
Real-Time Simulation of 3D Smoke on GPU 
 

QING YANG 
Computer Science and Information Technology College 

Zhejiang Wanli University 
No.8,South Qian Hu Road Ningbo, Zhejiang 

P.R.CHINA 
http://www.computer.zwu.edu.cn

 
 

Abstract: - In this paper, we investigate the fluid simulation on GPU, and implement real time smoke animation 
based on GPU by numerically solving Navier-Stokes equation. Based on Navier-Stokes equation, we discuss the 
details of the method, “Stable Fluids”. This scheme makes implementation on the GPU simple, because there is 
a straightforward mapping between grid cells and voxels in a 3D texture. After optimizing, this method not only 
fit to GPU, but also is steady and realistic greatly. 
 
Key-Words: - GPU, 3D, smoke, real-time, simulation 
 

1   Introduction 
Fluid simulation has been a focus of computer 
graphics research. Fluid in nature, such as smoke, 
water and fog, appears to be simple, but in reality to 
hide extremely complex rules. Early, fluid simulation 
is based on the parameters modeling, such as the 
simulation of wave from [1]. However, this method 
can only be side the movement in the vicinity of 
particles’ initial position, and the lack of boundary 
condition judge enables the simulation of the effect is 
very natural. At the same time, it is difficult to control 
this type of model, and to simulate some of the more 
complex and the more detailed of fluid phenomenon. 
The method of parameters modeling is limited to the 
ability of the computer hardware at that time. With 
the rapid development of computer hardware, the 
simulation of fluid is often based on physical model 
complexly. 
    In this paper, a method is discussed that is used to 
realize real-time simulation of smoke, and based on 
“Stable Fluids” method of Stam 1999 [2]. However, 
while Stam's simulations used a CPU implementation, 
we choose to implement ours on GPU (Graphic 
Process Unit） because GPUs are well suited to the 
type of computations required by fluid simulation. 
The simulation we describe is performed on a grid of 
cells. Programmable GPUs are optimized for 
performing computations on pixels, which we can 
consider to be a grid of cells. GPUs achieve high 
performance through parallelism: they are capable of 
processing multiple vertices and pixels 
simultaneously. 
 
 

2   Simulation 

2.1 Mathematical Background 
To simulate the behavior of smoke, we must have a 
mathematical representation of the state of the kind 
of fluid at any given time. The most important 
quantity to represent is the velocity of the fluid, 
because velocity determines how the fluid moves 
itself and the things that are in it. The fluid's velocity 
varies in both time and space, so we represent it as a 
vector field. We use consistent mathematical notation 
throughout the paper. In equations, italics are used 
for variables that represent scalar quantities, such as 
pressure, p. Boldface is used to represent vector 
quantities, such as velocity, u. 

A vector field is a mapping of a vector-valued 
function onto a parameterized space, such as a 
Cartesian grid. The velocity vector field of our fluid 
is defined such that for every position x = (x, y, z), 
there is an associated velocity at time t, u(x, t) = (u(x, 
t), v(x, t), w(x, t)), as shown in Fig.1. 

Fig.1: The Fluid Velocity Grid [3] 
In physics, it's common to make simplifying 

assumptions when modeling complex phenomena. 
Fluid simulation is no exception. We assume an 
incompressible, homogeneous fluid. A fluid is 
incompressible if the volume of any subregion of the 
fluid is constant over time. A fluid is homogeneous if 
its density, ρ, is constant in space. The combination 
of incompressibility and homogeneity means that 

Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'09)

ISSN: 1790-5117 130 ISBN: 978-960-474-42-0



density is constant in both time and space. These 
assumptions are common in fluid dynamics, and they 
do not decrease the applicability of the resulting 
mathematics to the simulation of real fluids, such as 
water and air [4]. 

We simulate fluid dynamics on a regular Cartesian 
grid with spatial coordinates x = (x, y, z) and time 
variable t. The fluid is represented by its velocity 
field u(x, t), as described earlier, and a scalar pressure 
field p(x, t). These fields vary in both space and time. 
If the velocity and pressure are known for the initial 
time t = 0, then the state of the fluid over time can be 
described by the Navier-Stokes equations for 
incompressible flow: 

fuu
u +∇−∇⋅−=

∂
∂

p
ρt

1
)( , 

subject to the incompressibility constraint: 
0=⋅∇ u , 

where p is the pressure, ρ is the mass density, f 
represents any external forces (such as gravity), and 
∇ is the differential operator: 

T

zyx 








∂
∂

∂
∂

∂
∂

. 

To define the equations of motion in a particular 
context, it is also necessary to specify boundary 
conditions (that is, how the fluid behaves near solid 
obstacles or other fluids). 

The basic task of a fluid solver is to compute a 
numerical approximation of u. This velocity field can 
then be used to animate visual phenomena such as 
smoke particles. 

 
2.2 Solving for Velocity 
The popular “stable fluids” method for computing 
velocity was introduced in [2], and a GPU 
implementation of this method for 2D fluids was 
presented in [5].In this section we briefly describe 
how to solve for velocity but refer the reader to the 
cited works for details. 

In order to numerically solve the momentum 
equation, we must discretize our domain (that is, the 
region of space through which the fluid flows) into 
computational elements. We choose an Eulerian 
discretization, meaning that computational elements 
are fixed in space throughout the simulation—only 
the values stored on these elements change. In 
particular, we subdivide a rectilinear volume into a 
regular grid of cubical cells. Each grid cell stores 
both scalar quantities (such as pressure, temperature, 
and so on) and vector quantities (such as velocity). 
This scheme makes implementation on the GPU 
simple, because there is a straightforward mapping 
between grid cells and voxels in a 3D texture. 

Lagrangian schemes (that is, schemes where the 
computational elements are not fixed in space) such 
as smoothed-particle hydrodynamics [6] are also 
popular for fluid animation, but their irregular 
structure makes them difficult to implement 
efficiently on the GPU. 

Because we discretize space, we must also 
discretize derivatives in our equations: finite 
differences numerically approximate derivatives by 
taking linear combinations of values defined on the 
grid. As in [5], we store all quantities at cell centers 
for pedagogical simplicity, though a staggered 
MAC-style grid yields more-robust finite differences 
and can make it easier to define boundary conditions 
(See [7] for details) . 

In a GPU implementation, cell attributes (velocity, 
pressure, and so on) are stored in several 3D textures. 
At each simulation step, we update these values by 
running computational kernels over the grid. A 
kernel is implemented as a pixel shader that executes 
on every cell in the grid and writes the results to an 
output texture. However, because GPUs are designed 
to render into 2D buffers, we must run kernels once 
for each slice of a 3D volume. 

To execute a kernel on a particular grid slice, we 
rasterize a single quad whose dimensions equal the 
width and height of the volume. In Direct3D 10 we 
can directly render into a 3D texture by specifying 
one of its slices as a render target. Placing the slice 
index in a variable bound to the 
SV_RenderTargetArrayIndex semantic specifies the 
slice to which a primitive coming out of the geometry 
shader is rasterized [8]. By iterating over slice indices, 
we can execute a kernel over the entire grid. 

Rather than solve the momentum equation all at 
once, we split it into a set of simpler operations that 
can be computed in succession: advection, 
application of external forces, and pressure 
projection. Implementation of the corresponding 
kernels is detailed in [5]. 
 
2.3 Improving Details 
The semi-Lagrangian advection scheme used by 
Stam is useful for animation because it is 
unconditionally stable, meaning that large time steps 
will not cause the simulation to “blow up.” However, 
it can introduce unwanted numerical smoothing, 
causing smoke to lose detail. To achieve higher-order 
accuracy, we use a MacCormack scheme that 
performs two intermediate semi-Lagrangian 
advection steps. Given a quantity Φ and an advection 
scheme A, higher-order accuracy is obtained using 
the following sequence of operations [9]: 

Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'09)

ISSN: 1790-5117 131 ISBN: 978-960-474-42-0



)ˆ(
2

1ˆ

)ˆ(ˆ

)(ˆ

11

1

1

nnnn

nRn

nn

A

A

φφφφ

φφ
φφ

−+=

=

=

++

+

+

. 

Here, 
nφ is the quantity to be advected, 

1ˆ +nφ  and 
nφ̂  are intermediate quantities, and 

1+nφ  is the final 

advected quantity. The superscript on 
RA  indicates 

that advection is reversed (that is, time is run 
backward) for that step. 

Unlike the standard semi-Lagrangian scheme, this 
MacCormack scheme is not unconditionally stable. 
Therefore, a limiter is applied to the resulting value 

1+nφ , ensuring that it falls within the range of values 
contributing to the initial semi-Lagrangian advection. 
In the GPU solver, this means we must locate the 
eight nodes closest to the sample point, access the 
corresponding texels exactly at their centers (to avoid 
getting interpolated values), and clamp the final 
value to fall within the minimum and maximum 
values found on these nodes. As shown in Fig.2, the 
result of the advection (black) is clamped to the range 
of values from nodes (white) used to get the 
interpolated value at the advected “particle” (the 
cross) in the initial semi-Lagrangian step. 

 
Fig.2: Limiter Applied to a MacCormack Advection 
Scheme 
  Once the intermediate semi-Lagrangian steps have 
been computed, the pixel shader completes advection 
using the MacCormack scheme. On the GPU, 
higher-order schemes are often a better way to get 
improved visual detail than simply increasing the 
grid resolution, because math is cheap compared to 
bandwidth [10]. 

Although the velocity field describes the fluid’s 
motion, it does not look much like a smoke when 
visualized directly. To get interesting visual effects, 
we must keep track of additional quantities that are 
pushed around by the smoke. For instance, we can 
keep track of density and temperature to obtain the 
appearance of smoke [11]. For each additional 
quantity Φ, we must allocate an additional texture 
with the same dimensions as our grid. The evolution 
of values in this texture is governed by the same 
advection equation used for velocity: 

φφ
)( ∇⋅−=

∂
∂

u
t . 

To get a more physically plausible appearance, we 
must make sure that hot smoke rises and cool smoke 
falls. To do so, we need to keep track of the fluid 
temperature T (which again is advected by u). 
Temperature values have an influence on the 
dynamics of the smoke. This influence is described 
by the buoyant force: 

z







−=

TTR

Pmg 11
f

0
buoyancy , 

where P is pressure, m is the molar mass of the gas, g 
is the acceleration due to gravity, and R is the 
universal gas constant. In practice, all of these 
physical constants can be treated as a single value and 
can be tweaked to achieve the desired visual 
appearance. The value T0 is the ambient or “room” 
temperature, and T represents the temperature values 
being advected through the flow. z is the normalized 
upward-direction vector. The buoyant force should 
be thought of as an “external” force and should be 
added to the velocity field immediately following 
velocity advection. 
 
 

3   Implementation on GPU 
Now that we know the problem and the basics of 
solving it, we can move forward with the 
implementation. A good place to start is to lay out 
some pseudocode for the algorithm. The algorithm is 
the same every time step, so this pseudocode 
represents a single time step. The variables d, u and p 
hold the divergence, velocity and pressure field data 
(See [10] for details of program). 
 
// advect the current cell 
u=PS_ADVECT_VEL(u); 
// Get velocity values from neighboring cells, 
// and compute the velocity’s divergence  
// using central differences. 
d = PS_DIVERGENCE(u); 
// Compute the new pressure value for the center cell 
// after Getting the divergence at the current cell  
// and the pressure values from neighboring cells. 
p = PS_JACOBI(p, d); 
// Compute the gradient of pressure at the current cell  
// by taking central differences of  
// neighboring pressure values,  
// and project the velocity onto its divergence-free 
// component by subtracting the gradient of pressure. 
u = PS_PROJECT(p, u); 
 

Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'09)

ISSN: 1790-5117 132 ISBN: 978-960-474-42-0



This pseudocode contains no 
implementation-specific details. We perform all the 
steps on the GPU.  

Textures on current GPUs support all the basic 
operations necessary to implement a fluid simulation. 
Because textures usually have three or four color 
channels, they provide a natural data structure for 
vector data types with two to four components. 
Alternatively, multiple scalar fields can be stored in a 
single texture. We need at least three textures to 
represent the state of the fluid: one for velocity, one 
for pressure, and another for divergence.  

GPUs do not have the capability to perform nested 
loop over each texel in a texture. However, the 
fragment pipeline is designed to perform identical 
computations at each fragment. To the programmer, 
it appears as if there is a processor for each fragment, 
and that all fragments are updated simultaneously. In 
the parlance of parallel programming, this model is 
known as single instruction, multiple data (SIMD) 
computation. Thus, the GPU analog of computation 
inside nested loops over an array is a fragment 
program applied in SIMD fashion to each fragment. 

On the GPU, the output of fragment processors is 
always written to the frame buffer. Think of the 
frame buffer as a two-dimensional array that cannot 
be directly read. There are two ways to get the 
contents of the frame buffer into a texture that can be 
read: 

1. Copy to texture (CTT) copies from the frame 
buffer to a texture.  

2. Render to texture (RTT) uses a texture as the 
frame buffer so the GPU can write directly to it.  

CTT and RTT function equally well, but have a 
performance trade-off. For the sake of generality we 
do not assume the use of either and refer to the 
process of writing to a texture as a texture update. 

Earlier we mentioned that, in practice, each of the 
four steps in the algorithm updates a temporary grid 
and then performs a swap. RTT requires the use of 
two textures to implement feedback, because the 
results of rendering to a texture while it is bound for 
reading are undefined. The swap in this case is 
merely a swap of texture IDs. The performance cost 
of RTT is therefore constant. CTT, on the other hand, 
requires only one texture. The frame buffer acts as a 
temporary grid, and a swap is performed by copying 
the data from the frame buffer to the texture. The 
performance cost of this copy is proportional to the 
texture size[5]. 
 
 

4   Conclusion 

This application was run on an Intel(R) Core(TM) 2 
Duo CPU E4500 with 2.20GHz and tested on 
Windows Vista Ultimate 32 bit OS with NVIDIA 
GeForce 8500GT. The HLSL compiler and 
Microsoft Visual Studio 2005 was used to generate 
the 3D smoke, as show as Fig.3. 

Fig.3: The experimental results 
The power and programmability now available in 

GPUs enables fast simulation of a wide variety of 
phenomena. Underlying many of these phenomena is 
the dynamics of fluid motion. From these ideas you 
can experiment with your own simulation concepts 
and incorporate fluid simulation into graphics 
applications. 
 
 
References: 
[1] Alain Fournier, William T.Reeves, A Simple 

Model of Ocean Waves, Compute Graphics, 
Vol.20, No.4, 1986, pp.75-84. 

[2] Stam, Stable Fluids, Proceedings of SIGGRAPH, 
Vol.99, 1999, pp.121-128. 

[3] Fedkiw, R., J. Stam, and H. W. Jensen, Visual 
Simulation of Smoke, Proceedings of 
SIGGRAPH 2001, pp.15–22. 

[4] LIU Daozhi, Computational Fluid Dynamics 
Basic, Beijing University of Aeronautics & 
Astronautics Press, 1989. 

[5] Harris M. , Fast fluid dynamics simulation on the 
GPU.GPU Gems, Mar.2004, pp.637-665. 

[6] Müller, Matthias, David Charypar, and Markus 
Gross, Particle-Based Fluid Simulation for 
Interactive Applications, Proceedings of the 2003 
ACM SIGGRAPH / Eurographics Symposium on 
Computer Animation, 2003, pp. 154-159. 

[7] Harlow, F., and J. Welch, Numerical Calculation 
of Time-Dependent Viscous Incompressible 
Flow of Fluid with Free Surface, Physics of 
Fluids 8, 1965, pp. 2182–2189. 

[8] Blythe, David, The Direct3D 10 System, In ACM 
Transactions on Graphics (Proceedings of 
SIGGRAPH 2006) 25(3), pp. 724–734. 

[9] Selle, A., R. Fedkiw, B. Kim, Y. Liu, and J. 
Rossignac, An Unconditionally Stable 

Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'09)

ISSN: 1790-5117 133 ISBN: 978-960-474-42-0



MacCormack Method, Journal of Scientific 
Computing (in review), 2007, Available online at 
http://graphics.stanford.edu/~fedkiw/papers/stanf
ord2006-09.pdf. 

[10] Keenan Crane, Ignacio Llamas, and Sarah Tariq, 
Real-Time Simulation and Rendering of 3D 
Fluids, GPU Gems 3, 2007, edited by Hubert 
Nguyen, Manager of Developer Education at 
NVIDIA, Available online at 
http://developer.nvidia.com/object/gpu-gems-3.h
tml. 

[11] Fedkiw, R., J. Stam, and H. W. Jensen, Visual 
Simulation of Smoke, Proceedings of 
SIGGRAPH 2001, pp. 15–22. 

 
 
 
 

Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS (CISST'09)

ISSN: 1790-5117 134 ISBN: 978-960-474-42-0




