∑ ���, ���2
3

�� � � 0,1,2,342
3 5
�

��
 (15)

 ! � 0, 1, 1, … , �
/ � 1

Note that ���, �� � ��4� 8 �� and �� , !� �
���

/ 8 !�.

Thus the four N/4-point DFT’s obtained from (15)
are combined according to (14) to yield the N-point
DFT. The equation (14) for combining the N/4-point
DFT’s defines a radix-4 decimation-in-time
butterfly, which can be expressed in matrix form as:

0

2

3

(0,)(0,) 1 1 1 1

(1,)(1,) 1 1

(2,) 1 1 1 1 (2,)
(3,) 1 1 (3,)

N

q
N

q
N

q
N

W F qX q

W F qX q j j

X q W F q
X q j j W F q

    
    − −     =     − −
    − −       

 (16)

The radix-4 butterfly is shown in Fig.2. We can

see that each butterfly involves three complex
multiplications, since WN

0 = 1 , and 12 complex
additions.

The decimation-in-time procedure described
earlier can be repeated recursively υ times where
N=2υ and each stage contains N/4 butterflies. As a
result the total number of multiplications is reduced
by 25% and also the number of additions is reduced
by 25%.

Fig.2. Basic butterfly computation in radix-4

4 System Structure

Among the various algorithms, radix-4 FFT
algorithm has the least multiplication operations.
Moreover, needs less cascaded stages in comparison
to the other algorithms, like radix-2. For example
four stages are needed for radix-2, while only two
stages are required by radix-4 for a 16-point DFT.
Thus we use radix-4 in our design.

Based on the basic butterfly in the radix-4, we
designed a processor which can compute the 64-
point DFT. The block diagram of processor is
shown in Fig.3. General operation of the processor
is as follows:

1. To write the input data to the memory
2. To read the data in sets of four at a time,

from memory and compute their 4-point
DFT.

3. To write the results to the memory.
4. To repeat steps 2 and 3, 48 times.
5. To read the output data from memory.

Fig.3. 64-point DFT processor architecture

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 89 ISBN: 978-960-474-085-7

4.1 Memory
Two types of memory, RAM and ROM, are used in
the 64-point DFT processor. RAM is used for input
data, to store intermediate computations and to
output data. ROM is used as the phase factor table.

4.1.1 RAM
Chip input data are binary 10-bit words. In other
words, the value of x(n) are 10 bit words. For N=64

��9� � ∑ �����:/

�	 0) ;) 63:.
	�
 (17)

for k=0 we have : ��0� � ∑ ���� :.

	�
 (18)

Assume that all the values of 64 data for x(n) are
maximum, it means x(n)=(11111 11111)2 where
 0 ≤ n ≤ 63. Under these circumstances, summation
result in (18) is a 16 bit word. Another bit is used
for sign and makes 17 bit word. Also, since values
of phase factors �:/

�	 are between -1 and 1,
therefore summation terms have both integer part
and real part. We add 10 bits to word for expressing
the decimal part. For hardware implementation we
used static RAM that is shown in Fig.4.

Fig.4.Schematic representation of RAM

4.1.2 ROM
The phase factors for 64-point DFT are constant.
For this reason they are stored in a ROM. Each
phase factor is multiplied by the 4-point DFT
processor input data.

Fig.5. W-ROM’s position in the 4-point DFT processor

Each of W-ROMs has 16 words and we choose
22bits for every word, 11 bits for real part and 11
bits for imaginary parts.

4.2 4-Point DFT Processor

The 4-point DFT processor consists of three main
parts: the complex multipliers, the combinational
operating unit (COU), and the latches. Fig.6.
illustrates the structure of the 4-point DFT processor
where A and B shows latches.

Fig.6. 4-point DFT processor structure

4.2.1 Combinational Operating Unit

COU is the heart of 4-point DFT processor. Its task
is to realize the following operation:

��9� � ∑ �����
����	//.

	�
 (19)

A primary COU describing this equation is shown in
Fig.7., where the notation of -1 indicates two’s
complement and block of –j indicates -j multiplier.
 Therefore this unit consists of sixteen 27 bit adders
and eight two’s complement circuit.

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 90 ISBN: 978-960-474-085-7

Fig.7. COU of a 4-point DFT processor

4.2.2 Adder
We have used eight complex adders in the 4-point
DFT processor. Each complex adder is composed of
two 27 bit parallel adders.
Among different configurations, complementary
pass transistor logic family provides compact silicon
area and high speed compared to conventional
CMOS logic. A full adder implementation is shown
in Fig.8.

Fig.8. CPL full adder

A 27-bit parallel adder is indicated in Fig.9. Each
digit except LSB requires a full adder. Since full
adders are cascaded, there is a maximum
propagation delay when A= “ 1111111111” and B
varies from “0000000000” to “ 0000000001”.
Obtained propagation delay is 9.2ns.

Fig.9. A 27 bit parallel binary adder

4.2.3 Two’s Complement Circuit
To subtract one digital word from another one, we
add the minuend to the two’s complement of
subtrahend. If there is an end carry out of the sign
digit, we ignore it. Two’s complement circuit is
shown in Fig.10.

Fig.10. two’s complement circuit

4.2.4 j and –j multiplier
These blocks can multiply a complex number by j or
–j. suppose that the complex number has a real part
A and imaginary part B. when it is multiplied by –j
we obtain

 �= 8 >?���>� � ? � >= (20)

from this equation we observe that multiplying a
complex number by –j results two’s complement of
A and exchanging the real part with imaginary part
as shown in Fig11.. Also for j multiplier the same
routine is repeated.

Fig.11. multiplication of a complex number by -j

4.2.5 Complex Multiplier
One of the most important parts of the processor is
the complex multiplier. We mentioned that W-ROM
stores phase factors. Both phase factors and input
data are complex numbers, which are multiplied as
in Fig.12.

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 91 ISBN: 978-960-474-085-7

Below we discuss multiplication operation and then
present the 10-bit × 27-bit multiplier which is used
in the processor.
Multiplication is a repeated process of left-shift and
adds operations. Starting from the LSB, if it is 1, the
multiplicand is copied to form the first partial
product. If it is zero, an all-zero sequence forms the
first partial product. This process continues until all
the bits of the multiplier are exhausted. All the
partial products are then summed to form the final
product. The sign of product is determined from the
signs of the multiplicand and multiplier.
Using this definition, a simple multiplier can be
designed as shown in Fig.12 in which the
multiplicand is stored in register M, the multiplier in
shift register N, and the product in shift register Q.

Fig.12.multiplier block diagram

4.2.6 Latches
As we previously mentioned, we have used two
kinds of latches in 4-point DFT processor.
Moreover, another type of latch was used in chip
input for the purpose of latching the input and
output data. To illustrate these latches, let us
consider more carefully the structure of 4-point DFT
processor in fig.13.

Latch groups of IL, ML, NL, and OL cause the
processor to operate in pipeline. First, four complex
data from the static memory are loaded into the
latch group of IL. Then these four complex data are
loaded into the latch group of ML and
simultaneously second four complex data are loaded
into the latch group of IL. The latches of ML1, ML2
and ML3 are in fact the same 26-bit input shift
registers of the multipliers. Moreover, since data are
complex, their input terminals are 52 bits. This
process is repeated for the third group of data, and at
the same time firs four complex data are loaded into
the latch group of NL. The OL latch outputs are
connected together and are fed to the static RAM by
a 54-bit bus. Therefore, OL latches must be tri-state
like Fig.14.

Fig.14. OL latch with load and output enable

We have used clocked NOT gate in implementation
of latches. Fig.15. illustrates the details of clocked
NOT gate.

Fig.15. schematic of clocked NOT

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 92 ISBN: 978-960-474-085-7

4 Conclusion
The need for high speed digital signal processing is
rapidly increasing apparent with the current
applications of synthetic aperture radar and image
recognition among the most noticeable. The DFT is
a powerful tool for measuring the spectral content of
sampled signals.
A FFT processor dedicated to compute 64-point
FFT has been designed using 0.35µm CMOS
process. This processor computes 64-point FFT
within 18.87µs using a 100-MHZ clock pulse.
Results of designed processor are summarized in
table1.

Transfer time 18.87 µs
Clock rate 100 MHZ
Chip area 13.3 mm2

Power dissipation 645mw
Technology 0.35µm 2P4M CMOS

Table.1. performance parameters

References:
[1] J. G. Proakis and D. G. Manolakis, Digital

Signal Processing principles, algorithms, and
applications, 2nd ed, New York, Macmillan,
1992.

[2] M. Mano, Digital Design, New Jersey, Prentice
–Hall, 1984

[3] F. Klass and M. J. Flynn, “A 16×16 bit static
CMOS wave-pipelined multiplier”

[4] G. Langholz, J. Francioni, and A. Kandel,
Elements of Computer Organization, New
York, Wiley, 1990.

[5] M.K.Lee, K.W.Shin, and J.K.Lee, “ A VLSI
array processor for 16-point FFT,” IEEE
J.Solid- State Circuits, vol. 26, no. 9, pp 1286-
1292, September 1991

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 93 ISBN: 978-960-474-085-7

