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Abstract: - Spiking Neural Networks are the most realistic model compared to its biological counterpart. This 

paper introduces a MATLAB toolbox that is specifically designed for simulating spiking neural networks. The 

toolbox includes a set of functions that are useful for: creating and organizing the desired architecture; 

updating stimuli signals, adapting synapses and simulating the network; extracting and visualizing the 

simulation results. 
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1   Introduction 
Spiking neural networks are of the last generation. 

Compared to more traditional models, spiking 

models have spike emitting outputs rather than 

continuously varying outputs. This change comes as 

a generalization of the coding techniques and allows 

precise spike timing to be utilized as information 

carrier. The older generations of networks assumed 

that all the information is coded within the rate of 

the spike train and therefore time averaging was 

allowed without any information loss. This 

averaging reduced all spike signals to continuous 

variables.  

 

2   Problem Formulation 
Proper investigation of coding methods and network 

functionality requires a simulation environment 

accompanied by appropriate tools useful for results 

processing, interpretation and visualization. Such an 

environment is MATLAB, which preferred by most 

scientists due to its vast library of functions and 

toolboxes which are oriented towards scientific 

modeling and experimentation. Unfortunately, 

MATLAB does not have an existing toolbox that is 

directly suited for simulation of spiking neural 

networks. This paper proposes to introduce a 

MATLAB toolbox specifically designed to simulate 

spiking neural networks. It also introduces a few 

functions that are useful for visualizing results.  

 

3 Model Objects 
The model uses structures as functional objects. This 

approach allows a direct association between 

software modules and actual parts of the network 

architecture, easing the task of extracting and 

interpreting simulation results. It also facilitates to 

combine fragments of code that were written 

independently.  

 

3.1. Network Object 
The main object, which comprises the entire 

architecture, is the “network object”. Figure 1 

describes the creation of such an object together 

with all its internal variables. The network 

architecture is volumetric being organized on layers, 

each of them having a bi-dimensional topology. In 

this example the dimensionality of the network is 

3x5x5.  

 

 
Figure 1. Network Object 

 

An important variable of the network object is the 

layer array. This array has a number of entries equal 

to the number of layers in the network, each entry 

being occupied by one layer object. Other variables 

memorize network constants such as the loss factors 

and thresholds. 
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3.2. Layer Object 
The content of the layer object is illustrated in figure 

2. Variables like topology, loss factor and threshold 

are redundantly stored and are the same as specified 

by the network object. Theoretically, every neuron 

of all layers can be connected to any neuron of any 

layer. In practice, however, only some of these 

connections are valid and most are zero. The 

connectivity vector holds Boolean variables that 

show to which layers is the current layer connected 

to. This is useful because the simulator will examine 

this vector and will skip propagating spikes between 

layers with null connections, decreasing simulation 

time significantly. In this example the connectivity 

vector holds only zeros as the network has not been 

initialized. 

  

 
Figure 2. Layer object. 

 

The simulator, as it will be described in paragraph 4, 

is time based and has as output the spiking activity 

of the network. Because the spikes will only hold 

information in their timing or rate and not in their 

amplitude the spike activity of one neuron can be 

represented by a Boolean time-trace with ‘1’ 

denoting a spike.  Variable “state” of the layer 

object is a matrix of the same size as the layer 

topology and holds the spike activity of the layer at 

the current time instant. Every entry in this matrix 

corresponds to the output of one individual neuron. 

This means that building the spike trace of one 

neuron is done by recording the value of one matrix 

entry at every time instant of the simulation.   

    The layer object contains a secondary state 

variable named “next_state”. The reason why two 

state variables are needed comes from the functional 

difference that exists between a biological neural 

system and a computer system. All the neurons of 

the biological system operate in parallel while the 

computer code is executed sequentially. This means 

that any change in the output of one neuron will 

affect the simulation of the next neuron. This is 

incorrect since normally the two neurons are 

executing in parallel. In order to preserve the 

parallel functionality of the network two state 

variables are used. All neuron read signals from the 

“state” variable while their outputs write signals into 

the “next_state” variable. Until all the neurons are 

executed the simulator considers time to remain 

unchanged. When the “next_state” variable is 

complete the simulator uses it to overwrite the 

“state” variable and time is advanced. This 

technique is illustrated in figure 3. 

  

Figure 3. Updating Network State 

  

Variable “input_layer” of the layer object denotes 

whether this is the first layer of the network or not. 

Input layers are different from the other layers 

because all of their variables are null except for the 

“state” variable which is used store the input 

signals. The input signals can either remain constant 

or be changed during the simulation.  

    The “neuron_array” variable is an array with the 

same topology as the layer object. This array holds 

all the neuron objects.  

 

3.3. Neuron Object 
Each individual neuron uses and integrate and fire 

model. This means that neuron i  integrates all 

incoming spikes as membrane potential ( )tpi
. The 

integrator is lossy with factor k_loss. When the 

potential reaches threshold Th  it is discharged to 

zero and a spike of unitary amplitude is emitted at 

the output ( )tu i
. Spikes coming from neuron k  to 

neuron i  cross a synapse which produces gain 
ikG  

and delay 
ikD . This type of behavior is modeled by 

equation (1). 
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Additional information on integrate-and-fire models 

can be found in [1], [2] and [3]. The neuron object 

is illustrated in figure 4. The “potential” variable 

holds the neuron potential that is computed 

according to (1).  The values for 
ikG  and 

ikD  are 

stored in the “synapse_matrix” and “delay_matrix” 

variables.  

    Spikes propagate between neurons with different 

delays. This means that in order to compute spike 

influence on present potentials a history of the spike 

activity needs to be recorded. This history needs to 

be at least as long as the largest delay value. The 

model presented in this paper is organized such that 

each neuron keeps track of all the spikes that will 

affect its potential at some time in the future. This is 

done by placing a “data_delay_line” vector in each 

neuron object. When a neuron object is executed its 

“synapse_matrix” is multiplied with the activity 

matrix at that time instant. The activity matrix is 

obtained by concatenating all the “state” variables 

found in the layer objects. This operation produces a 

matrix that contains all the spikes affected by the 

appropriate gains. The spikes are then placed inside 

the “data_delay_line” at a position according to its 

associated delay. At each time step the delay line is 

shifted and the first entry is used for computing the 

new neuron potential.  

 

 
Figure 4. Neuron Object 

 

Variable “out” is Boolean and represents the 

emission of a spike. This variable is directly 

mapped to the “next_state” variable of the layer 

object. 

 

4. Model Functions 
4.1. Simulation Functions 
Simulating a network is done by calling function 

“simulate_network”. The function takes as input 

parameters the network object that is to be 

simulated and the simulation duration in seconds. 

The simulation is performed by calling repetitively 

subroutines like “advance_time”, update_neuron” 

and “compute_next_state” and finally returns two 

objects as output.  

    One output object is the post-simulation network. 

Therefore, a comparison between the internal state 

of the initial network object and the final network 

object can show the influence that the external 

stimuli has had on the network within the time span 

of the simulation.    

    The second output object is an activity object. 

During the simulation, time traces of the neural 

outputs and membrane potentials are recorded. 

These traces are organized in multidimensional 

vectors that are stored inside the activity object. The 

activity object is very useful because it holds data 

that completely characterizes the behavior of the 

network during the simulation. An instance of such 

an object is illustrated in figure 5. The neural 

activity has the same topology as the network that 

generated it.  

 

 
Figure 5. Activity Object 

 

Several other functions are offered for creating and 

initializing new objects and also for uploading 

stimuli and adapting synapses. 

 

4.2. Visualization Functions 
The activity object contains the time traces recorded 

from the membrane potentials and neural outputs.  

Most often, the easiest way to interpret this data is 

by visualization. 

  

4.2.1. Visualizing Neural Time Traces 
The most straightforward way to visualize is by 

plotting the actual time traces. For this purpose 

function “display_activity” can be used. The 

function accepts several variables which influence 

the display mode. The first variable for this function 

is the activity object that supplies the data. The 
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second variable will specify the number of the 

neural layer that will be plotted. If this variable is 

omitted all layers will be plotted in several distinct 

windows. The third variable is a string that will 

select between displaying the neural spiking output 

activity or the membrane potentials. Figure 6 shows 

the output of this function for both cases. The fourth 

variable is optional and allows visualization of a 

sub-region of the neural array.   
    Visualization of the time traces is not very useful 

when it comes to the interpretation of the data. 

However, the function described above can be very 

useful during the debugging period of a project. 

Subtle effects created by different network 

parameters can be spotted on the time traces and so 

several problems can be avoided or fixed.     

 

 
Figure 6a. Layer Activity. Spike Output 

 

 
Figure 6b. Layer Activity. Membrane Potential 

 

4.2.2. Visualizing Neural Spike Rates 
When the neural array is large visualizing by 

plotting time traces can be very difficult or even 

impossible. For this purpose the function 

“display_rate” was developed. This function 

computes the rate of the spike train for each neuron 

and then maps these rates onto a black-white image. 

This permits easy visualization of large arrays. The 

function’s input variables allow selecting the time at 

which the average rate is computed and also the size 

of the averaging window. Figure 7 illustrates the 

output of this function. Figure 7a displays the image 

that is fed to the network as input stimuli. The 

image only presents a snapshot of the input stimuli 

which will continuously change during the 

simulation as an effect of the time-varying white 

noise. 

 

 
7a. Noisy Image              7b. Average spike rate  

Figure 7. Visualizing activity rate  

 

Figure 7b illustrates the output of the neural rate 

function. Because the noise is time-varying it is 

rejected by the filtering effect of the integrate-and-

fire neurons. 

 

4.2.3 Visualizing Neural Synchrony 
Another important aspect in neural activity analysis 

is neural synchrony. For example, at image 

processing and shape recognition, neural synchrony 

can be used in the segmentation stage. Observations 

among biological systems have led to the idea that 

neurons processing pixels belonging to the same 

object tend to fire at the similar rates and also in 

synchrony. With a design like the one presented in 

the previous example, having point-to-point 

synaptic connections between pairs of neurons and 

pixels, neurons belonging to the same object will 

fire at the close rates. This is based on the 

assumption that the two pixels that are sourcing the 

neurons will have similar values. However, due to 

different initial conditions or system noise, these 

neurons will fall out of phase. Synchrony can still 

be achieved by using lateral connections in the 

proximity of each neuron. This way spikes 

generated by one neuron can force neurons that are 

almost ready to fire to generate a spike ahead of 

time and thus inducing synchrony. Additional 

information on neural synchrony can be found in 

[5]. For the purpose of visualizing neural synchrony 

function “display_synchrony” was developed. The 

function expects three variables as input. The first 
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one is the neural activity object that is supposed to 

be analyzed. The second one is the time value at 

which synchrony is evaluated.  The third variable is 

a synchrony threshold that will be explained shortly.  

The function uses a fraction variable to denote how 

well two neurons are synchronized with 0 meaning 

completely out of phase and 1 meaning fully 

synchronized. Assuming that the neurons are firing 

at the same rate full de-synchronization occurs 

when the time distance between spikes is half of the 

period. The function builds a map of synchrony 

between each neuron and its neighbors. Then, by 

comparing the synchrony levels with the synchrony 

threshold, decides whether the two neurons are 

sufficiently synchronous to be considered as 

belonging to the same object. This way 

segmentation is performed. Lastly, the function 

maps groups of synchronized neurons to different 

colors and plots the result. Figure 8a, 8b and 8c 

illustrates the output of this function at different 

times along an activity object. The activity object 

was obtained by simulating a network model similar 

to the one described above that was sourced with a 

grey scale image comprising of three objects, each 

at a different grey level.  

 

 
Figure 8 a). Layer Synchrony at t = 30 ms. 

 

 
Figure 8 a). Layer Synchrony at t = 100 ms 

 
Figure 8 a). Layer Synchrony at t = 160 ms 

Synchrony Threshold = 0.8 

 

It can be observed that initially the neurons are 

unsynchronized and so the image is segmented into 

large number of objects. At 100ms large groups of 

neurons become synchronized. After 160ms all 

neurons of the same object are fully synchronized 

(above the synchrony threshold which in this case 

was 0.8).   

 

5. Conclusions 
This paper presents a MATLAB toolbox for spiking 

neural networks. It starts with the mathematical 

model for an individual neuron, continues with the 

organization and functionality of the network 

architecture and finalizes with the description of 

some simulation and visualization functions.  Future 

work will be oriented towards developing additional 

functions for data visualization and analysis. Also, 

upgrading the model such that it can be run on a 

multiprocessor platform is of interest as it would 

allow simulating significantly larger networks.  
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