
MATLAB MODEL FOR SPIKING

NEURAL NETWORKS

IVAN BOGDANOV RADU MIRSU VIRGIL TIPONUT

Applied Electronics

“POLITEHNICA” University of Timisoara

Timisoara, Str. Vasile Parvan, Nr.2

ROMANIA

ivan.bogdanov@etc.upt.ro radu.mirsu@etc.upt.ro virgil.tiponut@etc.upt.ro

Abstract: - Spiking Neural Networks are the most realistic model compared to its biological counterpart. This

paper introduces a MATLAB toolbox that is specifically designed for simulating spiking neural networks. The

toolbox includes a set of functions that are useful for: creating and organizing the desired architecture;

updating stimuli signals, adapting synapses and simulating the network; extracting and visualizing the

simulation results.

Key-Words: - spiking neural networks, neural modeling, MATLAB modeling, neural synchronism

1 Introduction
Spiking neural networks are of the last generation.

Compared to more traditional models, spiking

models have spike emitting outputs rather than

continuously varying outputs. This change comes as

a generalization of the coding techniques and allows

precise spike timing to be utilized as information

carrier. The older generations of networks assumed

that all the information is coded within the rate of

the spike train and therefore time averaging was

allowed without any information loss. This

averaging reduced all spike signals to continuous

variables.

2 Problem Formulation
Proper investigation of coding methods and network

functionality requires a simulation environment

accompanied by appropriate tools useful for results

processing, interpretation and visualization. Such an

environment is MATLAB, which preferred by most

scientists due to its vast library of functions and

toolboxes which are oriented towards scientific

modeling and experimentation. Unfortunately,

MATLAB does not have an existing toolbox that is

directly suited for simulation of spiking neural

networks. This paper proposes to introduce a

MATLAB toolbox specifically designed to simulate

spiking neural networks. It also introduces a few

functions that are useful for visualizing results.

3 Model Objects
The model uses structures as functional objects. This

approach allows a direct association between

software modules and actual parts of the network

architecture, easing the task of extracting and

interpreting simulation results. It also facilitates to

combine fragments of code that were written

independently.

3.1. Network Object
The main object, which comprises the entire

architecture, is the “network object”. Figure 1

describes the creation of such an object together

with all its internal variables. The network

architecture is volumetric being organized on layers,

each of them having a bi-dimensional topology. In

this example the dimensionality of the network is

3x5x5.

Figure 1. Network Object

An important variable of the network object is the

layer array. This array has a number of entries equal

to the number of layers in the network, each entry

being occupied by one layer object. Other variables

memorize network constants such as the loss factors

and thresholds.

Proceedings of the 13th WSEAS International Conference on SYSTEMS

ISSN: 1790-2769 533 ISBN: 978-960-474-097-0

3.2. Layer Object
The content of the layer object is illustrated in figure

2. Variables like topology, loss factor and threshold

are redundantly stored and are the same as specified

by the network object. Theoretically, every neuron

of all layers can be connected to any neuron of any

layer. In practice, however, only some of these

connections are valid and most are zero. The

connectivity vector holds Boolean variables that

show to which layers is the current layer connected

to. This is useful because the simulator will examine

this vector and will skip propagating spikes between

layers with null connections, decreasing simulation

time significantly. In this example the connectivity

vector holds only zeros as the network has not been

initialized.

Figure 2. Layer object.

The simulator, as it will be described in paragraph 4,

is time based and has as output the spiking activity

of the network. Because the spikes will only hold

information in their timing or rate and not in their

amplitude the spike activity of one neuron can be

represented by a Boolean time-trace with ‘1’

denoting a spike. Variable “state” of the layer

object is a matrix of the same size as the layer

topology and holds the spike activity of the layer at

the current time instant. Every entry in this matrix

corresponds to the output of one individual neuron.

This means that building the spike trace of one

neuron is done by recording the value of one matrix

entry at every time instant of the simulation.

 The layer object contains a secondary state

variable named “next_state”. The reason why two

state variables are needed comes from the functional

difference that exists between a biological neural

system and a computer system. All the neurons of

the biological system operate in parallel while the

computer code is executed sequentially. This means

that any change in the output of one neuron will

affect the simulation of the next neuron. This is

incorrect since normally the two neurons are

executing in parallel. In order to preserve the

parallel functionality of the network two state

variables are used. All neuron read signals from the

“state” variable while their outputs write signals into

the “next_state” variable. Until all the neurons are

executed the simulator considers time to remain

unchanged. When the “next_state” variable is

complete the simulator uses it to overwrite the

“state” variable and time is advanced. This

technique is illustrated in figure 3.

Figure 3. Updating Network State

Variable “input_layer” of the layer object denotes

whether this is the first layer of the network or not.

Input layers are different from the other layers

because all of their variables are null except for the

“state” variable which is used store the input

signals. The input signals can either remain constant

or be changed during the simulation.

 The “neuron_array” variable is an array with the

same topology as the layer object. This array holds

all the neuron objects.

3.3. Neuron Object
Each individual neuron uses and integrate and fire

model. This means that neuron i integrates all

incoming spikes as membrane potential ()tpi
. The

integrator is lossy with factor k_loss. When the

potential reaches threshold Th it is discharged to

zero and a spike of unitary amplitude is emitted at

the output ()tu i
. Spikes coming from neuron k to

neuron i cross a synapse which produces gain
ikG

and delay
ikD . This type of behavior is modeled by

equation (1).

STATE REGISTER

Next State

State

Clock

Neuron

Model

Proceedings of the 13th WSEAS International Conference on SYSTEMS

ISSN: 1790-2769 534 ISBN: 978-960-474-097-0

() () ()∫∑
=

∗−−∗=
t

ti

K

k

iikiiki tplosskDtuGtp
1

_

() Thtpi ≤ (1)

() 0=tpi
, tti = () Thtpi ≥

Additional information on integrate-and-fire models

can be found in [1], [2] and [3]. The neuron object

is illustrated in figure 4. The “potential” variable

holds the neuron potential that is computed

according to (1). The values for
ikG and

ikD are

stored in the “synapse_matrix” and “delay_matrix”

variables.

 Spikes propagate between neurons with different

delays. This means that in order to compute spike

influence on present potentials a history of the spike

activity needs to be recorded. This history needs to

be at least as long as the largest delay value. The

model presented in this paper is organized such that

each neuron keeps track of all the spikes that will

affect its potential at some time in the future. This is

done by placing a “data_delay_line” vector in each

neuron object. When a neuron object is executed its

“synapse_matrix” is multiplied with the activity

matrix at that time instant. The activity matrix is

obtained by concatenating all the “state” variables

found in the layer objects. This operation produces a

matrix that contains all the spikes affected by the

appropriate gains. The spikes are then placed inside

the “data_delay_line” at a position according to its

associated delay. At each time step the delay line is

shifted and the first entry is used for computing the

new neuron potential.

Figure 4. Neuron Object

Variable “out” is Boolean and represents the

emission of a spike. This variable is directly

mapped to the “next_state” variable of the layer

object.

4. Model Functions
4.1. Simulation Functions
Simulating a network is done by calling function

“simulate_network”. The function takes as input

parameters the network object that is to be

simulated and the simulation duration in seconds.

The simulation is performed by calling repetitively

subroutines like “advance_time”, update_neuron”

and “compute_next_state” and finally returns two

objects as output.

 One output object is the post-simulation network.

Therefore, a comparison between the internal state

of the initial network object and the final network

object can show the influence that the external

stimuli has had on the network within the time span

of the simulation.

 The second output object is an activity object.

During the simulation, time traces of the neural

outputs and membrane potentials are recorded.

These traces are organized in multidimensional

vectors that are stored inside the activity object. The

activity object is very useful because it holds data

that completely characterizes the behavior of the

network during the simulation. An instance of such

an object is illustrated in figure 5. The neural

activity has the same topology as the network that

generated it.

Figure 5. Activity Object

Several other functions are offered for creating and

initializing new objects and also for uploading

stimuli and adapting synapses.

4.2. Visualization Functions
The activity object contains the time traces recorded

from the membrane potentials and neural outputs.

Most often, the easiest way to interpret this data is

by visualization.

4.2.1. Visualizing Neural Time Traces
The most straightforward way to visualize is by

plotting the actual time traces. For this purpose

function “display_activity” can be used. The

function accepts several variables which influence

the display mode. The first variable for this function

is the activity object that supplies the data. The

Proceedings of the 13th WSEAS International Conference on SYSTEMS

ISSN: 1790-2769 535 ISBN: 978-960-474-097-0

second variable will specify the number of the

neural layer that will be plotted. If this variable is

omitted all layers will be plotted in several distinct

windows. The third variable is a string that will

select between displaying the neural spiking output

activity or the membrane potentials. Figure 6 shows

the output of this function for both cases. The fourth

variable is optional and allows visualization of a

sub-region of the neural array.
 Visualization of the time traces is not very useful

when it comes to the interpretation of the data.

However, the function described above can be very

useful during the debugging period of a project.

Subtle effects created by different network

parameters can be spotted on the time traces and so

several problems can be avoided or fixed.

Figure 6a. Layer Activity. Spike Output

Figure 6b. Layer Activity. Membrane Potential

4.2.2. Visualizing Neural Spike Rates
When the neural array is large visualizing by

plotting time traces can be very difficult or even

impossible. For this purpose the function

“display_rate” was developed. This function

computes the rate of the spike train for each neuron

and then maps these rates onto a black-white image.

This permits easy visualization of large arrays. The

function’s input variables allow selecting the time at

which the average rate is computed and also the size

of the averaging window. Figure 7 illustrates the

output of this function. Figure 7a displays the image

that is fed to the network as input stimuli. The

image only presents a snapshot of the input stimuli

which will continuously change during the

simulation as an effect of the time-varying white

noise.

7a. Noisy Image 7b. Average spike rate

Figure 7. Visualizing activity rate

Figure 7b illustrates the output of the neural rate

function. Because the noise is time-varying it is

rejected by the filtering effect of the integrate-and-

fire neurons.

4.2.3 Visualizing Neural Synchrony
Another important aspect in neural activity analysis

is neural synchrony. For example, at image

processing and shape recognition, neural synchrony

can be used in the segmentation stage. Observations

among biological systems have led to the idea that

neurons processing pixels belonging to the same

object tend to fire at the similar rates and also in

synchrony. With a design like the one presented in

the previous example, having point-to-point

synaptic connections between pairs of neurons and

pixels, neurons belonging to the same object will

fire at the close rates. This is based on the

assumption that the two pixels that are sourcing the

neurons will have similar values. However, due to

different initial conditions or system noise, these

neurons will fall out of phase. Synchrony can still

be achieved by using lateral connections in the

proximity of each neuron. This way spikes

generated by one neuron can force neurons that are

almost ready to fire to generate a spike ahead of

time and thus inducing synchrony. Additional

information on neural synchrony can be found in

[5]. For the purpose of visualizing neural synchrony

function “display_synchrony” was developed. The

function expects three variables as input. The first

Proceedings of the 13th WSEAS International Conference on SYSTEMS

ISSN: 1790-2769 536 ISBN: 978-960-474-097-0

one is the neural activity object that is supposed to

be analyzed. The second one is the time value at

which synchrony is evaluated. The third variable is

a synchrony threshold that will be explained shortly.

The function uses a fraction variable to denote how

well two neurons are synchronized with 0 meaning

completely out of phase and 1 meaning fully

synchronized. Assuming that the neurons are firing

at the same rate full de-synchronization occurs

when the time distance between spikes is half of the

period. The function builds a map of synchrony

between each neuron and its neighbors. Then, by

comparing the synchrony levels with the synchrony

threshold, decides whether the two neurons are

sufficiently synchronous to be considered as

belonging to the same object. This way

segmentation is performed. Lastly, the function

maps groups of synchronized neurons to different

colors and plots the result. Figure 8a, 8b and 8c

illustrates the output of this function at different

times along an activity object. The activity object

was obtained by simulating a network model similar

to the one described above that was sourced with a

grey scale image comprising of three objects, each

at a different grey level.

Figure 8 a). Layer Synchrony at t = 30 ms.

Figure 8 a). Layer Synchrony at t = 100 ms

Figure 8 a). Layer Synchrony at t = 160 ms

Synchrony Threshold = 0.8

It can be observed that initially the neurons are

unsynchronized and so the image is segmented into

large number of objects. At 100ms large groups of

neurons become synchronized. After 160ms all

neurons of the same object are fully synchronized

(above the synchrony threshold which in this case

was 0.8).

5. Conclusions
This paper presents a MATLAB toolbox for spiking

neural networks. It starts with the mathematical

model for an individual neuron, continues with the

organization and functionality of the network

architecture and finalizes with the description of

some simulation and visualization functions. Future

work will be oriented towards developing additional

functions for data visualization and analysis. Also,

upgrading the model such that it can be run on a

multiprocessor platform is of interest as it would

allow simulating significantly larger networks.

References:

[1] Wulfram Gerstner, Werner M. Kistler, Spiking

Neuron Models, Cambridge University Press,

2002.

[2] Eugene M. Izhikevich, Simple Model of Spiking

Neurons, IEEE Transactions on Neural

Networks, Vol.14, No.6, 2003, pp. 1569-1572.

[3] Sebastian A. Wills, Computation with Spiking

Neurons, PhD Dissertation, University of

Cambridge, 2004.

[4] Duane Hanselman, Bruce Littlefield, MATLAB

The Language of Technical Computing, Prentice

Hall, 2001.

[5] Talia Konkle, Image Segmentation

Using Neural Oscillators.

Proceedings of the 13th WSEAS International Conference on SYSTEMS

ISSN: 1790-2769 537 ISBN: 978-960-474-097-0

