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Abstract: - Many applications using recurrent Artificial Neural Network (ANN) for system output prediction 

do not feedback the previous prediction error to perform the calculation of a new prediction output. The 

feedback of this prediction error is re-used in two different ways in the neural network. The prediction tests 

have been carried out on the Mackey–Glass chaotic time series, Logistic Map time series and Box–Jenkins 

furnace data. 

 

Key-Words: - Static Neural Models, Radial Basis Function, Recurrent Radial Functions Networks 

 

1   Introduction 
To consider the temporal aspect of the input data, 

ANNs require some modifications of the static 

neural models [4]. We can find two different 

approaches of time representation in neural network 

architectures: in the first case, the time is 

represented as an external mechanism [6]. In the 

second case, the neural network is able to treat the 

time dimension without any external mechanism. 

These Recurrent neural networks are fundamentally 

different from feed-forward architectures in the 

sense that they not only operate on an input space 

but also on an internal state space. 

Time series are pervasive in data acquisition, hence 

a significant amount of work has been done in the 

realm of time series analysis, modelling and 

prediction to support analysis and interpretation of 

such data [1]-[2]-[7]-[9]-[10]-[11]. The commonly 

encountered models of time series include auto-

regressive models [1]-[10], recurrent neural 

networks [1]-[2]-[5]-[9], and fuzzy rule-based 

models [2]-[7]-[11]. In such cases it is useful to 

apply non-linear prediction architectures such as 

neural networks in order to improve prediction 

performance [9]. In our previous work, we have 

introduced the Recurrent Radial Basis Functions 

networks (RRBF network) [12]. The dynamic aspect 

is obtained by the use of an additional self-

connection on the input neurons with a sigmoid 

activation function. The RRBF network can thus 

take into account a certain past of the input signal. 

To improve time series prediction, we have tested 

the influence of the prediction error and how we can 

use it in the RRBF architecture. We have tested two 

different ways to use this prediction error. One of 

these two ways gives very interesting results. 

This paper is divided into the following sections: 

sections 2 provides respectively a brief overview of 

RBF and RRBF network, section 3 describes the 

data sets, section 4 describes how the experiments 

have been conducted, section 5 shows the 

experimental results and Section 6 provides the 

conclusions and recommendations from this study. 

 

 

2   RBF Network and the Recurrent 

RBF 
The Radial Basis Function (RBF) consists of two 

layers (Fig. 1.a) with architecture similar to that of a 

two-layer MLP. The distance between an input 

vector and a prototype vector determines the 

activation of the hidden layer with the nonlinearity 

provided by the basis function. The nodes in the 

output layer usually perform an ordinary linear 

weighted sum of these activations. Mathematically, 

the network output for linear output nodes is 

expressed as follows: 

1

( )

M

k kj j j

j

y w φ
=

= −∑ x u       (1) 

where x  is the input vector with elements ix  (where 

i is the dimension of the input vector); ju  is the 

vector determining the centre of the basis function 

jφ  with elements jiu ; kjw  are the final layer weights. 
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The Gaussian basis function (.)jφ  provides the 

nonlinearity of the neural network. Training a RBF 

with linear outputs is very fast and is accomplished 

through two stages. The first stage is unsupervised 

and accomplished by obtaining cluster centres of the 

training set input vectors. A popular method is k-

means clustering. The second stage consists in 

solving a set of linear equations, the solution of 

which can be obtained by a matrix inversion 

technique such as singular value decomposition or 

by least squares. 

1φ 2φ Mφ

1x 2x dx

1y 2y ky

 
Fig. 1a Different architectures of the RRBF for time 

series prediction 

 

The Recurrent RBF neural network (Fig. 1.b) 

considers the time as an internal representation [4], 

[6].  

22w ddw

1φ 2φ Mφ

ˆ( 1)x t +

( )x t ( 1)x t −
τ

 
Fig. 2b Different architectures of the RRBF for time 

series prediction 

 

The dynamic aspect is obtained by the use of an 

additional self-connection to the input neurons with 

a sigmoid activation function. The RRBF network 

can thus take into account a certain past of the input 

signal. Every neuron of the input layer gives a 

summation at the instant t between its input ix  and 

its previous output weighted by a self-

connection iiw . The output of its activation function 

is: 

( ) ( 1) ( )i ii i ia t w t x tξ= − +
 

     (2) 

( )( ) ( )i it f a tξ =
 

where ( )ia t  and ( )i tξ represent respectively the 

neuron activation and its output at the instant t, f is 

the sigmoid activation function: 

( )
1 exp( )

1 exp( )

kx
f x

kx

− −
=

+ −
 

     (3) 

For the three benchmarks (described in next 

section), we have compared three ways to predict 

the output system ˆ( 1)x t + : 

a. For the first RRBF (Fig. 1.b) we do not use any 

prediction error (this first neural configuration is 

called RRBF1 in the paper).  

b. For the second way (RRBF2, Fig. 1.c) we have 

calculated the prediction error ( )tε  between the 

output system ( )x t  and the final predicted 

output ˆ( )x t . RRBF2 output is then described by these 

equations (4): 

( )
1

ˆ '( 1) ( )

M

kj j j

j

x t w φ
=

+ = −∑ x u  

     (4) ˆ ˆ( 1) '( 1) ( )x t x t tε+ = + +  

ˆ( ) ( ) ( )t x t x tε = −  

22w ddw

1φ 2φ Mφ

ˆ( 1)x t +

( )x t ( 1)x t −
τ

System

ˆ( )x t

( )x t

+

−
( )tε

τ

RRBF 2

ˆ '( 1)x t +

 
Fig. 3c Different architectures of the RRBF for time 

series prediction 

 

c. For the third way (RRBF3, Fig. 1.d) one have 

calculated the prediction error ( )tη  between the 

output system ( )x t  and the first stage predicted 

output ˆ '( )x t . The final predicted output ˆ( )x t  of the 

RRBF3 is then described by these equations (5): 

( )
1

ˆ '( 1) ( )

M

kj j j

j

x t w φ
=

+ = −∑ x u

 
     (5) 

ˆ( ) ( ) '( )t x t x tη = −
 

ˆ ˆ( 1) '( 1) ( )x t x t tη+ = + +
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22w ddw

1φ 2φ Mφ

ˆ( 1)x t +

( )x t ( 1)x t −
τ

ˆ '( )x t

( )x t

+

−
( )tη

τ ˆ '( 1)x t +

 
Fig. 4d Different architectures of the RRBF for time 

series prediction 

 

The main difference between the RRBF2 and the 

RRBF3 is the way to calculate the feedback error. In 

the RRBF2, the error ( )tε  is calculated between the 

output system ( )x t  and the final predicted 

output ˆ( )x t , while in the RRBF3, the error ( )tη  is 

calculated with ˆ '( )x t  (before the final predicted 

output system).   

In the output of the RRBF2, the prediction error ( )tε  

at step t is propagated at step t+1, t+2, …. The 

following equations present this relation between 

each time prediction error: 

( )

( )

ˆ ˆ( ) ( ) ( ) ( ) '( ) ( 1)

ˆ ˆ( ) '( ) ( 1) ( 1)

ˆ ˆ( ) '( ) ( 1) '( 1) ( 2) ....

t x t x t x t x t t

x t x t x t x t

x t x t x t x t t

ε ε

ε

= − = − + −

= − − − − −

= − − − + − + − =

      

      

       (6) 

While in the RRBF3, the prediction error ( )tη  

between the output system and the first stage 

predicted output ˆ '( )x t  is only used to calculate the 

finale prediction ˆ( 1)x t + , and there is any relation 

between ( )tη  and ˆ( 2)x t + ˆ( 3)x t + , … 

 

 

3   Data sets 
The first time series is the Logistic Map. It is 

defined by the expression ( 1) 4 ( )(1 ( ))x t x t x t+ = − . 

This series is chaotic in the interval of [0, 1], 

with (0) 0.2x = . The goal of this application is to 

predict the target value of ( 1)x t + . The goal of the 

second time series (the Mackey–Glass differential 

equation [8]) is to predict the value of time series at 

some point in the future ( )x t P+  by using past 

values. For the purpose of this work, a value 

of 1P = , has been used. The third benchmark is 

Box–Jenkins [3] furnace data. It consists of 296 data 

points {y(t), u(t)}, from t=1 to 296 where y(t) is the 

output CO2 concentration and u(t) is the input gas 

flow rate. Here we are trying to predict y(t) based 

on: {y(t-1), u(t-1)}. Consequently, the effective 

number of data points is reduced to 290 providing 

145 for training and 145 for testing. 

 

 

4   Comparison tests 
In all cases, the error measure used for evaluation is 

the mean square error (MSE), since it is the most 

commonly used measure found in literature. All data 

have been normalized by range [-1, +1]. With all 

three data sets described earlier, the initial tests 

attempted to find the best RRBF model when 

evaluated with the corresponding test sets. In every 

case, RRBFs have been created with varying 

numbers of basis functions from 2 to 100 nodes and 

with varying basis width parameters. While it is 

appreciated that values used for this scaling variable 

are extreme, these values have been chosen to 

encapsulate all possibilities. This study could not be 

totally exhaustive since the basis width parameter is 

real. However, increments sufficiently small in 

width have been used to illustrate trends. For the 

three RRBFs the basis width parameter started at 

0.01 and was increased to a maximum of 1.0 in 

increments of 0.01. 

 

 

5   Results 
Results in table 1 are the best overall MSEs obtained 

for the Logistic Map test data using the three RRBFs 

previously described together with the range of 

hidden nodes and basis widths discussed in the 

previous section. For this test, the RRBF1 gives ‘the 

best’ result with 100 nodes.  
 Neural Network σ  No. nodes MSE test set 

RRBF 1 0.95 100 1.2234381e-013 

RRBF 2 0.96 100 3.5824799e-013 

RRBF 3 0.99 100 2.0830382e-013 

  
Table 1 Logistic map results 

 

Results in table 2 show the best overall MSEs 

obtained for Box–Jenkins for various RRBF models 

produced. The RRBF3 gives the best prediction 

results. Fig. 5 gives some prediction results of Box–

Jenkins benchmark for the three RRBFs network. In 

this figure we can see that RRBF2 is very unstable. 

The prediction given by RRBF3 is very close to the 

output system.  
 Neural Network σ  No. nodes MSE test set 

RRBF 1 0.95 25 6.7648253e-003 

RRBF 2 0.56 69 2.6361584e-002 

RRBF 3 0.92 34 3.4003523e-003 

  
Table 2 Box and Jenkins results 
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Fig. 5 Box and Jenkins prediction results 
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Fig. 6 Mackey Glass prediction result 
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The results in table 3 are the best overall MSEs 

obtained for Mackey–Glass test data using the three 

RRBF previously described together with the range 

of hidden nodes and basis widths discussed in the 

previous section. The RRBF3 gives the best result 

with 61 Gaussian nodes. Fig. 6 gives some 

prediction results of Mackey–Glass for the three 

RRBFs network. 

 Neural Network σ  No. nodes MSE test set 

RRBF 1 0.38 98 3.1185013e-004 

RRBF 2 0.58 97 8.6695360e-005 

RRBF 3 0.75 61 7.3566953e-005 

  
                 Table 3 Mackey-Glass results 

 

 

6   Conclusion 
In this paper the results indicate that the use of the 

previous prediction error to calculate the future 

prediction output is very interesting. The results of 

different tests indicate that the ‘best’ way to 

feedback the prediction error is the second way 

(RRBF3, Fig. 1 a, b, c, d). Additional research 

should be made to investigate more sophisticated 

ways to use this feedback error. For example, the 

linear (or nonlinear) control approaches can be 

tested as a proportional–integral–derivative 

controller (PID controller). In this study, only the 

proportional one has been tested. Other techniques 

used for control application as fuzzy-controller or 

neuro-controller can be explored in our future 

works. 

 

 

References: 

[1] Aliev R.A., B. Fazlollahi, R.R. Aliev, B. 

Guirimov, Linguistic time series forecasting 

using fuzzy recurrent neural networks, Soft 

Computing 12(2) (2007) 183-190. 

[2] Barbounis T.G., J.B. Theocharis, A locally 

recurrent fuzzy neural network with application 

to wind speed prediction using spatial 

correlation, Neurocomputing (2006), 

doi:10.1016/j.neucom.2006.01.032 

[3] Box G.E.P., G.M. Jenkins, Time Series 

Analysis Forecasting and Control, rev. ed., 

Holden-Day, San Francisco, 1976. 

[4] Chappelier J.C., Grumbach A., « A Kohonen 

Map for Temporal Sequences », Proceeding of 

neural Networks and Their Application, 

NEURAP'96, IUSPIM, Marseille, mars 1996, p. 

104-110. 

 

[5] Dai Q., S. Chen, Chained DLS-ICBP neural 

networks with multiple steps time series 

prediction, Neural Processing Letters 21 (2005) 

95-107. 

[6] Elman J.L., « Finding Structure in Time », 

Cognitive Science, vol. 14, juin 1990, p. 179-

211. 

[7] Jacquin A.P., A.Y. Shamseldin, Development 

of rainfall-runoff models using Takagi-Sugeno 

fuzzy inference systems, Journal of Hydrology 

329 (2006) 154-173. 

[8] Mackey M.C., L. Glass, Oscillation and chaos 

in physiological control systems, Science 197 

(1977) 287–289. 

[9] Mandic D.P., J.A. Chambers, Recurrent Neural 

Networks for Prediction: Learning Algorithms 

and Architectures and Stability (John Wiley & 

Sons, Chichester, 2001). 

[10] Neurmaier A., T. Schneider, Estimation of 

parameters and eigenmodes of multivariate 

autoregressive models, ACM Transactions on 

Mathematical Software 27(1) (2001) 27-57. 

[11] Vernieuwe H., N.E.C. Verhoest, B. De Baets, 

R. Hoeben, F.P. De Troch, Cluster-based fuzzy 

models for groundwater flow in the unsaturated 

zone, Advances in Water Resources 30 (2007) 

701-714. 

[12] Zemouri R., D. Racoceanu, N. Zerhouni, 

Recurrent Radial Basis Function network for 

Time-Series Prediction, Engineering 

Applications of Artificial Intelligence, The 

International Journal of Intelligent Real-Time 

Automation, journal IFAC - the International 

Federation of Automatic Control, Ed. Elsevier 

Science, vol. 16, Issue 5-6, 2003, pp.453-463. 

 

Proceedings of the 4th EUROPEAN COMPUTING CONFERENCE

ISSN: 1790-5117 62 ISBN: 978-960-474-178-6




