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1 Introduction

The problem of the absence of eigenvalues of
integro-differential operators just as other ones
involving spectral properties of an integro-
differential operator arose from the practical
necessities of plasma oscillations theory (in this
respect we note the works of D.Bohm and E. Grose
[1], N. G. Van Kampen [2] and K. M. Case [3]), of
mathematical theory of scattering of neutrons (see,
for instance, J. Lehner and G. M. Wing [4] and see
also [5]) and of other principle situation from
quantum physics and mechanics. We also note the
works [6-8] (as well as the references therein) in
which mathematical models involving integro-
differential operators can be found as well.

A part of the results of the present paper was
announced without any proof in our article [9].

The Hilbert spaces are denoted by H, H,,... the
inner products and the norms in those Hilbert

spaces are denoted by (.,.)H and || ||H . The set of
linear operators closed and densely defined on H,
with values in H, is denoted by C(HI,HZ).
B(HI,HZ) stands for the Banach space of all
bounded linear operators defined on H, with
values in H, and Bw(Hl,Hz) the subspace of
B(Hl,Hz) consisting of all compact operators

defined on H, with values in H,. For every

operator 4 in H, the domain, the range, the
resolvent set and the spectrum are denoted by

D(A), R(A), p(A) and G(A), respectively. The
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point spectrum of the operator A (the set of all
eigenvalues of 4 ) is denoted by o, (A)

2 The absence of eigenvalues of some

integro-differential operators

These results are similarly with the results which
refer to the differential operators and with the other
results which refer to the Wiener-Hopf-type
operators (see [10]).

2.1. We realize the following scheme (see [11]).

Let H be an operator defined on the Hilbert

space H , of the form
H=A4+B, (1)

where B has the form B = ZSaTaﬂRﬁ’
a,p=0

and the operators 4, S, Ry, T, (a,,B = O,...,n)

satisfy the following conditions:
(i) A is closed and densely defined,
(ii) the complex number A is not an eigenvalue of

the operator A4, thatis 1 ¢ o, (A);
(iii) the operators S, Ry, T, (a,ﬂ = O,...,n) act
in the H space with the properties
D(4)c D(S,)nD(R,),
T, € BH) (e, f=0....,n).
As well as in the paper [11], in the H space we
consider the operators family L, (T > O), with

property:
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(ivykerL, =0(ceR,)and L, =1 (I isthe
identical operator in the H space). On the domain
D. = D(L,) of the operator L, (7 >0) we define

Lo, (u eDT).

Such as result we obtain the normalized space

the norm ||u||r =|

H, (in general uncomplete).

Clearly H, = H. Moreover, we suppose that the

following properties are fulfilled:
(v) there is 7 2 0 such thatif v, € H and

S,TsR, € R(A-Al)(a, B=0.,...,n), then

v, €H,,

R(A-AI)'S,T R

a”af EHT

A
and

HR;, (4- i])_lSaTaﬂvﬁHT < a”vﬁ

(0 <a<lya,p,y= O,...,n)
(vi)if v, = R,u , where

T .
b

u+ i(A —AI)"'S,T;Ryu =0,
a,p=0
then

R (A-AI)'S,T,v,

(c =const; 21, B,y = O,...,n).

Sc~”v
. B

'

Remark. Throughout this paper we consider
only the situation on which the perturbation
operator B is subordinated to unperturbed operator
A . In this connection we assume additionally that

the function ¢,, and, respectively the kernels
Kop (x, y) either for &« =n or f =n are identical
equal to zero. Thus in the sum determining B
eitherr ¢ =0,.,n and f=0,..,n-1 or
a=0,.,n—1and f=0,..,n.

Lemma 1. Let be the operator H of the form
(2). If the conditions (i)-(vi) are fulfilled, then A is
not an eigenvalue of the operator H .

Proof. Suppose on the contrary, let A be an
eigenvalue of the operator H, then there is
u #0,u € H, such that

Hu=u. (2)

Let H be a Hilbert space formed like a direct

sum from (n + l) spaces H , namely
H=Y ®H.

k=0
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We consider the operator R:H — H such as
R = (Ra )Z:O (u € ﬂ’;:O D(Ra ))’
the operator T:-Ho>H ,

Iv = (Z T, aﬁ'vﬂj
B=0
and we denotes the operator S:H—>H thus

§\7=iSava(17=(va)Z:0 eHv, eDs,), a=0,...,n).

a=0

n

(‘7 = (Vﬂ )Z?:o € ﬁ)

a=0

We remark that STR = ; OS"‘ T 4R,
and in accordance with (3) it results that

Au+STRu = u,
or
u+(A—/U)_1§7~YN2u =0. 3)
We denote ¥ = Ru. Because A ¢ o, (4) it
results that v # 0.
If v=0 then R,u=0 (a = 0,...,n) and we
obtain the contradiction Au = Au.
Because D(A) c D(Ra ) (Ot = 0,...,n) on the
basis of (4) it results that u € D(E ) and we obtain
V+R(4-A1)'STv=0. (4)
The family of the operators (LT )z’ZO from the
space H is in correspondence with the family of

the operators (LT) from the space H , where

720
Lr‘j = (Lrva )Z:O
(\7 =) _yiv,€D,;720;a=0,.., n)

In accordance with condition (v), the condition
(5) involves the following relation

%], = |27 = |E.R (4~ 21) ' ST < v,
(0<a<l;7>0)
Therefore

|\7|T < a|\7|r (0 <a<lyr> O). ©)

Previously we mentioned that v # 0, and on the

T

base of (vi) it results that |\7|T <00,

Because on the base of (6) it results a > 1, we
obtain a contradiction with 0 <a <1. Thus, the
lemma is proof.

2.2. The integro-differential operator who’s the
spectrum is studied in this paper, has the form
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H= )Y D"M, D", (6)
a,p=0
where M, (Ot,ﬂ =0,..., n) are of the type

(M o) = apu(x)+ g, (Ju(x)+
[y (e, 3 Ju (3 )y

and (Ot,ﬂ =0,..,n; xR, ), and they act in the
space L, (R+ )

We consider the operator H with its maximal
domain of definition, i.e. with the domain

consisting of all functions u € W (R,) w, (R,)
denotes the Sobolev space of order n over R,)
such that D”u belong to the domain of M op TOT
each a,f =0,...,n, and MaﬁDﬁ € W; (R+).

In particular, if ¢, (a,,B = O,...,n) are

continuous and bounded functions together with
their derivates of the (n - 1) order on the semi-axis

R, and the kernels &, (x,y)(a, 8 =0.,...,n) are

such that the integral operators with kernels
o'k . (x,
M(j=0,...,a; a,B=0,..,n) are
Ox;

bounded on L, (R+), then the domain of H is
considered to be the Sobolev space sz ! (R+ )

Here a,, (a,ﬂ =0,..,na,, # 0) are complex
numbers, ¢, (Ot, B= O,...,n) and, respectively,
the kernels £, (x,y)(a, 8 =0.,...,n) are smooth

as it will be necessary complex-valued functions.

D denotes the differential operator D =i di
x

with the domain of definition determined by the set
of all functions u €L, (R+) which are absolutely

continuous on every bounded interval of the

positive semi-axis and wu'e L, (R+ ) More,
u(0)=0.

It supposes that the operator H acts in the space
Ly(R,).

Let consider the operator
(Bt o) = 5 (6 () +
+ jkaﬂ (x,yu(y)dy (a0, 8 = 0.,...,n)
R

+
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and then the operator H is represented like a
perturbed operator H = A+ B where

A=Y a,D*D’
a.f=0
and
B= Y D“B,D".
a.f=0
It is known that D c D", the resolvent set
p(D*) of the operator D~ coincides with the open
upper half-plain and so the spectrum of the operator
D" consists of all points of the closed lower half-
plain. Moreover, the point spectrum o, (D*) on
the real axis is absent.
Spectral properties of the operator 4 are well
known and, in particular, information on the
spectrum of A can be derived, for instance from

[12]. Here, let us only make some remarks that will
be necessary for our further discussions. Let 4 be

a complex number and denote by &, (k = 1,...,2n)
the roots of the polynomial A(§ ) — A. Then

2n
A-M=a,[[(D-1). 7
=1
The resolvent set of the operator D coincides
with the open upper half-plane

H+= {Z eC/3z> O} , the open lower half-plane

H_ is filling with the point spectrum of D and
the real axis being in the continuous part of the

spectrum is free from the point spectrum of A4, i.e.
Rco, (D) and RNo, (D) =@ . We note that

for 3z > 0 one has

o0

-1 . .
(D—z1)"ulx) = =i expliz(y — x)u(y)dy. (8)
The representation (8) for 3z =0 is also holds,
but then it is necessary to consider # from the
range of the operator D —z[. Now, from the

equality (7) it is easy to conclude that A € G(A) if

and only if the roots of the polynomial A(f)—/l

are contained in the closed lower half-plane
3£ < 0. Moreover, a point A is not an eigenvalue

of A provided that the polynomial A(f)—/i has
its zeros only in I& > 0.

Next, let A be not an eigenvalue of the
unperturbed operator 4. According to what has
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already been said, the polynomial A(§ )— A can be
represented as follows

A(E)-2 = ljo(cf e ) ae), o

where fj (j:O,...,
numbers, ijO(j:O,...,r) and Al(f) is a

polynomial, the roots of which belong to the upper
half-plane 3& > 0. We let m, =0 for the case in

r) are real pair wise distinct

which the polynomial A(é’)—/l has no zeros on
the real axis.

Theorem 1. Let H be an operator of type (1)
which acts in the space L, (R+ ), the complex
number A is not an eigenvalue of the operator A,
the polynomial A(ﬁ)—/l can be represent of the
form (8), m = max{mj /j= 0,...,r}.

If
(1+x)q,,(x)e L, (R,)
(5 >m;a,f =0,..,n —1)
and if &, (x, y) =0 for x > y, and the integral
operators with kernels
(1 + x)ékaﬂ(x,y) (a,,B =0,.,n—1,0 > m)
are bounded in L, (R+ ), then A is not an

eigenvalue of the operator H .
Proof. We verify the conditions (i)-(vi). The

Hilbert space H is formed like a direct sum from
(n + 1) spaces L, (RJr ),

ﬁ:i@gmj

=0
We denote by R, = D”,S, =D and T, is
considered equal with B, (a,ﬂ = 0,...,n).
Let us consider the operators
(Lu)x)=(1+x) u(x)
(ueL,(R,)nDom(L,),7>0)

Clearly the conditions (i)-(iv) are fulfilled and
remain to verify the conditions (v) and (vi).
Because the operator

D' (A=) D (a,y =0,...,n)
on his definition domain is a linear combination of
the operators of the type (D* —ul )71 (where
[=1,...m and Ju >0), it is sufficient to
estimate the norm
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H(D —u )JBaﬂvﬂ .
(vﬁ € LZ(R+); a,f=0,.ml=1..m7c> 0)

For this it uses the following Hardy inequality
(see [13])

Jul, < @)D" -

where c(r) — 0, when 7 — o0 This inequality is

(5>1), (10)

T+0

applied of / times successively.
We have two cases: Ju =0 and Ju > 0.

In the involved case Ju = 0, in accordance with

previous inequality (see the previous Hardy
inequality (9)) it obtains

Lr+./’ (D* - IUI)_IL:@/H < a(T) (] € N)a

where a(r) — 0, when 7 — o (see lemma 2 of
[14]).
Therefore
(D"~} B, <alc)
(a,ﬂ= 0,..,mr2> 0)
where a(r) — 0, when 7 > ©.

In concordance with the conditions imposed of
the functions ¢, and &, (e, f=0,...,n) itis

L. B, L

+m= aff 't

L.B,L

T+m " aff T

'”Vﬂ

T
2

<c

obtain ‘
(¢ is the constant which does not depend on 7 ;
a,f=0,.n1>20,0>m).

(D* —,u])_ B svg Sa(rmvﬂ

(a,ﬂ =0,...nm72 0), where a(r) — 0, when
T—> 0.
If 3 >0, in concordance with lemma 1 of [14]

In conclusion
T

it 1s true that
(D" =)' B, <ale)
(a,,B =0,.m7>20&> 0),

where a(z)— 0, when 7 — .
Thus, we obtain

L.,B,L H <cl(a,f=0,.,n;7>0;5>0),
where ¢ is the constant which does not depend on
7, 0,0=0,.,n7>0;&>0.

Therefore
(D"~ )B4, = a(e v

(a,ﬂ =0,.,m7>20;¢> O),

L B.L'

T+ aff T

' Hvﬂ

T
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where a(r)— 0, when 7 — o .
The property (v) is proof for both of cases.

For proof of the condition (vi) we stand the same
situations as well as in property (v).
If 3u =0 it obtains
(D" =) "B,y <ale)
(a,ﬂ =0,...m7>28 6> O),
where a(z’) — 0, when 7 —>00.
Thus |L,.,,B,,L;

T+m= aff T r-¢
(a,f=0,.,n7>2g,0>m, c is the constant
which does not depend on 7 ), and therefore

(D* - ILlI)_m B vy
(a,f=0,...,n;72>¢g;0 >m;c is constant).
LD - u) 'L
where a(r) — 0, when 7 — o ( see lemma 1 of

[4]).

Therefore
-1
‘ L T B af L T—¢&
where c¢ is the constant which does not depend on
7 , and thus
* —1
H(D —H ) Ly ] géﬂ"ﬁ

(a,ﬂ: 0,.mr>8> 0),
¢ 1S constant.

Thus the property (vi) is true. The theorem 1 is
proof.

If the polynomial A(§ ) — A has also null

solutions (let be for example &, =0 with

L.B,L'

T+maff T r—¢

' ||le

T—¢&

<c

<C17
T

T—¢&

If Jpz> 0 then <a(r),

Sc(a,ﬂ=0,...,n; T>¢€ >0),

T—&

m, > 0), theorem 1 can be refined, more exactly

the following theorem is true.
Theorem 2. Let H be an operator of type (1),
which acts in the space L, (R+ ) and let be

9up (x)=0(xeR,) and

Kop (x,y) =0 (x,y € R.) for every
a,f=0,..,n, with @ + f <n (1 an integer
fixed number 0 <7 < 2n).

Let be that A(§ ) — A can be represented on the
form (8), where we consider that &, =0 and
m= max{m0 -1, m,...m, }

If
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(1 + x)(S 9 up (x) el, (R+ )

(5 >mya,Bf=0,.,nmwithn<a+pf < 2n)
and if k&, (x,y): 0 for x>y, and the integral
operator with kernels

(14 %)k (x,7)

(5 >mya,f=0,.,nmwithn<a+ < 2n)
are bounded in L, (R+) ,then A is not an

eigenvalue of the operator H .
Proof. The operator B can be represented of

— *a B
type B= Y D™“B,D’,
n<a+p<2n

and the symbol of the operator A is
(€)= T1(E-¢)a, )
j-1
We estimate the expressions of the form

D*;/ ]f[D*me (D* _ ;/- )*mjD*a (qaﬂ (x)+Kaﬂ )Vﬁ —
j=1

D [0 £) ™ gy ()+ Koy .

J=1
where n<a+ f<2n,y=0,..,n vy € Lz(R+)

and this can be represented like a
combination of the form

(D* - :“I)_l(qaﬂ (x)+ K, )Vﬂ
(l =lL..mn<a+ < Zn).

linear

3 Applications
3.1. Inaspace L, (R+ ) (l < p < o) consider the

integro-differential operator

(o) =L ()% g, o)+

+ [k lulydy (0<x <omsuew) (R, )

+

where ¢, ( Jj= 0,1) are the measurable functions

on the positive semi-axis R, and tend to zero when
x tend to infinite, and the integral operator K
with kernel k(x, y) is supposed bounded in
L, (R +). The definition domain D(H ) of the

operator /H is considered the set of all u
derivatives functions on positive semi-axis with
derivative u' absolutely continuous on every
bounded interval of the positive semi-axis and there
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is the derivative of the two order u'' there is on
almost all semi-axis R,,u''e L, (R+) (in the sense

of distributions) and %(0)= 0.

In concordance with the theorem 1, we obtain the
following result.

Corollary. Let be

(1+x)g;(x)e L.(R.)(j=0.])
and let be that the kernel k(x, y) of the integral
operator K 1is such that k(x, y)= 0 for x>y

(close on all semi-axis R,) and the integral

operator with kernel (l + x)5 k(x, y) is bounded on
the space L, (R+ )

If 6>1, then the operator H has not
eigenvalues on the positive semi-axis, and if & > 2
then the point A =0 also is not an eigenvalue of
the operator H .

We mention that the operator H considered in
the example 3.1 with

¢,(x)=0 and k(x,y)=r(x) r(y)
where r(x)=a-x-e™ (@,ac R >0), it is
studied in the paper [15] in connection with the
problems about the diffusion theory of neutrons in
protons.
3.2. Let consider the operator

d*u du
(H”)(x) = —EJF% (X)EJF

+1£k(x, y)% dy (0 <xX<ouUE sz (R, ))
H acts in the space L, (RJr ) In concordance

with the theorem 2 the following affirmation is
true.

Corollary. If

(1+x) q,(x) e L,.(R,) (5 >1)
k(x, y) =0 for x > y, and if the integral operator

with kernel (1 + x)‘s k(x, y) (5 > 1), is bounded on
L, (R+ ), then the point spectrum of the operator

H on the positive semi-axis (inclusive the point
A =0) is absent.

Similar results can be formulated for instance for
the integro-differential operators which can be
obtained as a result of the Schrodinger type
operators (in general nonselfadjoints, see for
instance [16]) perturbed with integral operators.
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