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Abstract: A time series prediction problem is considered in this paper. In radiotherapy, the target motion often
affects the conformability of the therapeutic dose distribution delivered to thoracic and abdominal tumors, and
thus tumor motion monitoring systems have been developed. Even we can observe tumor motion accurately,
however, radiotherapy systems may inherently have mechanical and computational delays to be compensated for
synchronizing dose delivery with the motion. For solving the delay problem, we develop a novel system to predict
complex time series of the lung tumor motion. An essential core of the system is an adaptive prediction modeling
by which time-varying cyclic dynamics is transferred into time invariant one by a phase locking technique. After
the transformation, some linear and nonlinear models including neural networks can be used for accurate time
series prediction. Simulation studies demonstrate that the proposed system can achieve a clinically useful high
accuracy and long-term prediction of the average error 1.59 ± 1.61 [mm] at 1 [sec] ahead prediction.

Key–Words: Time series prediction, adaptive modeling, radiation therapy, and motion management.

1 Introduction
In radiation therapy, it is known that the target mo-
tion often affects the conformability of the therapeutic
dose distribution delivered to thoracic and abdominal
tumors. Such tumor motions can not only be asso-
ciate with patient’s stochastic movements and system-
atic drifts, but also involve internal movements caused
by such as respiration and cardiac cycles [1].

To take into account such “dynamic” nature of the
internal organ motion during the course of radiation
therapy, several techniques have been proposed and
evaluated in clinical use. A simple method is to in-
crease the planning target volume (PTV) to cover the
possible range of motion of the target [2], but unde-
sirably it results in an increased dose to the normal
tissues surrounding the tumor. One of the other meth-
ods to treat the respiratory motion of the lung tumor
is a breath-hold technique [3]. Since the respiration
may be dominant over the lung tumor motion, the tu-
mor can be regarded as a static target by using such
technique to stop the respiration. Geometric gating
method is also this kind of techniques to limit the
motion effect [4, 5]. They are, however, not desir-
able techniques because of patient intervention by the
breath-hold or beam interruption by the gating. In this
sense, tumor tracking by moving the radiation source

[6, 7] or the beam defined by multileaf collimator [8]
can be in an ideal direction.

To achieve such tumor tracking, several methods
have been proposed. Among these, direct measure-
ments of the tumor position by fluoroscopy imaging
techniques [9, 10] are more promising than indirect
ones such as external skin marker tracking [5, 11] and
breath monitoring techniques [12]. Such tracking sys-
tems may involve mechanical and computational de-
lays to control the multileaf collimator and for im-
age and time series processings of the tumor motion.
Thus, the time delay must be compensated by predict-
ing the tumor motion to accomplish a real-time track-
ing [1]. The desired accuracy of the tumor location
can be within about 1 [mm] at up to 1 [sec] ahead
prediction. This is a highly accurate condition for the
complex dynamics of the tumor motion.

In this paper, we propose a new system realizing
such highly accurate prediction of lung tumor motion
for tracking radiation therapy. The proposed system
takes into account the complex dynamics by using an
adaptive modeling for the prediction.

The rest of this paper consists of as follows. We
will investigate nature of the motion first, by using
time series analysis techniques in section II. Then pre-
diction method will be developed in section III by
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using results of the analysis. In section IV, predic-
tion accuracy of the proposed system will be evalu-
ated by some simulation studies in which the perfor-
mance of the prediction systems based on a smooth-
ing prediction model designed by Holt-Winters sea-
sonal (HWS) method [13] and more general seasonal
ARIMA (SARIMA) model [14] is compared to a con-
ventional prediction method. Concluding remarks
will be given in section V.

2 Motion of Lung Tumor
We used three-dimensional time series of human lung
tumor motion at superior segment of right lung, S6,
as shown in Fig. 1. A dominant source of the tumor
motion is respiration, but the others such as caused
by cardiac motion may also be included in the time
series.

2.1 Preprocessing (noise reduction) of the
time series

A fiducial gold marker implanted into the lung tu-
mor was used to measure the three-dimensional co-
ordinates of the tumor motion. The spatial resolution
and sampling period were 0.01[mm] and 0.033[sec]
(30[Hz]), respectively. To reduce observational noise
and avoid abnormal data involved in raw data of the
time series, we preprocessed the time series by using
several filters such as the Kalman filter [15] and sta-
tistical filters. An example of the preprocessed time
series

y(t) = [y1(t) y2(t) y3(t)] (1)

t = 1, 2, . . . , 5000, are shown in Fig. 2. Here ele-
ments of vector y(t) at time t [step], y1(t), y2(t), and
y3(t) [mm], are the marker’s position of the sagittal,
axial, and coronal directions, respectively. Note that

Figure 1: Structure of a human lung.
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Figure 2: Preprocessed time series y(t) of the ob-
served tumor marker motion at S6 of the lung.

the time series of the vector y(t), t = 1, 2, ..., can be
obtained in real-time.

For the teaching data of time series prediction,
we further reduced the observational impulse noise
involved in the time series y(t), t = 1, 2, ..., in
Eq. (1) by using statistical filters, and then reduced
high frequency noise by using a low pass filter that
deletes unnecessary high frequency components that
are higher than 0.1 × fmax [Hz]. Here fmax is the
maximum frequency of the digital Fourier transform
spectrum under the sampling period. The statistics
can be computed by using all data of the time series
for t = 1, 2, . . . , 5000 in Fig. 2. The noise reduced
time series y∗(t) = [y∗1(t) y∗2(t) y∗3(t)] are shown in
Fig. 3 and assumed as the real motion of the fiducial
marker of the tumor.

2.2 Cyclic dynamics

There can be cyclic dynamics with approximately 90
[steps] periods of respiratory motion involved in the
fiducial marker motion of the lung tumor as seen in
Figs. 2 and 3. Note that the periods of the cyclic com-
ponents and rhythmic dynamics can be widely fluctu-
ated when the respiratory dynamics are changed. If
patients are in rest, however, respiratory dynamics is
almost cyclic and thus the dominant dynamics of time
series is also cyclic as seen in Fig. 2.

We calculate the autocorrelation function, ACF,
of the time series for further analysis of the cyclic dy-
namics involved in the tumor motion. Fig. 4 shows
ACF(t, k) of a sample time series in the axial direc-
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Figure 3: The noise reduced time series y∗(t) of the
marker motion.

Figure 4: Autocorrelation function, ACF(t, k), of y∗2.

tion, [y∗2(t− 150) y∗2(t− 149) · · · y∗2(t+149) y∗2(t+
150)], within a time window (301 steps) as a func-
tion of time t [step] and the shift k [step]. Note that
the first peak of the ACF at a shift k(≥ 1) corre-
sponds to the dominant period of the cyclic dynam-
ics. Then from the autocorrelation function analysis,
it is revealed that the dominant periods are also ap-
proximately 90 [steps]. Furthermore, the periods are
slightly and smoothly fluctuated and thus they can be
time variant. It has been seen that ACFs for time se-
ries of the other two directions, y∗1 and y∗3, are almost
similar to that of y∗2 described above (The results are
omitted).

3 Prediction Method

3.1 Concept of prediction algorithm

Fig. 5 shows a tumor motion prediction system pro-
posed in this paper. Let us predict the h-step (h ≥ 1)
ahead fiducial marker’s position of the lung tumor.
The predicted position ỹ∗(t + h) of the actual (noise
reduced) tumor position y∗(t+h) is calculated by us-
ing the real-time preprocessed time series available at
time t

Y (t) = [y(1) y(2) · · ·y(t − 1) y(t)]T (2)

Concepts of the prediction algorithm are as fol-
lows. As analyzed in section 2.2, the target time se-
ries y∗(t) may include a complex dynamics with time
variant periods. Thus, far past information involved
in the whole time series Y (t) is less important or
even can have a bad effect on the prediction accuracy.
Then, the prediction model can be built based on the
not far past information of the time series. Note that
the current period is one of the most important piece
of information for the prediction because the cyclic
dynamics makes the prediction be precise. In this
sense, the proposed algorithm tries to estimate the cur-
rent dominant period as precise as possible by using a
flesh piece of information involved in the current time
series available.

Let us consider the current period vector s∗(t) =
[s∗1(t) s∗2(t) s∗3(t)] of the time series y∗(t) =
[y∗1(t) y∗2(t) y∗3(t)] at time t, and denote its estimation
as s(t) = [s1(t) s2(t) s3(t)]. The estimation of the s∗
can be calculated by using the autocorrelation func-
tion analysis of a flesh sample time series with a time
length L given as yi(τ), τ = t − L, t − L + 1, . . . , t,
available at time t. Here if the estimated period is
changed, si(t − 1) �= si(t), then the model of cyclic
dynamics is adapted to the new current period si(t).
The final h-step ahead prediction ỹ∗(t+h) can be cal-
culated based on the adapted model of the new cyclic
dynamics Ŷ (t) as shown in Fig. 5.

*

Figure 5: The proposed prediction system.
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3.2 Prediction model

As prediction models of the lung tumor motion, we
adopt two models of the time series here. One is a
smoothing model designed by the HWS method and
the other is a seasonal ARIMA (SARIMA) model.
Note that, however, any other linear or nonlinear mod-
els including neural networks can be used for the pro-
posed adaptive prediction method.

The HWS method can provide an easy design of
the model to predict 1-step ahead of the time series
if the period of cyclic dynamics is known and time
invariant. In such case, only three smoothing param-
eters, implying the ratio of use the predicted data to
the previous actual data for smoothing, may be de-
signed as values between 0 and 1; 0 implies smooth-
ing by only the actual data, while 1 implies smooth-
ing by only the predicted data. The three parameters,
0 ≤ α, β, γ ≤ 1, are ratios for smooth calculation of
the trend level, the gradient of trend, and cyclic com-
ponent, respectively.

On the other hand, the easy design restricts free-
dom of the model and thus the prediction accuracy is
limited in the case of complicated time series. Also,
modeling errors may be accumulated for a mid- or
long-term prediction (h � 1) and the prediction will
result in failure with a large error beyond the toler-
ance.

The other model, the general SARIMA model of
the time series, [y(0) y(1) · · · y(t)], with period s
[steps] of cyclic dynamics can be given as follows.

φ(B)Φ(Bs)(1 − B)d(1 − Bs)Dy(t) = θ(B)Θ(Bs)e(t)

(3)
φ(x) = 1 − φ1x − φ2x

2 − · · · − φpx
p

Φ(x) = 1 − Φ1x − Φ2x
2 − · · · − ΦP xP

θ(x) = 1 + θ1x + θ2x
2 + · · · + θqx

q

Θ(x) = 1 + Θ1x + Θ2x
2 + · · · + ΘQxQ

where e(t) is the Gaussian noise of which average and
variance are 0 and σ2, respectively. The parameters
d, D, p, P , q, and Q represent dimensions of corre-
sponding terms, respectively. Because of high degree
of design parameter freedom of the SARIMA model,
the model can predict complicated dynamics with a
high precision. It is often, however, hard to design
such appropriate parameters of the model for the pre-
cise prediction.

To design the SARIMA model, we first make a
compensated time series x(t) from the adapted pre-
processed time series ŷ(t) as

x(t) = ŷ(t) − z(t) (4)

where z(t) = [z1(t) z2(t) z3(t)] is a trend level vector
at time t of the time series ŷ(t) defined by

zi(t) =
1

si(t)

t∑

τ=t−si(t)+1

ŷi(τ) (5)

i = 1, 2, 3. Then, the SARIMA model can be build by
using the compensated time series with a time length
of L given as

X(t) = [x(t − L) x(t − L + 1) · · · x(t)]T (6)

For avoiding the accumulation of the modeling error
at each step, we directly design an h-step ahead pre-
diction model instead of repeatedly use of the 1-step
ahead prediction one. To this end, the following con-
straint can be introduced.

φi = 0 · · · if mod(i, [h/2]) �= 0 (7)

where [x] denotes an operator that gives maximum in-
teger not greater than x and mod(i, k) gives the re-
mainder on division of i by k.

4 Results and Discussions

We have tested the proposed system using a predic-
tion task in which the preprocessed time series Y (t)
of fiducial marker’s motions of several lung tumors
are used. To evaluate the performance under the worst
(longest-term) condition required in clinical use, the
maximum length of h = 30-step (1 [sec]) ahead pre-
diction was conducted first.

The estimation of the current dominant periods
of cyclic dynamics was conducted during prediction
for the model adaptation. The estimation results are
shown in Fig. 6. As seen in this figure, estimated
periods as functions of time converge in around 90
after 1000 steps, but are still fluctuated and slightly
different from with each other directions. A reason
why such long (1000) steps were needed for conver-
gence of the estimated periods may be due to the lim-
itation of the changes of the estimated periods given
as |si(t) − si(t − 1)| ≤ 1, i = 1, 2, 3, with the ini-
tial values si(0) = 1 to avoid undesirable oscillation
of the estimation by radical changes of the estimation.
This may, however, require only additional 30 [sec]
observations before the actual therapeutic irradiation
in clinical use.

An example of the resulting time series for t =
3000 to 5000 predicted by the adaptive smoothing
model designed by the HWS method is shown in
Fig. 7. In this result, the smoothing parameters were
experimentally designed as α = 0.01, β = 0.05, and
γ = 0.7, respectively.
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Figure 6: Fluctuation of periods si(t), i = 1, 2, 3.

On the other hand, for the same target time series,
the prediction result by the adaptive SARIMA model
is shown in Fig. 8. Here, the dimensional parame-
ters were experimentally designed as p = 5h, P =
6si(t), d = 0,D = 0, q = 0, and Q = 0, respec-
tively. Referential time series predicted by the zero-
order hold model given as ỹ∗(t + h) = y(t) are also
shown in Figs. 7 and 8. Note that the parameters of
both models can be optimized by using some criteria
such as Akaike’s Information Criterion (AIC) [16].

As is clear from these figures, it can be con-
cluded that prediction accuracy of both smoothing
and SARIMA adaptive models is superior to that of
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Figure 7: Comparison of time series between the tar-
get (blue dotted lines) and the predictions (red lines) at
1 [sec] (30 steps) ahead by the proposed system with
HWS model.
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Figure 8: Comparison of time series between the tar-
get (blue dotted lines) and the predictions (red lines) at
1 [sec] (30 steps) ahead by the proposed system with
SARIMA model.

the zero-order hold model and the SARIMA model is
slightly further superior to the smoothing model. This
can be the effect of real-time adaptation of the model
according to the estimated time variant period and the
adaptation is effective even for the simple smoothing
model.

In addition, due to nonlinear nature of the respi-
ratory motion, better performance for short-term pre-
dictions by neural network models compared to lin-
ear filters has been reported [17, 18]. Consequently,
much better performance for long-term predictions
can be expected by using any nonlinear models in-
cluding neural networks with the proposed adaptation
algorithm for time variant nature.

To further verify this effect of adaptation, we
have evaluated average prediction errors for various
h-step (1 ≤ h ≤ 40) ahead prediction tasks. For
a wide range of h, prediction accuracy of both the
smoothing and SARIMA models was superior to that
of the zero-order hold model as expected (The re-
sults are omitted). The average error and its stan-
dard deviation of the 30-step ahead prediction were
1.94±1.93 [mm] by the smoothing model, while they
were 1.59±1.61 [mm] by the SARIMA model. What
should be stressed here is that this accuracy can be
sufficient for clinical use in which the margin of the
dose distribution is less than several millimeters.
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5 Conclusions

In this paper, we have developed time series predic-
tion system for lung tumor motion tracking radiation
therapy. The precise prediction was achieved by the
proposed technique based on the real-time adaptation
to the time variant period involved in the cyclic dy-
namics of respiration that may be a dominant source
of the tumor motion. It is expected that such precise
prediction will reduce the adverse dosimetric effect of
the tumor motion.

Simulation studies revealed the superior predic-
tion performance of the proposed adaptation models
compared to the conventional zero-order hold model
and that the prediction accuracy may be sufficient for
the clinical use. In addition to this, although results
were not shown in this paper, the performance of the
proposed adaptive SARIMA model was further supe-
rior to that of the conventional SARIMA model with-
out the adaptation.
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