
Time Complexity Analysis of the Genetic Algorithm Clustering Method

Z. M. NOPIAH, M. I. KHAIRIR, S. ABDULLAH, M. N. BAHARIN, and A. ARIFIN

Department of Mechanical and Materials Engineering

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor

MALAYSIA

zmn@eng.ukm.my

Abstract: - This paper presents the time complexity analysis of the genetic algorithm clustering method. The tested

feature in the clustering algorithm is the population limit function. For the purpose of the study, segmental kurtosis

analysis was done on several segmented fatigue time series data, which are then represented in two-dimensional

heteroscaled datasets. These datasets are then clustered using the genetic algorithm clustering method and at the

runtime of the algorithm is measured against the number of iterations. Polynomial fitting is used on the runtime data to

determine the time complexity of the algorithm. The results of the analysis will be used to determine the significance

of including the population limit function in the algorithm for optimal performance.

Key-Words: - Genetic algorithms, fatigue damage, clustering, time complexity, big-O notation, algorithm efficiency.

1 Introduction
In the field of evolutionary computing, the evolutionary

principles of survival of the fittest, natural selection and

genetic inheritance are abstracted and modeled into

algorithms that search for optimal solutions to a

problem. The most popular technique in evolutionary

computing research has been the genetic algorithm [1-3].

Genetic algorithms (GA) perform meta-heuristic search

in complex, large, and multimodal landscapes, and

provide near-optimal solutions for objective or fitness

functions of optimization problems[4, 5]. GAs and GA-

based techniques have been used in fields such as

industrial engineering [1] and in optimizing the

performance of neural networks, fuzzy systems,

production systems, wireless systems and other program

structures [2].

 A GA-based clustering method was developed for

applications in cluster analysis of heteroscaled datasets.

Since this method is to be applied numerous times

across multiple datasets in numerous iterations, it is

necessary that the method performs efficiently in real

time in order to consistently produce efficient results

without using up too much computing and time

resource. This study aims to analyze the time complexity

of the GA clustering algorithm by comparing the real

time performance of the method with and without a

population limit function. The results will be used to

determine whether or not the population limit function

must be included in the algorithm for optimal

performance.

2 Literature Review

2.1 Genetic Algorithms
Most GA methods have at least the following in

common: populations of chromosomes, selection

according to fitness, crossover to produce new offspring,

and random mutation of new offspring [2]. Solutions in

GA are encoded as chromosomes which are strings of

numbers or characters that represent the values or

parameters of the solution to the problem. The

chromosomes are commonly encoded as strings of

binary, real-valued, integer, octal, or hexadecimal

numbers [1]. Each of these types of numbers has their

own advantages and disadvantages when used for

certain data types or for searching for solutions to

certain problems. In this study, real-valued numbers

string was selected as the chromosome encoding for the

population of potential solutions.

The set of potential solutions to the problem is

represented as a population of chromosomes. Initially, a

random population is created, which represents different

points in the search space of potential solutions [4, 6, 7].

A fitness function assigns a score (fitness) to each

chromosome in the current population, which will

determine its survival into the next generation. The

fitness of a chromosome depends on how well that

chromosome can solve the problem at hand [6].

The selection of chromosomes is done on the current

population based on the fitness values – chromosomes

with higher fitness are more likely to be selected than

those with low fitness values. This is mostly done using

probabilistic methods; in evolutionary computing

researches, the common methods of selection are the

roulette wheel, tournament, and rank selection [1, 2, 4].

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 171 ISBN: 978-960-474-157-1

Selected chromosomes are then included in the next

generation of population.

Next the population undergoes the crossover (also

called recombination) genetic operator, which selects

chromosomes from the population to produce offsprings.

Using random selection or any of the previously

mentioned selection methods, two parent chromosomes

are chosen for crossover operation. Using single-point,

two-point, or N-point crossover, parts of the gene string

in each parent chromosome are swapped to produce two

new offspring, which are included in the next generation

of population. The process is repeated a number of

times, usually according to some user-specified

proportional value of the current population.

Random chromosomes from the surviving population

are selected for mutation, where some random part of

the chromosome’s gene is arbitrarily changed. This

genetic operation may or may not yield superior

offspring, but it ensures that solutions are not trapped in

local extrema. Mutation is performed according to some

degree of probability, usually very small, so that the GA

does not approximate a random search [1].

The process of selection, crossover, and mutation are

then repeated on the surviving population, until some

terminating criteria is reached, i.e. a maximum number

of generations, a minimum change in population fitness,

etc. The resulting final population is then considered to

be the set of solutions that best solves the problem at

hand. The best individual chromosome (the chromosome

with the highest fitness value) in the final population is

usually determined to be the optimal solution to the

problem.

2.2 Time complexity analysis
Time complexity analysis is a part of computational

complexity theory that is used to describe an algorithm’s

use of computational resources; in this case, the worst

case running time expressed as a function of its input

using big Omicron (big-O) notation [8, 9]. The big-O

notation is used to express the upper bound of the

growth rate of a function and is mostly used to describe

asymptotic behavior [8].

The big-O notation is described using set notation as

follows:

O(g(n)) = {f | ∃c>0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f ≤ cg(n)} (1)

In other words, f ∈ (g(n)) if and only if there exist

positive constants c and n0 such that for all n ≥ n0, the

inequality 0 ≤ f ≤ cg(n) is satisfied. We say that f is big

O of g(n) , or that g(n) is an asymptotic upper bound for

f [9].

In terms of time complexity analysis, we use the

term T(n) ∈ O(g(n)) and say that the algorithm has order

of g(n) complexity. This means that the time taken to

compute a problem of size n is in the set of functions

described by O(g(n)).

Time complexity analysis can be used to predict the

growth behavior of an algorithm and is useful for

analyzing and optimizing the real time efficiency of the

algorithm [9].

3 Methodology
In this study, several segmented fatigue time series data

(see Table 1) were used to test the GA clustering

algorithm for real time efficiency. Segmental kurtosis

analysis was done on each segmented fatigue data, and

the results are represented in two-dimensional

heteroscaled datasets.

Table 1: Description of datasets used in the study

Dataset Description

SAETRN SAE transmission test fatigue data

DK1 Pavé road loading on lower arm

suspension

DDK2 Highway road loading on lower arm

suspension

The GA clustering algorithm is then used on these

datasets to cluster fatigue damage segments based on

their kurtosis and fatigue damage values.

Simultaneously, the number of population of solutions

and the running time are recorded while the algorithm is

running. For the purpose of this study, the algorithm is

set to run until 1000 generations have been produced,

which means that the algorithm has iterated 1000 times.

The recorded runtime and population growth are then

plotted and polynomial fitting is used to estimate the

growth function of the running time.

 The processes above are then repeated on the

heteroscaled datasets after a population limit function is

included in the selection process of the GA clustering

algorithm. The theoretical value of the population limit

of the GA clustering algorithm is evaluated as

Pmax = CPP0 (1 + rc) (1 + rm) (2)

Equation 2 is derived from how the population size

grows with every iteration of the GA clustering

algorithm. Initially, the population size is a positive

integer P0. For a worst case scenario, we assume that the

whole population was selected in the selection process.

This means that P0 number of solutions is considered for

the crossover operation.

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 172 ISBN: 978-960-474-157-1

A portion of the population is selected for the

crossover process, which produces additional solutions

to be added to the population. Let rc be the crossover

rate where 0 ≤ rc ≤ 1; the number of additional solutions

would be P0rc , making the total number of solutions in

the population so far to be P0 + P0rc .

Next, a portion of this population is selected for the

mutation process. Let rm be the value of the mutation

rate, where 0 ≤ rm ≤ 1; the number of solutions added to

the population is (P0 + P0rc) rm; therefore the total

number of solutions in the population after the mutation

process is P0 + P0rc + (P0 + P0rc) rm .

The expression above is then simplified using

factorization as follows:

P0 + P0rc + (P0 + P0rc) rm

= P0 (1 + rc + (1 + rc) rm)

= P0 (1 + rc) (1 + rm)

In order to enable the user to have some amount of

control over the maximum population, the expression

above is multiplied with a user-defined coefficient of

population CP, which is a positive real number. This

results in Equation 2 as expressed above. For the

purpose of this study, the values P0, CP, rc and rm are set

to be 20, 2, 0.4 and 0.1 respectively.

As with the previous set of data, the population size

and running time of the algorithm is recorded

simultaneously as the population limited GA clustering

algorithm is run on the datasets. The recorded runtime

and population growth are then plotted and polynomial

fitting is used to estimate the growth function of the

running time.

The time complexity of the algorithm is then

determined from the fitted growth function. The results

are then compared for the GA clustered and the

population limited GA clustered datasets to determine

the significance of including the population limit

function in the GA clustering algorithm.

4 Results and Discussion
For the purpose of understanding the population growth

and the time complexity of the GA clustering algorithm,

plots of population growth and polynomial fitted

runtime are observed and compared.

Figure 1 shows how the population size grows with

the number of generations or iterations of the GA

clustering algorithm. We can see that it is apparent that

for all datasets, although the population sizes increase

and decrease erratically with the number of iterations,

overall they generally exhibit a positive growth

behavior. This means that eventually, after some large

enough number of generations, the population size

continually increases as the number of generation

increases. The increase of the size of the population will

in turn increase the problem size for the GA clustering

algorithm, which will affect the time complexity of the

algorithm. Generally, a larger problem size means larger

computing time or resource is needed for the algorithm

to complete its task.

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(a)

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(b)

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(c)

Fig. 1: Population size versus number of generations for

(a) SAETRN, (b) DK1, and (c) DDK2

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 173 ISBN: 978-960-474-157-1

Figure 2 shows the actual running time (in seconds)

versus the number of iterations and the fitted model used

to predict the asymptotic behavior of the runtime for

each dataset.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

No. of Iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial fitting of Runtime vs. No. of Iterations

runtime

Fit

(a)

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

No. of iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial Fitting of Runtime vs. No. of Iterations

runtime

Fit

(b)

0 100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

7000

8000

No. of iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial Fitting of Runtime vs. No. of Iterations

runtime

Fit

(c)

Fig. 2: Polynomial fitting of runtime versus number of

iterations for (a) SAETRN, (b) DK1, and (c) DDK2

We can see that the algorithm runs in polynomial

time of some degree, and the fitted models estimate the

order of polynomial time the algorithm runs in for each

dataset. Table 2 shows the fitted models for the runtime

for each dataset and the estimated orders of polynomial

time. For datasets SAETRN and DK1, the time

complexity is O(n
3
) and for DDK2 the time complexity

is O(n
5
). This means that for two datasets, the algorithm

runs in cubic time and for the other dataset, the

algorithm runs in polynomial time of degree 5. This tells

us that since the population size grows unboundedly, the

problem size also grows unboundedly and therefore a

much larger computing resource is needed for each next

iteration of the GA clustering algorithm. Consequently,

the algorithm’s running time also increases in the order

of polynomial degree 3 or 5 depending on the data.

These polynomial growth rates are undesirable for

optimum algorithm efficiency, since larger problem

sizes would require significantly longer runtime periods

and much larger computing resources.

Table 2: Fitted models and complexity

Dataset Fitted model Complexity

SAETRN f(x) = p1x
3
 + p2x

2
 + p3x +

p4
O(n

3
)

DK1 f(x) = p1x
3
 + p2x

2
 + p3x +

p4
O(n

3
)

DDK2 f(x) = p1x
5
 + p2x

4
 + p3x

3
 +

p4x
2
 + p5x + p6

O(n
5
)

Figure 3 shows the population growth when the GA

clustering algorithm is modified to include the

population limit function in its selection process. We can

see that although the population sizes generally increase

with the number of generations, the numbers are capped

at a particular value Pmax which can be obtained using

Equation 2.

Figure 4 shows the actual running time in seconds

versus the number of iterations and the fitted model used

to predict the asymptotic behavior of the runtime for

each dataset when the GA clustering algorithm is run

with the population limit function included in its

selection process. Based on the fitted models, it is clear

that for all datasets, the time complexity of the algorithm

is O(n), which means that the algorithm runs in linear

time. This tells us that the running time increases

linearly with the number of iterations, and that each

iteration requires some constant time to perform. This

case is much more desirable over the case where the

algorithm runs in polynomial time of degrees larger than

1. Since the population size is capped at some finite

value Pmax, the problem size ceases to grow unboundedly

and consequently the computing resource needed for

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 174 ISBN: 978-960-474-157-1

each iteration of the GA clustering algorithm is

eventually capped, making the computing time for each

iteration constant.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(a)

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(b)

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

(c)

Fig. 3: Population size versus number of generations for

(a) SAETRN, (b) DK1, and (c) DDK2 when population

limit function is applied

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

No. of iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial Fitting of Runtime vs. No. of Iterations

runtime

Fit

(a)

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

No. of iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial Fitting of Runtime vs. No. of Iterations

runtime

Fit

(b)

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

No. of iterations

R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Polynomial Fitting of Runtime vs. No. of Iterations

runtime

Fit

(c)

Fig. 4: Polynomial fitting of runtime versus number of

iterations for (a) SAETRN, (b) DK1, and (c) DDK2

when population limit function is applied

The results of the time complexity analysis shows

that the population limit function in the selection process

of the GA clustering algorithm has managed to reduce

the time complexity of the algorithm from higher degree

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 175 ISBN: 978-960-474-157-1

polynomial time to linear time. This means that by

including the population limit function in the GA

clustering algorithm, the running time of the algorithm

can be significantly reduced and the user will have some

degree of control over the complexity of the algorithm in

both computing time and resource.

5 Conclusion
Performing time complexity analysis on the GA

clustering algorithm has helped us to determine how the

algorithm performs in real time as the problem size

increases. It has been found that including the

population limit function in the selection process of the

GA clustering algorithm will reduce the time complexity

of the algorithm to linear time. This significant reduction

in time complexity will be very useful in future

developments of the GA clustering algorithm,

particularly for clustering larger datasets in higher

dimensions.

6 Acknowledgements
The authors would like to express their gratitude to

Universiti Kebangsaan Malaysia and Ministry of Higher

Education, through the fund of UKM-GUP-BTT-07-25-

152, for supporting these research activities.

References:

[1] S.N. Sivanandam, and S.N. Deepa, Introduction to

Genetic Algorithms, New York: Springer-Verlag

Berlin Heidelberg, 2008.

[2] M. Gen and R. Cheng, Genetic Algorithms and

Engineering Optimization, New York: Wiley-

Interscience, 2000.

[3] Z. Michalewicz, Genetic Algorithms + Data

Structures = Evolution Programs, 3rd rev. ext. ed.

New York: Springer-Verlag, 1996.

[4] M. Mitchell, An Introduction to Genetic

Algorithms, 5th print, Cambridge, MA: The MIT

Press, 1999.

[5] U. Maulik and S. Bandyopadhyay, Genetic

algorithm-based clustering technique. Pattern

Recognition, Vol. 33, 2000, pp. 1455-1465.

[6] N.H. Park, C.W. Ahn and R.S. Ramakrishna,

Adaptive clustering technique using genetic

algorithms. IEICE Transactions on Information

and Systems, Vol. E88-D (12), 2005, pp. 2880-

2882.

[7] A. Banerjee and S.J. Louis, A recursive clustering

methodology using a genetic algorithm. IEEE

Congress on Evolutionary Computation (CEC),

2007, pp. 2165-2172.

[8] Knuth, D. E., Big Omicron and big Omega and big

Theta. SIGACT News Vol. 8, No. 2 (Apr. 1976),

1976, pp. 18-24.

[9] Black, P. E., big-O notation, Dictionary of

Algorithms and Data Structures [online], U.S.

National Institute of Standards and Technology,

2008 (accessed 26 November 2009). Available

from: http://www.itl.nist.gov/div897/sqg/

dads/HTML/bigOnotation.html

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 176 ISBN: 978-960-474-157-1

