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Abstract: applications such as digital spectrum analyzers, digital filtering, image processing, and video 
transmission need to compute the Discrete Fourier Transform (DFT). A Chip architecture to compute a 64-
point DFT using radix-4 algorithm every 18.87 µs at 100MHz clock rate is designed. This processor 
incorporates static memory, controller, and combinational operating unit (COU). Input data and output data are 
10-bit and 54-bit words, respectively. A 10-bit × 27-bit multiplier is used inside the processor. Two’s 
complement is used to present negative data. This processor is implemented in 0.35µm tsmc standard CMOS 
process. 
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1 Introduction 

To perform frequency analysis on a discrete-time 
signal {x(n)}, we convert the time-domain sequence 
to an equivalent frequency-domain representation. 
Such a representation is given by the Fourier 
transform of the sequence {x(n)}. In particular, 
important computational algorithms, called fast 
Fourier transform (FFT), is presented for computing 
the DFT when the size N is a power of 4. 

  Basically, DFT is to compute a sequence {X(K)} 
of N complex-valued numbers, given another 
sequence of data {x(n)} of length N, according to 
the formula : 

  X (K) = ∑ ������
�	�
�

	�
  ,      0≤  k ≤N-1       (1) 

Where  

�� � �
���/�                                           (2) 

In general, the data sequence x (n) is also assumed 
to be complex valued.  

We observe that for each value of k, direct 
computation of X (K) involves N complex 

multiplications (4N real multiplications) and N-1 
complex additions (4N-2 real additions).  
Consequently, to compute all N values of the DFT, 
we need N2 complex multiplication and N2-N 
complex additions. 
Direct computation of the DFT is basically 
inefficient, because it does not exploit the symmetry 
and periodicity properties of the phase factor WN. In 
particular these properties are: 
 

Symmetry:     ��
���/� � ���

�  (3) 
 
Periodicity:    ��

��� � ��
�  (4) 

 
The computationally efficient algorithms known as 
FFT algorithms, exploit these two basic properties 
of the phase factor. 
 

2 Divide-and-Conquer Approach 
This approach is based on the decomposition of 

an N-point DFT into successively smaller DFT’s. 
To illustrate the basic notations consider the 
computation of an N-point DFT, where N can be 
factored as a product of two integers, that is, 

           N=LM                                      (5) 

Proceedings of the 8th WSEAS International Conference on Microelectronics, Nanoelectronics, Optoelectronics

ISSN: 1790-5117 87 ISBN: 978-960-474-085-7



Column index   m 

The assumption that N is not a prime number is 
not restrictive, since we can pad any sequence with 
zeros to ensure a factorization of the form 
mentioned. 

Now the sequence x (n), 0≤ n ≤ N-1 can be stored 
in either a one-dimensional array indexed by  n or as 
a two-dimensional array indexed by l and m, where 
0≤ l ≤L-1 and 0≤ m ≤M-1 as illustrated in Fig.1. 

   n=0       n=1        n=2                ……...            n=N-1 

 

(a) 

Fig.1.a. One-directional array 
 
 
 
 
 
 
 
 

(b) 

Fig.1.b. Two-dimensional array 
 

Thus the sequence x(n) can be stored in a 
rectangular array in a variety of ways each of which 
depends on the mapping of index n to the indexes 
(l,m). 

A similar arrangement can be used to store the 
computed DFT values. In particular, the mapping is 
from the index k to a pair of indices (p,q),  where    
0≤ p≤ L-1 and 0≤q≤M-1. If we select the mapping: 

k=Mp+q                        (6) 

The DFT is stored on a row-wise basis, where the 
first row contains the first M elements of the DFT 
X(K), the second row contains the next set of M 
elements, and so on. On the other hand, the 
mapping: 

k=qL+p                                 (7) 
results in a column wise storage of X(K). Now 
suppose that x (n) is mapped into the rectangular 
array x (l, m) and X (K) is mapped into a 
corresponding rectangular array X (p, q). Thus the 
DFT can be expressed as a double sum over the 
elements of rectangular array multiplied by the 

corresponding phase factors. Then: X (p, q) = 

∑ ∑ ���, ����
�������������
�

��

�
�
��
                     (8) 

But  

 ��
������������ � ��

������
�����

�����
��      (9) 

However, ��
��� � ��/�

�� � ��
��, and ��

��� �
��/�

�� � ��
�� . 

With these simplification (8) can be expressed as: 
 
�� , !� � ∑ "��

���
�
��
 #∑ ���, ����

��$%��
���
�

��
         (10) 

The expression (10) involves the computation of 
DFT’s of length M and length L. to elaborate, let us 
subdivide the computation into three steps: 

1. First, we compute the M-point DFT’s: 

'��, !� � ∑ ���, ����
��        0 ) ! ) * � 1�
�

��
         (11) 

For each of the rows l=0, 1, 2,…..…, L-1. 
2. Second, we compute a new rectangular array 

G(l, q) defined as: 

,��, !� � ��
��'��, !�      0 ) � ) - � 1             (12) 

                                            0 ) ! ) * � 1 
3. Finally, we compute the L-point DFT’s 

 
�� , !� � ∑ ,��, !���

���
�
��
                                   (13) 

 
For each column q=0, 1, 2, ….., M-1 of the 
array G (l, q). 

First it seems that the computational procedure 
described above is more complex than direct 
computation of the DFT. However, let us evaluate 
the complexity of (10). The first step involves the 
computation of L DFT’s, each of M points. Hence 
this step requires -*� complex multiplication and 
LM(M-1) complex additions. The second step 
requires LM complex multiplications and third step 
requires M-� complex multiplications and ML(L-1) 
complex additions. Therefore the total number of 
computational complexity is: 

Complex multiplications:   N (M+L+1) 

Complex additions:             N (M+L-2) 

Where N=LM. Thus the number of multiplications 
has been reduced from N2 to N(M+L+1)  and the 
number of complex additions has been reduced from 
N (N-1) to N (M+L-2). In the following section the 
divide-and-conquer approach is exploited to derive 
fast algorithms when the size N is a power of 4. 
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3 Radix-4 Algorithm 

When the number of data points N in the DFT is a 
power of 4, we can use radix-4 algorithm for 
computations which is more efficient. 

Let us begin by describing a radix-4 decimation-
in-time FFT algorithm, which is obtained by 
selecting L=4 and M=N/4 in the divide-and-conquer 
approach described in previous section. For this 
choice of L and M, we have l, p= 0, 1, 2, 3 and m, 
q=0, 1, 2,…,(N/4)-1 and n=4m+l and k=(N/4) p+q. 
Thus we split or decimate the N- point input 
sequence into four sub sequences, x(4n), x(4n+1), 
x(4n+2), x(4n+3), n=0, 1, 2,…,(N/4)-1. 

By applying (10): 
 
�� , !� � ∑ #.

��
 ��
��'��, !�$�/

�� ,    � 0,1,2,3         (14) 
 
Where '��, !� is given by (11), that is: 

'��, !� � ∑ ���, ���2
3

��      � � 0,1,2,342
3 5
�

��
       (15) 

                                                       ! � 0, 1, 1, … , �
/ � 1 

Note that ���, �� � ��4� 8 �� and �� , !� �
���

/  8 !�. 

Thus the four N/4-point DFT’s obtained from (15) 
are combined according to (14) to yield the N-point 
DFT. The equation (14) for combining the N/4-point 
DFT’s defines a radix-4 decimation-in-time 
butterfly, which can be expressed in matrix form as: 

0

2

3

(0, )(0, ) 1 1 1 1

(1, )(1, ) 1 1

(2, ) 1 1 1 1 (2, )
(3, ) 1 1 (3, )

N

q
N

q
N

q
N

W F qX q

W F qX q j j

X q W F q
X q j j W F q

    
    − −     =     − −
    − −       

      (16) 

 
The radix-4 butterfly is shown in Fig.2. We can 

see that each butterfly involves three complex 
multiplications, since WN

0 = 1 , and 12 complex 
additions. 

The decimation-in-time procedure described 
earlier can be repeated recursively υ times where 
N=2υ  and each stage contains N/4 butterflies. As a 
result the total number of multiplications is reduced 
by 25% and also the number of additions is reduced 
by 25%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Basic butterfly computation in radix-4 
 

 
4 System Structure 
 

Among the various algorithms, radix-4 FFT 
algorithm has the least multiplication operations. 
Moreover, needs less cascaded stages in comparison 
to the other algorithms, like radix-2. For example 
four stages are needed for radix-2, while only two 
stages are required by radix-4 for a 16-point DFT. 
Thus we use radix-4 in our design. 
 

Based on the basic butterfly in the radix-4, we 
designed a processor which can compute the 64-
point DFT. The block diagram of processor is 
shown in Fig.3. General operation of the processor 
is as follows: 
 

1. To write the input data to the memory 
2. To read the data in sets of four at a time, 

from memory and compute their 4-point 
DFT. 

3. To write the results to the memory. 
4. To repeat steps 2 and 3, 48 times. 
5. To read the output data from memory.  
 
 

 
 
 

Fig.3. 64-point DFT processor architecture 
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4.1 Memory 
Two types of memory, RAM and ROM, are used in 
the 64-point DFT processor. RAM is used for input 
data, to store intermediate computations and to 
output data. ROM is used as the phase factor table. 
 
 
4.1.1 RAM 
Chip input data are binary 10-bit words. In other 
words, the value of x(n) are 10 bit words. For N=64 
 
��9� � ∑ �����:/

�	              0 ) ; ) 63:.
	�
       (17) 

  
for k=0 we have : ��0� � ∑ ����    :.

	�
               (18) 
 
Assume that all the values of 64 data for x(n) are 
maximum, it means x(n)=(11111 11111)2 where 
 0 ≤ n ≤ 63. Under these circumstances, summation 
result in (18) is a 16 bit word. Another bit is used 
for sign and makes 17 bit word. Also, since values 
of phase factors �:/

�	 are between -1 and 1, 
therefore summation terms have both integer part 
and real part. We add 10 bits to word for expressing 
the decimal part. For hardware implementation we 
used static RAM that is shown in Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4.Schematic representation of RAM 
 
 
 
4.1.2 ROM 
The phase factors for 64-point DFT are constant. 
For this reason they are stored in a ROM. Each 
phase factor is multiplied by the 4-point DFT 
processor input data. 

 
 
 
 
 
 
 
 
 
 
Fig.5. W-ROM’s position in the 4-point DFT processor 

 
Each of W-ROMs has 16 words and we choose 
22bits for every word, 11 bits for real part and 11 
bits for imaginary parts. 

 
4.2 4-Point DFT Processor 
 
The 4-point DFT processor consists of three main 
parts: the complex multipliers, the combinational 
operating unit (COU), and the latches. Fig.6.  
illustrates the structure of the 4-point DFT processor 
where A and B shows latches. 
 
 
 
 
 
 
 
 
 
 

Fig.6. 4-point DFT processor structure 
 
4.2.1 Combinational Operating Unit 
 
COU is the heart of 4-point DFT processor. Its task 
is to realize the following operation: 
 
��9� � ∑ �����
����	//.

	�
                      (19) 
 
A primary COU describing this equation is shown in 
Fig.7., where the notation of -1 indicates two’s 
complement and block of –j indicates -j multiplier. 
 Therefore this unit consists of sixteen 27 bit adders 
and eight two’s complement circuit.  
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Fig.7. COU of a 4-point DFT processor 
 
 
 
4.2.2 Adder  
We have used eight complex adders in the 4-point 
DFT processor. Each complex adder is composed of 
two 27 bit parallel adders. 
Among different configurations, complementary 
pass transistor logic family provides compact silicon 
area and high speed compared to conventional 
CMOS logic. A full adder implementation is shown 
in Fig.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. CPL full adder  
 
A 27-bit parallel adder is indicated in Fig.9. Each 
digit except LSB requires a full adder. Since full 
adders are cascaded, there is a maximum 
propagation delay when A= “ 1111111111” and B 
varies from “0000000000” to “ 0000000001”. 
Obtained propagation delay is 9.2ns. 
  
 
 
 
 
 

 
Fig.9. A 27 bit parallel binary adder 

 

4.2.3 Two’s Complement Circuit  
To subtract one digital word from another one, we 
add the minuend to the two’s complement of 
subtrahend. If there is an end carry out of the sign 
digit, we ignore it. Two’s complement circuit is 
shown in Fig.10. 
 

 
Fig.10. two’s complement circuit 

 
4.2.4   j and –j multiplier  
These blocks can multiply a complex number by j or 
–j. suppose that the complex number has a real part 
A and imaginary part B. when it is multiplied by –j 
we obtain 
       
  �= 8 >?���>� � ? � >=                    (20) 
 
from this equation we observe that multiplying a 
complex number by –j results two’s complement of 
A and exchanging the real part with imaginary part 
as shown in Fig11.. Also for j multiplier the same 
routine is repeated. 
 

 
Fig.11. multiplication of a complex number by -j 

 
4.2.5 Complex Multiplier  
One of the most important parts of the processor is 
the complex multiplier. We mentioned that W-ROM 
stores phase factors. Both phase factors and input 
data are complex numbers, which are multiplied as 
in Fig.12. 
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Below we discuss multiplication operation and then 
present the 10-bit × 27-bit multiplier which is used 
in the processor. 
Multiplication is a repeated process of left-shift and 
adds operations. Starting from the LSB, if it is 1, the 
multiplicand is copied to form the first partial 
product. If it is zero, an all-zero sequence forms the 
first partial product. This process continues until all 
the bits of the multiplier are exhausted. All the 
partial products are then summed to form the final 
product. The sign of product is determined from the 
signs of the multiplicand and multiplier. 
Using this definition, a simple multiplier can be 
designed as shown in Fig.12 in which the 
multiplicand is stored in register M, the multiplier in 
shift register N, and the product in shift register Q. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12.multiplier block diagram 
 
4.2.6 Latches  
As we previously mentioned, we have used two 
kinds of latches in 4-point DFT processor. 
Moreover, another type of latch was used in chip 
input for the purpose of latching the input and 
output data. To illustrate these latches, let us 
consider more carefully the structure of 4-point DFT 
processor in fig.13.  
 

 
 

 
 
 
 
 

 
 

Latch groups of IL, ML, NL, and OL cause the 
processor to operate in pipeline. First, four complex 
data from the static memory are loaded into the 
latch group of IL. Then these four complex data are 
loaded into the latch group of ML and 
simultaneously second four complex data are loaded 
into the latch group of IL. The latches of ML1, ML2 
and ML3 are in fact the same 26-bit input shift 
registers of the multipliers. Moreover, since data are 
complex, their input terminals are 52 bits. This 
process is repeated for the third group of data, and at 
the same time firs four complex data are loaded into 
the latch group of NL. The OL latch outputs are 
connected together and are fed to the static RAM by 
a 54-bit bus. Therefore, OL latches must be tri-state 
like Fig.14.  
 
 
 
 
 
 
 
 
 
 

Fig.14. OL latch with load and output enable 
 
We have used clocked NOT gate in implementation 
of latches. Fig.15. illustrates the details of clocked 
NOT gate. 
 
 
 
 
 
 
 
 
 

Fig.15. schematic of clocked NOT 
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4 Conclusion 
The need for high speed digital signal processing is 
rapidly increasing apparent with the current 
applications of synthetic aperture radar and image 
recognition among the most noticeable. The DFT is 
a powerful tool for measuring the spectral content of 
sampled signals. 
A FFT processor dedicated to compute 64-point 
FFT has been designed using 0.35µm CMOS 
process. This processor computes 64-point FFT 
within 18.87µs using a 100-MHZ clock pulse. 
Results of designed processor are summarized in 
table1. 
 

Transfer time 18.87 µs 
Clock rate 100 MHZ 
Chip area 13.3 mm2 

Power dissipation 645mw 
Technology  0.35µm 2P4M CMOS 

Table.1. performance parameters 
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