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Abstract: This paper presents the dynamic modeling of a nonholonomic mobile robot and the dynamic stabilization 
problem. The dynamic model is based on the kinematic one including nonholonomic constraints. The proposed 
control strategy allows to solve the control problem using linear controllers and only requires the robot localization 
coordinates. This strategy was tested by simulation using Matlab-Simulink. 
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1 Introduction 
A mobile robot is suitable for a variety of 
applications in unstructured environments where a 
high degree of autonomy is required. This desired 
autonomous or intelligent behavior has motivated an 
intensive research in the last decade. The motion 
control of nonholonomic wheeled mobile robot 
(WMR) has been a subject of considerable research 
over the last few years. Most of the researches are 
focused on the fact that the WMR does not meet 
Brockett's well-known necessary smooth feedback 
stabilization condition [1]. It is recognized that the 
larger the gap between the controllable and total 
degrees-of-freedom (DOF) of the WMR, the harder it 
is to control the robot [2]. Due to this nonholonomic 
constraint, the WMR cannot be stabilized to a point 
using the familiar smooth static-state feedback 
control laws. Therefore, instead of stabilizing the 
WMR to a point, which at the present stage is still 
considered as not yet fully generalized, the mobile 
robot is required to converge to a reference trajectory 
only. Kanayama et al. [3] has first proposed a stable 
tracking control method for WMR, but it was 
restricted to the determination of target linear and 
rotational velocities, involving only kinematic model 
analysis of WMR. Besides, Yamamoto and Yun have 
also introduced a look-ahead control algorithm for 
the mobile platform so that the reference point to be 
controlled is successful in following the desired 
trajectory [4]. As inspired by [3], Fierro and Lewis 
have developed a WMR control scheme through 
back-stepping the kinematics into the dynamics of 
WMR with the assumption that a complete prior 
knowledge of the robotic system is attainable [5]. 
The others have also provided a global asymptotic 
control solution for the set point regulation of a 

general class of nonholonomic systems. Later, Dixon 
et al. [6] suggested a global exponential tracking 
control method for the stabilization of the 
nonholonomic WMR. Although these methods are 
effective, they generally lack the necessary 
robustness in countering disturbances. The 
workspace for the WMR is not always ideal and 
usually packed with various forms of disturbances 
including frictions, irregular terrains, obstacles in 
robot’s path, parametric changes and uncertainties 
within and outside the  system, making it almost 
impossible to model all these disturbances and 
incorporate them into the dynamics of the WMR. 
Thus, in order to ensure a more robust and accurate 
operation of the mobile robot, a disturbance 
compensation scheme should be incorporated into the 
operation of the WMR.  
The navigation problem may be divided into three 
basic problems: 

- tracking a reference  trajectory; 
-  following a path; 
-  point stabilization. 

 Some nonlinear feedback controllers have been 
proposed in the literature for solving the first 
problem. The main idea behind these algorithms is to 
define velocity control inputs that stabilize the 
closed-loop system. A reference cart generates the 
trajectory that the mobile robot is supposed to follow. 
In path following, as in the previous case, we need to 
design velocity control inputs that stabilize a car-like 
mobile robot in a given xy-geometric path. The most 
difficult problem is stabilization about a desired 
posture. Only this problem will be discussed in the 
paper. 
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2 Problem Formulation 
A simple structure of WMR shown in Fig.1 is a 
typical example of a nonholonomic mechanical 
system. It consists in a mobile platform with two 
differential driving wheels mounted on the same axis 
and a front free wheel to keep the platform stable. 
The motion and orientation are achieved by 
independent actuators of left and right wheels, e.g., 
DC motors providing the necessary torques to the 
rear wheels. 
 
 
2.1 Kinematic Modeling 
Let cc y,x be the Cartesian coordinates of the point C 
in the middle of the rear axle respectively gg y,x  the 

coordinates of the center of mass of the platform, the 
point G, and letθ be the angle between the heading 
direction and the OX-axis specifying the orientation 
of the platform with respect to the inertial frame. 
Either the vector of generalized coordinates 

T
ggg ],y,x[ θ=q  or T

ccc ],y,x[ θ=q  completely 

specifies the position of the robot in the XOY inertial 
Cartesian frame. When the same angular velocity is 
applied to both rear wheels lr ω=ω , the robot can 
only move in the direction normal to the axis of the 

driving wheels with linear velocity θ⋅= j
c evv . When 

the angular velocities applied to the rear wheels are 
keeping to lr ω−=ω  the robot only turns with 

angular velocity θ=ω & . In the general case, the 
angular velocities applied to the right and left wheel 
are different and therefore the robot motion in the 
horizontal plane is compound. Next relationship is 
true as long as the mobile satisfies the conditions of 
pure rolling and non- slipping: 
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The G point position can be written in vectorial form: 

θ→→→→
⋅+=+= jedOCCGOCOG                            (2) 

The derivatives of the position vectors constitute 
velocities relationship: 

θθ ⋅ω⋅⋅+=⋅ω⋅⋅+= jj
cg e)djv(edjvv         (3) 

In the inertial frame the velocity of G point can be 
expressed in the form: 

ggg yjx && ⋅+=v                                            (4) 

According to (3) and (4), it is possible to express the 
real and imaginary part of the velocity vector as: 

θ⋅ω⋅+θ⋅=
θ⋅ω⋅−θ⋅=

cosdsinvy
sindcosvx

g

g
&

&
                            (5) 

Eliminating v  in the relations (5) results the 
nonholonomic constraint: 

0dcosysinx gg =θ⋅+θ⋅−θ⋅ &&&                     (6) 

 Relation (6) provides that the robot can only move in 
the direction normal to the axis of the driving wheels 
as long as the mobile satisfies the conditions of pure 
rolling and non-slipping. 

When the center of mass of the platform, the point 
G, coincides with its center of rotation, the point C, 
then 0d = and the relation (6) describes the C point 
nonholonomic constraint. Defining )( gqS  as in (7),  

the Jacobian matrix that transforms velocities in 

mobile base coordinates T]v[ ω=v to velocities in 

Cartesian coordinates T
ggg ]yx[ θ= &&&&q , the 

kinematics or steering system of the mobile robot is 
represented by equation (8) written in matrix form. 
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According to (1) and (8) the kinematic model of 
WMR can be written in the explicitly form: 
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It is easy to observe that the robot motion has three 
degrees-of-freedom (3DOF) while the existing 
number of controllable degrees-of-freedom is only 
2DOF 
 
 
2.2 Dynamic Modeling 
The acceleration of the center of mass ga  is obtained 

by derivative of the relation (3): 
θθ ⋅θ⋅+θ⋅⋅+⋅θ⋅−= jj2

g e)vd(je)dv( &&&&&a            (10) 

The first term is radial component having the same 
direction as the displacement vector and the second is 
tangential component. The forward movement of the 
WMR is produced by the dynamic force dF and the 
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rotational movement by the dynamic torquedτ . 
Denoting m- the total mass of de WMR and pI - the 

moment of inertia calculated for rotations around the 
center of mass, the magnitude of these forces is: 

θ⋅⋅⋅+θ⋅⋅+=τ
θ⋅⋅−⋅=

&&&

&&

vdm)dmI(
dmvmF
2

pd

2
d                   (11) 

On the other hand these forces are generated by the 
dynamic torques of the two motors, 

drτ respectively dlτ : 
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Taking into account the relations (11) and (12) the 
dynamic model of WMR is represented by the matrix 
form: 

τBvCvM ⋅=+⋅ )(&                             (13) 
where: 
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The Lagrange formalism can be also used to find the 
dynamic equations of the mobile robot. The dynamic 
model (13) is expressed in the coordinates of the 
mobile base being possible the narrowing down to 
two the number of controlled variables. It has to be 
completed with the dynamic models of the actuating 
motors. Denoting mI  -the moment of inertia of each 
wheel and the motor rotor about the wheel axis, mrτ , 

mlτ  -the motor torque of right respectively left motor 
and frτ frτ - the friction torques, the motion equations 
can be written as: 

l,rkwith,I fkmkdkkm =τ−τ=τ+ω&          (14) 
The motor torquesmrτ , mlτ  are the controlling 
torques of the robot motion in the Cartesian system. 
Taking into account the inversed relation (1) and the 
relation (13) the motion equation (14) can be written 
as: 

mfr )( τBτBvCvM ⋅=⋅++⋅ &                 (15) 
where: 
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matrix of inertia, symmetric and positive definite; 

T
flfrf ][ ττ=τ - friction torques matrix; 

T
mlmrm ][ ττ=τ - controlling torques matrix. 

The relation (15) constitutes the dynamic model of 
WMR including also the actuators dynamic, 
represented by the matrix form: 
 
 
2.3 Stabilization Problem Formulation 
The robot stabilization problem can be divided into 
two different control problems: 

-  robot positioning control; 
-  robot orientating control. 

 The robot positioning control must assure the 
achievement of a desired position (xd, yd ), regardless 
of the robot orientation. The robot orientating control 
must assure the achievement of the desired position 
and orientation (xd, yd, dθ ). 
 

3 Stabilization Problem Solve 
Feedback stabilization consists in finding feedback 
laws such that an equilibrium point of the closed loop 
system is asymptotically stable. Unfortunately, the 
linearization of nonholonomic systems around any 
equilibrium point is not asymptotically stabilizable. 
Moreover, there exists no smooth static (dynamic) 
time-invariant state-feedback that makes an 
equilibrium point of the closed-loop system locally 
asymptotically.  
Fig. 2 shows the stabilization problem, where l∆  is 
the distance between the robot and the desired 
position (xd, yd) in the Cartesian space and dθ  
denotes the desired orientation. 

 
The robot will not go straight to the final position 
with a fixed orientation. First, let us define the 
desired point position related to the point C: 

222
d

2
d yx)yy()xx(l ∆+∆=−+−=∆       (16) 

x

y
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The proposed control strategy is based on a moving 
false target by considering the point R ahead of the 
point C. The point R is relocated at the same distance  
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l∆  related to the point C and is clockwise rotated by 
the angle  α−θd  related to the final position. The 
robot to point R distance is measured in the θ  
alignment, respectively: 

)2(cosls d θ−θ−α⋅∆=∆                     (18) 
Now it’s possible to make the connection between   
the dynamic model (15) and the variables s  
respectively θ .  
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This relation can be integrated, neglecting the 
integration constant and taking into account the 
relation (1) results: 
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where, lr and θθ  denote  right and left wheel 
positions. Relation (20) can be used to compute the 
robot path and orientation at least in simulations. 
 
 
3.1 Robot Orientating Control 
Considering the point R as moving reference point 
seems normally to denote the angle dR 2 θ−α⋅=θ   as 
the reference angle for the orientating control system. 
In this case the orientating error can be defined as: 

θ−θ−α=θ−θ=θ dR 2e                  (21) 
The orientating controller has to assure the 
convergence of this error to zero for the orientating 
control problem to be solved. A linear PI controller is 
used to robot orientating control: 

∫ τ⋅τ⋅+⋅= θθθθθ

t

0
Ip d)(eK)t(eK)t(u          (22) 

 The tuning parameters are setting: 
1.0K,2K Ip == θθ . 

 
 
3.2 Robot Positioning Control 
The robot positioning control problem will be solved 
by fulfilling the condition: 0s→∆ . This condition 
also implies 0l →∆  (18), and thereby the robot will 
be positioned to the desired position. The position 
error can be accepted as being: 

ses ∆=                                   (23) 
     where s∆  is calculated with (18). 
This solution was adopted because the s output signal 
(the robot path) cannot be measured and in addition 
is difficult to calculate a suitable value for refs . 
Choosing a PI controller:  

∫ τ⋅τ⋅+⋅=
t

0
sIsspss d)(eK)t(eK)t(u              (24) 

having the tuning parameters 25.0K,1K Isps == , the 

positioning problem has a reasonable solution. The 
positioning loop response has to be faster than the 
orientating loop response to allow an asymptotical 
stabilization at desired position. The adopted block 
diagram for the robot asymptotical stabilization is 
shown in Fig. 3.  

  
The control system is assumed to be equipped with a 
global positioning system that measures the Cartesian 
coordinates and the orientating angle. The errors 
generator uses the relation (18) to compute the 
position error and relations (17) and (20) to estimate 
the orientating errors. There are two independent 
linear controllers to control the linear and angular 
movement. The inversed relation (20) is used to 
generate the position references for the two position 
control systems of the robot wheels. The command 

vector [ ]Ts u,u θ  substitutes the vector [ ]T,s θ  in 
inversed relation (20) to generate the two reference 
inputs reflrefr , θθ  of the two robot wheels position 

control systems. 
 
 

4 Simulated Results 
The proposed control strategy is tested by simulation 
using Matlab-Simulink environment. The dynamic 
model (15) was used to build the robot model. The 
model parameters take for the next values: M = 5 Kg, 
r = 0.1 m, R = 0.2 m, d = 0.25 m, Jm = 0.002 Kg·m2, 
Jp = 0.005 Kg·m2 and the ratio of the motors motion 
reduction kt = 0.1. 
In Fig. 4 are shown several robot paths starting at 
initial conditions 0,0y,0x =θ==  and ending at the 
desired position 1y,1x dd ==  with various 
orientating angles. The larger desired orientating 
angle is   the longer and more dotted about the robot 
path is. This seems not to be an advantage but in 
many applications may be admissible. 

Proceedings of the 5th WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL

ISSN: 1790-2769 90 ISBN: 978-960-474-094-9



 
The robot paths portrait starting at various initial 
conditions is shown in Fig. 5. The paths starting at 

0x > positive coordinate have initial angle set at 
o180  and end at the same value of the orientating 

angle. 

 
When the initial orientating angle is set to zero and 
the final desired orientating is zero the robot paths 
are presented in Fig. 6. 

 
At the beginning of the paths the robot goes back and 
then it rotates and goes forward on the desired 

position. For the robot path, starting at (0,0,0) and 
ending at (1,1,120o) shown in Fig. 7, the right and left 
robot wheel angular velocities are presented in Fig. 8 
and the position and orientating spacial errors are 
presented in Fig. 9. 

 
 

 
 

 
The errors convergence to zero is visibly in Fig. 9 
and fulfills the robot asymptotical stabilization on the 
desired position. 
 
 

5 Conclusions 
This paper proposes a strategy to solve the 
asymptotical stabilization problem of a wheeled 
mobile robot. The main advantage consists in its 
simplicity. The PI linear controllers are used to 
control the robot motion from an initial point to final 
one. The simulated results are satisfactory although 
the robot path shape can’t be forecasted, it mainly 
depends on the tuning parameters of the controllers 
and the robot velocities along of the path are not 
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controlled. The velocities control is essential only in 
following an imposed path. 
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