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Abstract: - This paper presents the time complexity analysis of the genetic algorithm clustering method. The tested 

feature in the clustering algorithm is the population limit function. For the purpose of the study, segmental kurtosis 

analysis was done on several segmented fatigue time series data, which are then represented in two-dimensional 

heteroscaled datasets. These datasets are then clustered using the genetic algorithm clustering method and at the 

runtime of the algorithm is measured against the number of iterations. Polynomial fitting is used on the runtime data to 

determine the time complexity of the algorithm. The results of the analysis will be used to determine the significance 

of including the population limit function in the algorithm for optimal performance. 
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1   Introduction 
In the field of evolutionary computing, the evolutionary 

principles of survival of the fittest, natural selection and 

genetic inheritance are abstracted and modeled into 

algorithms that search for optimal solutions to a 

problem. The most popular technique in evolutionary 

computing research has been the genetic algorithm [1-3]. 

Genetic algorithms (GA) perform meta-heuristic search 

in complex, large, and multimodal landscapes, and 

provide near-optimal solutions for objective or fitness 

functions of optimization problems[4, 5]. GAs and GA-

based techniques have been used in fields such as 

industrial engineering [1] and in optimizing the 

performance of neural networks, fuzzy systems, 

production systems, wireless systems and other program 

structures [2]. 

 A GA-based clustering method was developed for 

applications in cluster analysis of heteroscaled datasets. 

Since this method is to be applied numerous times 

across multiple datasets in numerous iterations, it is 

necessary that the method performs efficiently in real 

time in order to consistently produce efficient results 

without using up too much computing and time 

resource. This study aims to analyze the time complexity 

of the GA clustering algorithm by comparing the real 

time performance of the method with and without a 

population limit function. The results will be used to 

determine whether or not the population limit function 

must be included in the algorithm for optimal 

performance. 

 

 

2   Literature Review 

 

2.1 Genetic Algorithms 
Most GA methods have at least the following in 

common: populations of chromosomes, selection 

according to fitness, crossover to produce new offspring, 

and random mutation of new offspring [2]. Solutions in 

GA are encoded as chromosomes which are strings of 

numbers or characters that represent the values or 

parameters of the solution to the problem.  The 

chromosomes are commonly encoded as strings of 

binary, real-valued, integer, octal, or hexadecimal 

numbers [1]. Each of these types of numbers has their 

own advantages and disadvantages when used for 

certain data types or for searching for solutions to 

certain problems. In this study, real-valued numbers 

string was selected as the chromosome encoding for the 

population of potential solutions. 

The set of potential solutions to the problem is 

represented as a population of chromosomes. Initially, a 

random population is created, which represents different 

points in the search space of potential solutions [4, 6, 7]. 

A fitness function assigns a score (fitness) to each 

chromosome in the current population, which will 

determine its survival into the next generation. The 

fitness of a chromosome depends on how well that 

chromosome can solve the problem at hand [6].  

The selection of chromosomes is done on the current 

population based on the fitness values – chromosomes 

with higher fitness are more likely to be selected than 

those with low fitness values. This is mostly done using 

probabilistic methods; in evolutionary computing 

researches, the common methods of selection are the 

roulette wheel, tournament, and rank selection [1, 2, 4]. 
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Selected chromosomes are then included in the next 

generation of population. 

Next the population undergoes the crossover (also 

called recombination) genetic operator, which selects 

chromosomes from the population to produce offsprings. 

Using random selection or any of the previously 

mentioned selection methods, two parent chromosomes 

are chosen for crossover operation. Using single-point, 

two-point, or N-point crossover, parts of the gene string 

in each parent chromosome are swapped to produce two 

new offspring, which are included in the next generation 

of population. The process is repeated a number of 

times, usually according to some user-specified 

proportional value of the current population. 

Random chromosomes from the surviving population 

are selected for mutation, where some random part of 

the chromosome’s gene is arbitrarily changed. This 

genetic operation may or may not yield superior 

offspring, but it ensures that solutions are not trapped in 

local extrema. Mutation is performed according to some 

degree of probability, usually very small, so that the GA 

does not approximate a random search [1]. 

The process of selection, crossover, and mutation are 

then repeated on the surviving population, until some 

terminating criteria is reached, i.e. a maximum number 

of generations, a minimum change in population fitness, 

etc. The resulting final population is then considered to 

be the set of solutions that best solves the problem at 

hand. The best individual chromosome (the chromosome 

with the highest fitness value) in the final population is 

usually determined to be the optimal solution to the 

problem. 

 

 

2.2 Time complexity analysis 
Time complexity analysis is a part of computational 

complexity theory that is used to describe an algorithm’s 

use of computational resources; in this case, the worst 

case running time expressed as a function of its input 

using big Omicron (big-O) notation [8, 9]. The big-O 

notation is used to express the upper bound of the 

growth rate of a function and is mostly used to describe 

asymptotic behavior [8]. 

The big-O notation is described using set notation as 

follows: 

 

O(g(n)) = {f | ∃c>0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f ≤ cg(n)} (1) 
 

In other words, f ∈ (g(n)) if and only if there exist 

positive constants c and n0 such that for all n ≥ n0, the 

inequality 0 ≤ f ≤ cg(n) is satisfied. We say that f is big 

O of g(n) , or that g(n) is an asymptotic upper bound for 

f [9]. 

In terms of time complexity analysis, we use the 

term T(n) ∈ O(g(n)) and say that the algorithm has order 

of g(n) complexity. This means that the time taken to 

compute a problem of size n is in the set of functions 

described by O(g(n)). 

Time complexity analysis can be used to predict the 

growth behavior of an algorithm and is useful for 

analyzing and optimizing the real time efficiency of the 

algorithm [9]. 
 

3   Methodology 
In this study, several segmented fatigue time series data 

(see Table 1) were used to test the GA clustering 

algorithm for real time efficiency. Segmental kurtosis 

analysis was done on each segmented fatigue data, and 

the results are represented in two-dimensional 

heteroscaled datasets.  

 

Table 1: Description of datasets used in the study 

 

Dataset Description 

SAETRN SAE transmission test fatigue data 

 

DK1 Pavé road loading on lower arm 

suspension 

DDK2 Highway road loading on lower arm 

suspension 

 

The GA clustering algorithm is then used on these 

datasets to cluster fatigue damage segments based on 

their kurtosis and fatigue damage values. 

Simultaneously, the number of population of solutions 

and the running time are recorded while the algorithm is 

running. For the purpose of this study, the algorithm is 

set to run until 1000 generations have been produced, 

which means that the algorithm has iterated 1000 times. 

The recorded runtime and population growth are then 

plotted and polynomial fitting is used to estimate the 

growth function of the running time. 

     The processes above are then repeated on the 

heteroscaled datasets after a population limit function is 

included in the selection process of the GA clustering 

algorithm. The theoretical value of the population limit 

of the GA clustering algorithm is evaluated as 

 

Pmax = CPP0 (1 + rc) (1 + rm) (2) 

 

Equation 2 is derived from how the population size 

grows with every iteration of the GA clustering 

algorithm. Initially, the population size is a positive 

integer P0. For a worst case scenario, we assume that the 

whole population was selected in the selection process. 

This means that P0 number of solutions is considered for 

the crossover operation. 
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A portion of the population is selected for the 

crossover process, which produces additional solutions 

to be added to the population. Let rc be the crossover 

rate where 0 ≤ rc ≤ 1; the number of additional solutions 

would be P0rc , making the total number of solutions in 

the population so far to be P0 + P0rc . 

Next, a portion of this population is selected for the 

mutation process. Let rm be the value of the mutation 

rate, where 0 ≤ rm ≤ 1; the number of solutions added to 

the population is (P0 + P0rc) rm; therefore the total 

number of solutions in the population after the mutation 

process is P0 + P0rc + (P0 + P0rc) rm . 

The expression above is then simplified using 

factorization as follows: 

 

P0 + P0rc + (P0 + P0rc) rm 

= P0 (1 + rc + (1 + rc) rm) 

= P0 (1 + rc) (1 + rm) 

 

In order to enable the user to have some amount of 

control over the maximum population, the expression 

above is multiplied with a user-defined coefficient of 

population CP, which is a positive real number. This 

results in Equation 2 as expressed above. For the 

purpose of this study, the values P0, CP, rc and rm are set 

to be 20, 2, 0.4 and 0.1 respectively. 

As with the previous set of data, the population size 

and running time of the algorithm is recorded 

simultaneously as the population limited GA clustering 

algorithm is run on the datasets. The recorded runtime 

and population growth are then plotted and polynomial 

fitting is used to estimate the growth function of the 

running time. 

The time complexity of the algorithm is then 

determined from the fitted growth function. The results 

are then compared for the GA clustered and the 

population limited GA clustered datasets to determine 

the significance of including the population limit 

function in the GA clustering algorithm. 

 

4   Results and Discussion 
For the purpose of understanding the population growth 

and the time complexity of the GA clustering algorithm, 

plots of population growth and polynomial fitted 

runtime are observed and compared. 

Figure 1 shows how the population size grows with 

the number of generations or iterations of the GA 

clustering algorithm. We can see that it is apparent that 

for all datasets, although the population sizes increase 

and decrease erratically with the number of iterations, 

overall they generally exhibit a positive growth 

behavior. This means that eventually, after some large 

enough number of generations, the population size 

continually increases as the number of generation 

increases. The increase of the size of the population will 

in turn increase the problem size for the GA clustering 

algorithm, which will affect the time complexity of the 

algorithm. Generally, a larger problem size means larger 

computing time or resource is needed for the algorithm 

to complete its task.  

 

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

 
(a) 

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

 
(b) 

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

No. of generations

P
o
p
u
la
ti
o
n
 s
iz
e

GA Clustering --- Population Size vs. No. of Generations

 
(c) 

 
Fig. 1: Population size versus number of generations for 

(a) SAETRN, (b) DK1, and (c) DDK2 
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Figure 2 shows the actual running time (in seconds) 

versus the number of iterations and the fitted model used 

to predict the asymptotic behavior of the runtime for 

each dataset. 
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Fig. 2: Polynomial fitting of runtime versus number of 

iterations  for (a) SAETRN, (b) DK1, and (c) DDK2 

 

We can see that the algorithm runs in polynomial 

time of some degree, and the fitted models estimate the 

order of polynomial time the algorithm runs in for each 

dataset. Table 2 shows the fitted models for the runtime 

for each dataset and the estimated orders of polynomial 

time. For datasets SAETRN and DK1, the time 

complexity is O(n
3
) and for DDK2 the time complexity 

is O(n
5
). This means that for two datasets, the algorithm 

runs in cubic time and for the other dataset, the 

algorithm runs in polynomial time of degree 5. This tells 

us that since the population size grows unboundedly, the 

problem size also grows unboundedly and therefore a 

much larger computing resource is needed for each next 

iteration of the GA clustering algorithm. Consequently, 

the algorithm’s running time also increases in the order 

of polynomial degree 3 or 5 depending on the data. 

These polynomial growth rates are undesirable for 

optimum algorithm efficiency, since larger problem 

sizes would require significantly longer runtime periods 

and much larger computing resources. 

 

Table 2: Fitted models and complexity 

 

Dataset Fitted model Complexity 

SAETRN f(x) = p1x
3
 + p2x

2
 + p3x + 

p4 
O(n

3
)   

DK1 f(x) = p1x
3
 + p2x

2
 + p3x + 

p4 
O(n

3
)    

DDK2 f(x) = p1x
5
 + p2x

4
 + p3x

3
 + 

p4x
2
 + p5x + p6 

O(n
5
)

 

 

Figure 3 shows the population growth when the GA 

clustering algorithm is modified to include the 

population limit function in its selection process. We can 

see that although the population sizes generally increase 

with the number of generations, the numbers are capped 

at a particular value Pmax which can be obtained using 

Equation 2.  

Figure 4 shows the actual running time in seconds 

versus the number of iterations and the fitted model used 

to predict the asymptotic behavior of the runtime for 

each dataset when the GA clustering algorithm is run 

with the population limit function included in its 

selection process. Based on the fitted models, it is clear 

that for all datasets, the time complexity of the algorithm 

is O(n), which means that the algorithm runs in linear 

time. This tells us that the running time increases 

linearly with the number of iterations, and that each 

iteration requires some constant time to perform. This 

case is much more desirable over the case where the 

algorithm runs in polynomial time of degrees larger than 

1. Since the population size is capped at some finite 

value Pmax, the problem size ceases to grow unboundedly 

and consequently the computing resource needed for 
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each iteration of the GA clustering algorithm is 

eventually capped, making the computing time for each 

iteration constant.  
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Fig. 3: Population size versus number of generations for 

(a) SAETRN, (b) DK1, and (c) DDK2 when population 

limit function is applied 
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Fig. 4: Polynomial fitting of runtime versus number of 

iterations  for (a) SAETRN, (b) DK1, and (c) DDK2 

when population limit function is applied 

 
The results of the time complexity analysis shows 

that the population limit function in the selection process 

of the GA clustering algorithm has managed to reduce 

the time complexity of the algorithm from higher degree 

RECENT ADVANCES in SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 175 ISBN: 978-960-474-157-1



polynomial time to linear time. This means that by 

including the population limit function in the GA 

clustering algorithm, the running time of the algorithm 

can be significantly reduced and the user will have some 

degree of control over the complexity of the algorithm in 

both computing time and resource. 

 

5   Conclusion 
Performing time complexity analysis on the GA 

clustering algorithm has helped us to determine how the 

algorithm performs in real time as the problem size 

increases. It has been found that including the 

population limit function in the selection process of the 

GA clustering algorithm will reduce the time complexity 

of the algorithm to linear time. This significant reduction 

in time complexity will be very useful in future 

developments of the GA clustering algorithm, 

particularly for clustering larger datasets in higher 

dimensions. 
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