A thermal computation program of process steam boilers obtained with reusable equipments and plants

AUREL GABA, ION-FLORIN POPA, ALEXIS-DANIEL NEGREA Department of Material Sciences, Mechatronics and Robotics Valahia University from Targoviste Bulevardul Unirii, no.12 ROMANIA

aurel_gaba@yahoo.com, p_florin_ro@yahoo.com, alexis_negrea@yahoo.com

Abstract: - This paper presents a process steam boiler dimensioned by means of two computer programs. The first computer program entitled "thermal computation of the chamber furnace of boiler" provides the utilization of the Boltzmann criterion. This computer program consists in determination of the radiant heat exchange surface. By means of this computer program, there were also made simulations in the imposed conditions of utilization of reusable furnace and different fuel types (natural gas, heavy fuel or refinery gas). The second computer program entitled "thermal computation of the heat exchangers" allows dimensioning of the different convective heated surfaces of boiler which are placed after the chamber furnace (convective vaporizer, steam superheater, eonomizer and water preheater). By means of this computer program, there were also made simulations in the imposed conditions of utilization of reusable convective heat exchangers. Comparing the results of functional parameters determined by measurements with computation results, satisfactory convergence is found.

Key-Words: - boiler, chamber furnace, computer program, heat exchanger.

1 Introduction

In the '90s Romania, the movement to a market economy meant for the petrochemical plants the scrapping of some technological lines. The steam supply of these plants was done from the thermal plants of high capacity. At the same time with the reduction of steam requirements of the petrochemical plants, the thermal plants could no longer mantain the steam deliveries at the needed paramenters and for the established price. As a result, the thermal plants had no other solution but to import steam boilers that had the disadvantage of high costs. This aspect, along with the possibility of using some deallocated technological lines lead to the idea of building some technological steam boilers. The new technological steam boilers have been achieved for smaller costs - 35% smaller. The deallocated installments, used in achieving the new technological steam boilers were: tubular furnace, heat exchangers, pumps, combustion outdoor fans, exhausters etc.

Design of the new steam boiler necessitates the following activities:

• Establishment of the designing theme for the new process steam boiler according to technological requirements;

- Identification of deallocated equipments having the minimum resistance and which can be used within a new process steam boiler;
- Establishment of the thermodinamic diagram and conception of some solutions for connection of the different equipments in work at the process steam boiler;
- Design of the process steam boiler in which are included the reusable equipments from deallocated plants.

Design of this steam boiler implies many thermal computation variants. For these thermal computation variants, two computer programs are used. The first computer program entitled "thermal computation of the chamber furnace of boiler" provides the utilization of the Boltzmann criterion. This theory and design have been developed by professor A.M.Gurvich [1,2,3]. The second computer program entitled "thermal computation of the heat exchangers" allows dimensioning of the different convective heated surfaces of boiler which are placed after the chamber furnace of boiler (convective vaporizer, steam superheaters, eonomizers and air preheater). This is an original computer program which can be used for any heat exhanger putted after the furnace chamber of steam boiler:

- convective vaporizer;
- steam superheater;
- economizer;
- water preheater [4].

2 Thermal computation of chamber furnace of boiler

Design of the new process steam boiler implies from thermal computation point of view, the heat exchanger by radiation dimensioning according to the existent chamber furnace. This is exemplified for a steam boiler of 20t/h.

The computer program "thermal computation of the chamber furnace of boiler" computes the flame parameters depending on the used fuel type and the heat transfer according to the value of Boltzmann criterion. The listing obtained by means of the computer is presented in Table 1.

 Table 1 Thermal computation of the chamber furnace of boiler.

	Features	Symbol		Value
INO	T 1 4 1 4		U.IVI.	
	Inlet data			
1	Composition of fuel:	CO.	m^3N/m^3N	0.025
2	Carbon oxide		m^3N/m^3N	0.025
3	Hydrogen	H ₂	$m^{3}N/m^{3}N$	0.0
4	Hydrogen sulfide	H ₂ S	m^3N/m^3N	0.0
5	Methane	CH	$m^{3}N/m^{3}N$	0.94
6	Acetylene	C ₂ H ₂	m^3N/m^3N	0.0
7	Ethane	C ₂ H ₂	m^3N/m^3N	0.004
8	Propane	C ₃ H ₂	m^3N/m^3N	0.0
9	Propane	C ₃ H ₈	m ³ N/m ³ N	0.001
10	C ₄ H ₈	C ₄ H ₈	m ³ N/m ³ N	0.0
11	Butane	C ₄ H ₁₀	m ³ N/m ³ N	0.0
12	Pentane	C ₅ H ₁₂	m ³ N/m ³ N	0.0
13	Nitrogen	N ₂	m ³ N/m ³ N	0.03
14	Oxvgen	02	m^3N/m^3N	0
15	Fuel Flow	DC	m ³ N/h	1900
16	Inlet air excess	ALFI	_	1.1
10	coefficient		_	
17	Outlet air excess	ALFE	-	1.1
18	Input air temperature	TAI	°C	20
	External efficiency of	ETA		0.98
19	the firebox of steam		-	
	boiler			
20	Ambient temperature	TAM	°C	20
21	Low calorific power	PCI	kJ/m ³ N	31806
22	Caloric capacity of the	CC	kJ/(m ³ N	1.8
22	fuel	TC	°C)	20
23	Fuel temperature	IC .	°C	20
24	Dissociation loses	qd	-	0.99
25	Covered geometric	Sp	m ²	73
23	of steam boiler		111	
	Geometric surface of	Sg		88.8
26	the furnace of steam		m ²	
	boiler			
27	Pipes pitch	t	mm	200
28	Outer diameter of the	d	mm	100
	pipes			150
29	Distance from pipes to wall	e	mm	150
30	Burner height	На	m	1
31	Furnace height	Hf	m	5
22	Light side emissivity	m		0.3
52	coefficient		-	

33	Furnace pressure	р	bar	1
34	Furnace volume	Vf	m ³	52.4
	Outlet data			
35	Inlet flue gases flow rate	DGAI	m ³ N/h	21115.22
36	Outlet flue gases flow rate	DGAE	m ³ N/h	21115.22
37	Combustion air flow rate	DA	m ³ N/h	19209.52
38	Inlet air heat	QA	W	138431.69
39	Inlet heat with fuel	QC	W	16805764
40	Volumetric load	qv	W/m ³	323362.51
41	Surfacing load	qs	W/m ²	232112.27
42	Inlet exhaust gases temperature	TGI	°C	1725.74
43	Mean caloric capacity of the inlet gases	CPI	kJ/(m ³ N °C)	1.6572
44	Outlet exhaust gases temperature	TGE	°C	1014.1
45	Mean caloric capacity of the outlet gases	CPE	kJ/(m ³ N °C)	1.5487
46	Heat included in the inlet gases	QGI	W	16774754
47	Heat included in the outlet gases	QGE	w	9211749.9
48	Radiant heat	Qr	W	13262567
49	Furnace efficiency	ETAF	-	0.43537

3 Thermal computation of heat exchangers

The computer program entitled "thermal computation of the heat exchangers" allows dimensioning of the different convective heated surfaces of boiler which are placed after the chamber furnace of boiler (convective vaporizer, steam superheaters, eonomizers and water preheater) [4].

The input data are obtained, for each heat echanger from the antecedent heat exhanger, according to the thermal circuit diagram, presented in figure 1, as the side of combustion gases as well as the side of the heated fluid. The thermal computations are made in order to use as many deallocated equipments.

For the variant of rating, the listings obtained by means of the computer, are presented in Table2, Table 3, Table 4 and Table 5, as follows.

Figure 1 Thermal circuit for the process steam boiler of 20 t

Table 2. Thermal computation of the convective vaporiz	Table 2.	of the convective v	Therma	vaporizei
--	----------	----------------------------	--------	-----------

No	Notation	Symbol	U.M.	Value
	Inlet data			
	Composition of fuel			
1	Carbon dioxide	CO ₂	m^3N/m^3N	0.025
1				
2	Carbon oxide	CO	$m^{3}N/m^{3}N$	0.0
3	Hydrogen	H ₂	m^3N/m^3N	0.0
4	Hydrogen sulfide	H ₂ S	m^3N/m^3N	0.0
5	Methane	CH ₄	m^3N/m^3N	0.94
6	Acetylene	C_2H_2	m^3N/m^3N	0.0
-7	Ethane	C_2H_6	$m^{3}N/m^{3}N$	0.004
8	Propane	C ₃ H ₂	$\frac{m^2N}{m^2N}$	0.0
9	Propane	C II	m' N/m' N	0.001
10	C ₄ H ₈	C ₄ H ₈	$m^{3}N/m^{3}N$	0.0
11	Butane	C_4H_{10}	$m^{3}N/m^{3}N$	0.0
12	Pentane Nitro cor	C ₅ H ₁₂	m'N/m'N	0.0
13	Ovugan	N ₂	m^3N/m^3N	0.05
14	Evol Flow	D_2	m^3N/h	1000
15	Fluid Flow	DA	lii iv/li ka/b	21000
10	Inlet fluid temp	TAI	° C	108
17	Outlet fluid temp	TAE	°C	200.4
10	Heat exchanger	FTA	-	0.97
19	efficiency	LIM	_	0.57
	Air excess coefficient	ALF	-	1.1
20	to burner			
21	Ambient temperature	TAM	°C	10
22	Inlet exhaust gases	TGI	°C	1014
22	temperature			
23	Steam title	х	-	0.31
24	Latent heat of	r	kJ/kg	1947.82
24	vaporization			35
25	Inner diameter of	DI	m	0.1
23	pipe			
26	Outer diameter of	DE	m	0.108
20	pipe			
27	Pipe length by one	LT	m	5.4
	passing			
28	Height tube plate	LV	m	0.3
29	Length tube plate	LO	m	1.4
30	Spacing between	PV	m	0.2
	Specing hetween	PO		0.2
31	spacing between	rU	in	0.2
	Vortical distance to	DV		0.05
32	the wall	DV	-111	0.05
	Horizontal distance	DO	m	0.05
33	to the wall	20		0.05
34	Passes number	NTR	-	12
35	Pressure	р	bar	15
26	Saturation	ŤS	°C	200.4
30	temperature			
27	Thickness of salts	GS	m	0.0005
57	layer			
38	Thickness of soot	GF	m	0.0005
50	layer			
39	Soot thermal	LAF	W/(m °C)	0.1

	conductivity			
40	Salt thermal	LAS	W/(m °C)	1
40	conductivity			
41	Steel thermal conductivity	LAMDAO	W/(m °C)	50
42	Outlet data Inlet exhaust gases flow	DGAI	m ³ N/h	21115.2 2
43	Outlet exhaust gases	DGAE	m ³ N/h	21115.2 2
44	Mean caloric capacity of the inlet gases	СРІ	kJ/ (m ³ N ℃)	1.5483
45	Mean caloric capacity of the outlet gases	CPE	kJ/ (m ³ N ℃)	1.4879
46	Heat included in the inlet gases	QGI	W	9208474
47	Heat included in the outlet gases	QGE	W	5516820
48	Outlet exhaust gases temperature	TGE	°C	632.15
49	Mean temperature difference	DTMED	°C	604.14
50	Mean temperature of gases	TMG	°C	803.34
51	Mean temperature of fluid	TMA	°C	199.2
52	Absorbed heat of water	QA	W	3580904 .2
53	Pipes number on a line by one vertical passing	NV	-	1
54	Pipes number on a line by one horizontal passing	NO	-	7
55	Gas flow section	SG	m ²	3.4776
56	Fluid flow section	SA	m ²	0.05498
57	Gas velocity	WG	m/s	6.6497
58	Gas velocity	WA	m/s	4.1635
59	Gas convection heat transfer coefficient	ALFACG	W/(m ² °C)	37.5939
60	Fluid convection heat transfer coefficient	ALFACA	W/(m ² °C)	83062.0 9
61	Thickness of gases layer	LG	m	0.32742 9
62	Radiation coefficient	ALFARG	W/(m ² °C)	16.8498
63	Convection heat transfer coefficient from gases	ALFAG	W/(m ² °C)	54.4438
64	Overall heat transfer coefficient	KL	W/(m ² °C)	13.0036
65	Overall heat transfer coefficient	KM	W/(m ² °C)	39.7986
66	Length of the device	LA	m	5.4263
67	Heat transfer surface	S	m ²	148.221 9
68	Necessary heat transfer surface	SN	m ²	148.930 5
69	Water pressure losses	PA	N/m ²	239495. 2
70	Gas pressure losses	PGA	N/m ²	40.60

Table 3 Thermal computation of the steamsuperheater

No	Notation	Symbol	U.M.	Value
	Inlet data			
1	Composition of fuel: Carbon dioxide	CO ₂	m ³ N/m ³ N	0.025
2	Carbon oxide	CO	m ³ N/m ³ N	0.0
3	Hydrogen	H ₂	m ³ N/m ³ N	0.0
4	Hydrogen sulfide	H_2S	m ³ N/m ³ N	0.0
5	Methane	CH ₄	m ³ N/m ³ N	0.94
6	Acetylene	C_2H_2	m ³ N/m ³ N	0.0
7	Ethane	C_2H_6	m ³ N/m ³ N	0.004
8	Propane	C ₃ H ₂	m ³ N/m ³ N	0.0
9	Propane	C ₃ H ₈	m ³ N/m ³ N	0.001
10	C_4H_8	C ₄ H ₈	m ³ N/m ³ N	0.0
11	Butane	C ₄ H ₁₀	m^3N/m^3N	0.0
12	Pentane	C5H12	m ³ N/m ³ N	0.0

13	Nitrogen	N	m^3N/m^3N	0.03
14	Oxygen	Ω_2	m^3N/m^3N	0.03
15	Fuel Flow	DC	m ³ N/h	1900
16	Fluid Flow	DA	ko/h	20200
17	Inlet fluid temperature	TAI	°C	200.4
10	Outlet fluid	TAE	°C	250
18	temperature		_	
10	Heat exchanger	ETA	-	0.98
19	efficiency			
20	Air excess coefficient	ALF	-	1.1
20	to burner			
21	Ambient temperature	TAM	°C	10
22	Inlet exhaust gases	TGI	°C	632
	temperature			
23	Inner diameter of pipe	DI	m	0.034
24	Outer diameter of pipe	DE	m	0.038
25	Pipe length by one	LI	m	4.1
26	Height, tube plate	ΙV	m	0.2
20	Length tube plate		m	1.2
21	Spacing between pines	PV	m	0.06
28	on vertical	1 V	111	0.00
	Spacing between pipes	PO	m	0.085
29	on horizontal			
20	Vertical distance to the	DV	m	0.03
30	wall			
31	Horizontal distance to	DO	m	0.03
51	the wall			
32	Passes number	NTR	-	4
33	Pressure	Pres	bar	14
34	Thickness of salts layer	GS	m	0.0005
35	Salt thermal	LAS	W/(m °C)	1
55	conductivity			
36	Thickness of soot layer	GF	m	0.0005
37	Soot thermal	LAF	W/(m °C)	0.1
	conductivity	LAMDAO	W//	50
38	Steel thermal	LAMDAO	w/(m°C)	50
	Outlet date	DCAL	m ³ N/h	21115.2
39	Inlet exhaust gases	DOAI	111 18/11	21113.2
37	flow			2
	Outlet exhaust gases	DGAE	m ³ N/h	21115.2
40	flow	DOLL		2
4.1	Mean caloric capacity	CPI	kJ/ (m ³ N °C)	1.4877
41	of the inlet gases			
42	Mean caloric capacity	CPE	kJ/(m ³ N °C)	1.4745
42	of the outlet gases			
43	Heat included in the	QGI	W	5514858
-13	inlet gases			.8
44	Heat included in the	QGE	W	4781979
	outlet gases	TOP	00	.0
45	Outlet exhaust gases	IGE	°C	552.9
	Mean temperature	DTMED	ംറ	3/15 0
46	difference	DIMED	C	545.0
	Mean temperature of	TMG	ംറ	570.2
47	gases	1010	Ĭ	270.2
48	Mean temperature of	TMA	°C	225.2
L	fluid			
49	Absorbed heat of water	QA	W	718222.
				2
50	Pipes number on a line	NV	-	2
	by one vertical passing			
51	Pipes number on a line	NO	-	14
	by one norizontal			
50	Gas flow sostion	50	m ²	2 720
52	Fluid flow section	50	m^2	2.730
54	Con volocity	SA WC	111 m/a	6 61 40
55	Stoom valaaity	WG WA	111/S	0.0148
55	Gas convection heat		$W/(m^2 \circ C)$	68 30
50	transfer coefficient	ALFACU	w/(m C)	00.30
57	Steam convection heat	ALFACA	$W/(m^2 \circ C)$	207.668
	transfer coefficient			
58	Thickness of gases	LG	m	0.11967
-	layer	-		
59	Radiation coefficient	ALFARG	W/(m ² °C)	7.6489
60	Convection heat	ALFAG	W/(m ² °C)	76.035
	transfer coefficient			
	from gases			
61	Overall heat transfer	KL	W/(m ² °C)	4.5807
	coefficient			10 -0 -
62	Overall heat transfer	KM	W/(m ⁻ °C)	40.501

	coefficient			
63	Length of the device	LA	m	4.057
64	Heat transfer surface	S	m ²	51.94
65	Necessary heat transfer surface	SN	m ²	51.39
66	Water pressure losses	PA	N/m ²	22043.8
67	Gas pressure losses	PGA	N/m ²	90.81

Table4Thermalcomputationofeconomizer

econo	omizer			
No	Notation	Symbol	U.M.	Value
	Inlet data	•		
	Composition of fuel:	CO	m ³ N/	
1	Carbon dioxide	CO_2	m ³ N	0.025
	Carbon oxide	CO	m ³ N/	0.025
2	Curbon oxide	00	m ³ N	0.0
	Hydrogen	н	$m^3N/$	0.0
3	nyulogen	112	m^3N	0.0
	Hydrogen sulfide	нс	$m^3N/$	0.0
4	Hydrogen sunde	1125	m^3N	0.0
	Methane	CH	$m^3N/$	0.94
5	Wethane	C114	m^3N	0.94
	Apatulana	C.H.	$m^3N/$	0.0
6	Acceptence	C2112	m^3N	0.0
	Ethana	С.Н	$m^3N/$	0.004
7	Ethane	C2116	m^3N	0.004
	Propaga	C.H.	$m^3N/$	0.0
8	Topane	C3112	m^3N	0.0
	Propaga	C.H.	$m^3N/$	0.001
9	Topane	C3118	m^3N	0.001
	СЦ	CII	m ³ N/	0.0
10	$C_4\Pi_8$	$C_4\Pi_8$	$m^{3}N$	0.0
	Butone	CII	m ³ N/	0.0
11	Butane	$C_4 H_{10}$	m ³ N	0.0
	Dentene	CII	III IN ³ NI/	0.0
12	Pentane	C_5H_{12}	m ⁻ IN/	0.0
	Niture a cu	N	m IN	0.02
13	Introgen	IN ₂	m ⁻ IN/	0.03
	2	0	m ² N	0
14	Oxygen	O_2	m ² N/	0
1.7		D.C.	m [*] N	1000
15	Fuel Flow	DC	m [°] N/h	1900
16	Fluid Flow	DA	kg/h	21000
17	Inlet fluid temp.	TAI	°C	105
18	Outlet fluid temperature	TAE	°C	198
19	Heat exchanger	ETA	-	0.99
17	efficiency			
20	Air excess coefficient	ALF	-	1.1
21	Ambient temperature	TAM	°C	10
22	Inlet exhaust gases	TGI	°C	552.9
22	temperature			
23	Inner diameter of pipe	DI	m	0.034
24	Outer diameter of pipe	DE	m	0.038
25	Pipe length by one	LT	m	4.1
25	passing			
26	Height tube plate	LV	m	0.2
27	Length tube plate	LO	m	1.2
20	Spacing between pipes	PV	m	0.06
28	on vertical			
20	Spacing between pipes	PO	m	0.085
29	on horizontal	-		
26	Vertical distance to the	DV	m	0.03
30	wall		-	
	Horizontal distance to	DO	m	0.03
31	the wall on Horizontal	20		0.00
32	Passes number	NTR	-	16
33	Pressure	Pres	har	15
34	Thickness of salts laver	GS	m	0.0005
51	Salt thermal	IAS	W/(m	1
35	conductivity	LAS	°C)	1
36	Thickness of soot lavor	GF	() m	0.0005
30	Soot the soot layer	UF	111 W//	0.0005
37	Soot thermal	LAF	w/(m	0.1
	conductivity	LANDAG	°C)	50
38	Steel thermal	LAMDAO	W/(m	50
	conductivity		°C)	
	Outlet data	DGAI	m'N/h	21115.22
39	Inlet exhaust gases			
	tlow		3	
40	Outlet exhaust gases	DGAE	m'N/h	21115.22
	flow			
41	Mean caloric capacity	CPI	kJ/ (m ³ N	1.4745

	of the inlet gases		°C)	
40	Mean caloric capacity	CPE	kJ/ (m ³ N	1.4283
42	of the outlet gases		°C)	
42	Heat included in the	QGI	W	4781979.0
43	inlet gases	-		
4.4	Heat included in the	QGE	W	2466462.3
44	outlet gases			
45	Outlet exhaust gases	TGE	°C	294.4
43	temperature			
46	Mean temperature	DTMED	°C	263.5
40	difference			
47	Mean temperature of	TMG	°C	415.1
47	gases			
48	Mean temperature of	TMA	°C	151.5
	fluid			
48	Absorbed heat of water	QA	W	2270362.5
50	Pipes number on a line	NV	-	2
	by one vertical passing			
51	Pipes number on a line	NO	-	14
	by one horizontal			
	passing		-	
52	Gas flow section	SG	m ²	2.738
53	Fluid flow section	SA	m ²	0.02542
54	Gas velocity	WG	m/s	5.3978
55	Gas velocity	WA	m/s	0.266
56	Gas convection heat	ALFACG	W/(m ²	61.05
	transfer coefficient		°C)	
57	Fluid convection heat	ALFACA	W/(m ²	2470.14
	transfer coefficient		°C)	
58	Thickness of gases	LG	m	0.11967
	layer			
59	Radiation coefficient	ALFARG	$W/(m^2)$	3.9979
			°C)	
60	Convection heat	ALFAG	$W/(m^2)$	65.054
	transfer coefficient		°C)	
	from gases			
61	Overall heat transfer	KL	W/(m	4.908
	coefficient		°C)	
62	Overall heat transfer	KM	W/(m	43.40
	coefficient		°C)	
63	Length of the device	LA	m	3.916
64	Heat transfer surface	S	m ²	207.76
65	Necessary heat transfer	SN	m ²	198.45
	surface			
66	Water pressure losses	PA	N/m ²	1216.95
67	Gas pressure losses	PGA	N/m ²	214.47

Table 5Thermal computation of waterpreheater

No	Notation	Symbol	U.M.	Valu
110			0.00	е
	Inlet data			
1	Composition of fuel: Carbon dioxide	CO ₂	m^3N/m^3N	0.025
2	Carbon oxide	CO	m^3N/m^3N	0.0
3	Hydrogen	H ₂	m^3N/m^3N	0.0
4	Hydrogen sulfide	H ₂ S	m ³ N/m ³ N	0.0
5	Methane	CH ₄	m^3N/m^3N	0.94
6	Acetylene	C_2H_2	m^3N/m^3N	0.0
7	Ethane	C_2H_6	m^3N/m^3N	0.004
8	Propane	C_3H_2	m ³ N/m ³ N	0.0
9	Propane	C ₃ H ₈	m^3N/m^3N	0.001
10	C_4H_8	C ₄ H ₈	m^3N/m^3N	0.0
11	Butane	C ₄ H ₁₀	m^3N/m^3N	0.0
12	Pentane	C5H12	m^3N/m^3N	0.0
13	Nitrogen	N ₂	m^3N/m^3N	0.03
14	Oxygen	O ₂	m^3N/m^3N	0
15	Fuel Flow	DC	m ³ N/h	1900
16	Fluid Flow	DA	kg/h	14000
17	Inlet fluid temp.	TAI	°C	105
18	Outlet fluid temperature	TAE	°C	167
19	Heat exchanger efficiency	ETA	-	0.98
20	Air excess coefficient	ALF	-	1.1
21	Ambient temperature	TAM	°C	10
22	Inlet exhaust gases temperature	TGI	°C	294.4
23	Inner diameter of pipe	DI	m	0.034
24	Outer diameter of pipe	DE	m	0.038
25	Pipe length by one passing	LT	m	4.1

26	Height tube plate	LV	m	0.2
27	Length tube plate	LO	m	1.2
28	Spacing between pipes on vertical	PV	m	0.06
29	Spacing between pipes on horizontal	PO	m	0.085
30	Vertical distance to the wall	DV	m	0.03
31	Horizontal distance to the wall on Horizontal	DO	m	0.03
32	Passes number	NTR	-	21
33	Pressure	Pres	bar	13
34	Thickness of salts layer	GS	m	0.000 5
35	Salt thermal conductivity	LAS	W/(m °C)	1
36	Thickness of soot layer	GF	m	0.000 5
37	Soot thermal conductivity	LAF	W/(m °C)	0.1
38	Stainless steel thermal conductivity	LAMDAO	W/(m °C)	35
39	Outlet data Inlet exhaust gases flow	DGAI	m ³ N/h	21115 .22
40	Outlet exhaust gases flow	DGAE	m ³ N/h	21115 .22
41	Mean caloric capacity of the inlet gases	CPI	kJ/ (m ³ N °C)	1.428 3
42	Mean caloric capacity of the outlet gases	CPE	kJ/ (m ³ N ℃)	1.401
43	Heat included in the inlet	QGI	W	24625 99.2
44	Heat included in the outlet	QGE	W	14329 56.2
45	Outlet exhaust gases	TGE	°C	173.9
46	Mean temperature difference	DTMED	°C	95.3
47	Mean temperature of gases	TMG	°C	231.1
48	Mean temperature of fluid	TMA	°C	136.5
48	Absorbed heat of water	QA	W	10090 50.5
50	Pipes number on a line by one vertical passing	NV	-	2
51	Pipes number on a line by one horizontal passing	NO	-	14
52	Gas flow section	SG	m ²	2.738
53	Fluid flow section	SA	m ²	0.025
54	Gas velocity	WG	m/s	3.955
55	Gas velocity	WA	m/s	0.177
56	Gas convection heat transfer coefficient	ALFACG	W/(m ² °C)	53.04
57	Fluid convection heat transfer coefficient	ALFACA	W/(m ² °C)	1751. 4
58	Thickness of gases layer	LG	m	0.119
59	Radiation coefficient	ALFARG	$W/(m^2 \circ C)$	1.977
60	Convection heat transfer	ALFAG	W/(m ² °C)	55.41
61	coefficient from gases Overall heat transfer	KL	W/(m °C)	4.33
62	coefficient Overall heat transfer	KM	W/(m °C)	38.20
62	coefficient			4 150
64	Heat transfer surface	S	m m ²	4.158
65	Necessary heat transfer	SN	m ²	276.5
66	Water pressure losses	PA	N/m ²	718.7
67	Gas pressure losses	PGA	N/m ²	1918 4

4 Experimental results

The steam boiler of 20t/h which is shown in Figure 2, it was made by changing of a tubular furnace and utilization of some components, as e.g.: combustion air fan, deaerator, drum, exhauster, convective vaporizer, economizer, pumps, which were taken up from technological deallocated lines [4].

By the experimental results obtained at putting into service is shown in Table 6, the steam flow, steam pressure and steam temperature, according to the fuel flow and exhaust gases temperature to chimney. Therefore, it is relieved a good concordance between these obtained results experimentally and the values of these parametres which were computed by means of the computer programs above mentionated.

 Table 6. Values of some parameters obtained by working of the process steam boiler with a steam flow of 20t/h

N 0	Natural gas flow m ³ N/h	Combust ion air flow m ³ N/h	Steam flow t/h	Steam temperature	Exhausted gases temperature °C
0	1	2	3	4	5
1	1220	12450	12.5	238	147
2	1340	13700	13.7	240	151
3	1530	15630	16.2	244	159
4	1725	17650	18.6	247	168
5	1810	18400	19.4	249	172
6	1890	19200	20.1	251	177

5 Conclusions

Computer programs of thermal computation of furnace of boiler and heat exchangers located after the furnace of boiler were used in dimensioning of some process steam boilers obtained with reusable equipments. In this paper, it is exemplified the process steam boiler dimensioning of 20t/h, for which the obtained experimental results are in a good concordance with other obtained by the utilization of the dimensioning mathematical models.

References:

- 1. *** Thermal design of boiler units, Energya, Moscow, 1973.
- 2. Neaga, C., Epure, A., *Thermal computation of steam boilers*, Ed. Tehnica, Bucuresti 1988.
- 3. Shatil, A.A., *Design study of boiler furnaces*, Power technology and engineering, , vol. 40. no.3, 2006, p.179-184.
- 4. Gaba, A., *Heat transfer in industrial plants*, Ed. Bibliotheca, Targoviste 2004.