A study on impact factors of the adoption of Information Systems in the Operating Room

SANTOS, M.F., Gomes, L.

Departamento de Sistemas de Informação
Universidade do Minho
Guimarães
PORTUGAL
mfs@dsi.uminho.pt
gomes.linda@gmail.com

Abstract - This research aims to assess the impact of the adoption of Information Systems by clinical users in the Operating Room. This is an empirical and qualitative research, to find a complete and comprehensive understanding of the phenomenon under study. A sample of national experts from the OR area has been invited from public and private hospitals. Through the application of the Delphi method, with surveys online it is expected an interactive and systematical approach to estimate the impact of the adoption of these systems, based on the experience of several independent clinical users (experts).

Keywords — Clinical Information Systems, Delphi Methodology, Operating Room, Technology Acceptance.

I. INTRODUCTION

Health care organizations aggregate highly complex systems that interact with multiple entities and manage numerous amounts of information. The Information Systems (IS) support not only the clinical aspects, but also administrative, financial and stocks.

Hospitals and Institutions are constantly faced with lack of resources in critical care areas, particularly in the Operating Room (OR). Some authors agree [1], [2] that these facilities are considered to be the most costly. They can consume more than 9% of a Hospitals budget [2]. The adoption of a system of this type may be the beginning of the resolutions of this issue [3].

Commonly the IS in the OR are seen as islands in relation to the remaining departments of the Health Institutions. It is vital to have interoperability with other hospital systems, preferentially using the same communication protocol. The IS in the OR may improve the competitive and financial viability, reduce costs, increase efficiency and improve the health care quality [4], [5].

Given the political, socio-economic, scientific and technological changes in the recent years, for the success and survival of organizations it is essential to project the future. Therefore, the use of analyzing tools are increasing, for example, analyzing the external environment, research trends in order of planning long term and guide organizations to achieve their objectives.

Since 1998 the Portuguese Ministry of Health affirms that: "a good information system is an indispensabile tool that can be used to make right decisions at all levels of the health system (...) It is necessary to interconnect and coordinate the multiple pieces and existing resources in a system of health information" [1].

Reducing bureaucratic process and facilitating rapid access to information, may obtain a significant improvement in health service quality. To provide better and more rapidly service to citizens, the key is the utilization of technologies and the inter-communicability between the systems, enabling higher information.

The main objective of this paper is to share and increase scientific knowledge related to the impact of the adoption of Information Systems by clinical users in the Operating Room. Therefore, this paper is composed by the following sections: Present section I, Introduction; section II a background on Clinical Information System in the Operating Room ; section III, explanation of the Methodology & Materials used in the research ; Section IV, results obtained from the two round of surveys; section V, discussion of the results, and respective Conclusion.

II. CLINICAL INFORMATION SYSTEM IN THE OPERATING ROOM

A clinical IS allows to aggregate, record and analyze information about the evolution of the patient's condition and provided care, therefore permitting the orientation of clinical activities to be undertaken in accordance with care plans, already approved.
In environments so demanding, obtaining the right data, understanding and subsequent use for decision support, is essential, to fulfill the goals of modern health facilities:
- Efficiency in provision care;
- Improvement of clinical results;
- Adequacy for financial requirements.

By automating the collection of clinical data from patient monitors, ventilators and other equipment connected to the patient, it is possible to optimize the workflow of professional healthcare, to minimize manual input errors and allowing professionals to concentrate on what is the main function: the provision of healthcare.

Among health professionals it is consensus that the clinical IS is important. For decision making at clinician and administration level, the system can provide reliable indicators. Example of some indicators that are commonly found in the OR context are:
- Patients age and sex, admitted for surgery;
- Surgical procedure time and type of surgery;
- History of anesthetics acts;
- Mortality rate.

Using IS ensures the standardization of terminology of diagnoses and medical and nursing procedures, contributing to higher quality indicators. Besides being advantageous in terms of indicators, such systems allow the automatic collection of data and the electronic recording; guarantying the reliability, integrity, confidentiality and maintenance of data, and consequently reducing redundancy in data collection.

III. METHODOLOGY & MATERIALS

Given the nature of the problem of our investigation, the research methods used should focus on empirical and qualitative research, looking for the absolute and wide-ranging understanding of the phenomenon under study.

The Delphi method is a method of qualitative research that aims to obtaining a qualified opinion about certain issues, from a group of selected individuals. This method was put in practice in the ‘50s by the Rand Corporation. It is used in particular to obtain consensus opinions of a group of specialists, through questionnaires providing feedback and results of responses to the participants between rounds [2].

Currently the Delphi method exists in two distinct ways, a more conventional paper and pencil called the "exercise of Delphi" and a version identified by "Delphi Conference", where questionnaires are available online allowing a rapid interaction between the parties involved in the process [3].

When the choice relies on this of method, it is necessary to clearly define the object of the study. It is essential to ensure anonymity, explain the time frame and type of results most wanted. The feedback with the results of the responses of the group is crucial before starting the next round.

Advantages of the Delphi Method applied online

Due to the several advantages, the surveys online have become increasingly common in data collection for research. According to Giovannazzo & Fischmann [3] the factors that contribute to the use of Delphi in electronic format are:
- Eliminates the costs associated with printing, paper and mail, no longer necessary to print the questionnaires, as well as promotional material. There is no need to use the post office, reducing the cost of sending the forms;
- Eliminates average time of send out and reception of response by sending electronic questionnaires, not only reducing the time of transmission, but also the time of receipt, having access to the data more rapidly;
- Reduces time and errors in recording the results, since the forms are received in electronic platform, no longer required the manual input of data, thus avoiding typing errors in them. The data is automatically redirected to files, which allow the processing of information.
- Prevents loss of interest by participants, as there is a earlier feedback,
- Facilitates the completion of the questionnaires, it is possible to take advantage of platform features that support the questionnaire and make the process more enjoyable and efficient.

According to Mehta & Sivadas [4] when the questionnaires are available in electronic platform, it improves the quality of the response, especially if they have open-ended questions.

According to Santos & Amaral [5], other factors are based on the reuse of technology support costs, example costs that are associated with technological support, can easily be reused in other studies. This method has no constraints of geographic location, proximity or time zone.

Concerns of the Delphi Method applied online

On the other hand some limitations should be stressed:
- The setup time of the form online has to be considerate, since it is more time consuming then the traditional paper questionnaire.
- Eventually if there is a mistake, sending / receiving the questionnaires, or creating keywords for the experts it is indispensable knowledge in Information technology.
- When the questionnaires are applied online, it limits the number of rounds to two because a greater number becomes unattractive for the participants. Although most of the time two rounds are sufficient to reach consensus, if consensus is not this obtained, the subject of the study is brought to discussions in workshops.

Throughout our investigation the following steps of the method were considered:
A. Select the panel of specialist;
B. Design the questionnaires on an electronic platform that already exists on the market;
C. Submit questionnaire:
 1) to the specialists by email; collect the responses, process and analyze data; develop new questions for the 2nd round, send the results of the 1st round and submit questionnaire;
 2) Collect the responses, process and analyze data; general conclusions and final report.

IV. RESULTS

The first survey was divided into four areas:
A - Data Related to the Experts;
B - Data Related to the Structure and Organization of the OR;
C - Factors that justify the adoption of an IS; and
D - Features that the Clinical IS must support.

The results obtained so far are presented in the following lines.

A - Data Related to the Experts.

Age:
< 30 years - 5,3%;
30 to 40 years – 10,5%;
41 to 50 years – 10,5%;
51 to 60 years – 68,4 %;
> 60 years – 5,3%

Sex:
Female – 47,4 %
Male – 52,6%

City of professional practice:
Aveiro - 5,26 %
Coimbra - 15,8 %
Lisboa - 31,6 %
Porto - 36,8 %
Santarém - 5,26 %
Vila Real - 5,26 %

Place of professional practice:
Public Hospital – 89,5%
Private Hospital – 10,5 %
Health Centre – 0,0%
Clinic - 0,0%
Other - 0,0%

Internet users:
100% of the experts consider themselves internet users.

B - Data Related to the Structure and Organization of the OR.

Total number of OR:
Less than 5 Operating Rooms - 26,3%
5 to 10 Operating Rooms - 42,1%
11 to 15 Operating Rooms - 5,3%
More than 15 Operating Rooms - 26,3%

Location of the OR:
Centralized - 63,2%
Decentralized - 10,5%
Other - 26,3%

Induction Room:
With induction room - 63,2%
Without induction room - 21,1%
Other - 15,8%

The management of the OR is under the responsibility of:
Surgeon – 57,9%
Anesthetist – 21,1%
Both - 5,3%
Committee – 5,3%
Without formal management – 0,0%
Others – 10,5%

The OR has a Clinical Information System?
Yes – 72,2%
No – 27,8%

When the answers was yes:
7,71% % has a software developed and configured by the users of the institution;
78,6% has a software that exists in the market and subsequently configured to the needs of service and users
7,71% has a software that exists in the market with no additional configuration
7,71 % Other

Inside the OR, when needed in real time, additional medical information, the experts usually use:
Colleague or handbook - 52,6%
Electronic device - 68,4 %
Memory and experience – 26,3%
Other – 10,5%

Typing errors are common, particularly for example, transcribing the patient Id. In 10 surgeries, how often do these kinds of errors happen in the OR.
1 to 2 times - 61,1%
3 to 4 times - 5,6%
4 times - 5,6%
Others – 27,8%

Inside the OR, how often do physicians experience lack of knowledge about drugs, medical conditions and/or specific anesthetic considerations?
Once a day - 26,3%
Once a week - 36,8%
Once a month - 21,1%
Once a year - 0,0%
Very rarely - 15,8%
Others - 0,0%
100% of the experts would like to have available written algorithms on a screen in front of them.

In the past have you committed medical errors during anesthesia due to lack of medical information that can be found in a handbook.

Yes - 47.4%
No - 36.8%
Do not know - 15.8%
When the answers was yes
% Once a day - 0.0%
% Once a week - 11.1%
% Once a month - 22.2%
% Once a year - 0.0%
% Very rarely - 55.6%
% Others - 11.1%

Having a source of medical information online in the OR is:
Not important - 0.0%
Important - 38.9%
Very Important - 61.1%
No opinion - 0.0%

C - Factors that justify the adoption of a Clinical IS.

TABLE I
FUNCTIONALITIES THAT THE CLINICAL INFORMATION SYSTEM SHOULD ALLOW

<table>
<thead>
<tr>
<th>Description</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º Automatic data collection from medical devices, example: monitors, ventilators, others.</td>
<td>88.9</td>
</tr>
<tr>
<td>2º Interoperability with other systems, example: pharmacy system, laboratories system, others.</td>
<td>83.3</td>
</tr>
<tr>
<td>3º Remote access to clinical process.</td>
<td>77.8</td>
</tr>
<tr>
<td>4º Analysis and statistical treatment of data.</td>
<td>72.2</td>
</tr>
<tr>
<td>4º Assessments and records of treatments.</td>
<td>72.2</td>
</tr>
<tr>
<td>6º Automation of the Patient Summary.</td>
<td>61.1</td>
</tr>
<tr>
<td>7º Correlation of data through customizable views.</td>
<td>55.6</td>
</tr>
<tr>
<td>7º Alerts for outstanding tasks and new results.</td>
<td>55.6</td>
</tr>
<tr>
<td>8º The automatic calculation of water balance.</td>
<td>50.0</td>
</tr>
</tbody>
</table>

D - Features that the Clinical IS must support.

TABLE II
CAPITAL GAINS OF CLINICAL INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>Description</th>
<th>Pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize the work-flow of information enabling greater agility and organization.</td>
<td>1</td>
</tr>
<tr>
<td>Flexible, adapting working methods of each of the Operating Room.</td>
<td>2</td>
</tr>
<tr>
<td>Increase of time of professionals, for tasks not related to the registration of data.</td>
<td>2</td>
</tr>
<tr>
<td>Reduced operating costs / administrative and productivity gains.</td>
<td>4</td>
</tr>
<tr>
<td>Increase standardization of terminology of diagnoses, medical procedures / nursing</td>
<td>5</td>
</tr>
<tr>
<td>Reduction of redundancy in data collection.</td>
<td>6</td>
</tr>
<tr>
<td>Gain real-time access to medical files of patients</td>
<td>7</td>
</tr>
<tr>
<td>Guarantee of reliability, integrity, confidentiality and data maintenance</td>
<td>8</td>
</tr>
</tbody>
</table>

Sort by increasing order of (1-8) the importance of capital gains on a scale of importance, where 1 is the most important and 8 is less important.

In the physicians opinion what factors contribute to resistance to the adoption of the Clinical Information System?

TABLE III
RESISTANCE FACTORS TO THE ADOPTION OF CLINICAL INFORMATION SYSTEM

<table>
<thead>
<tr>
<th>Description</th>
<th>Pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Cost</td>
<td>1</td>
</tr>
<tr>
<td>Waste of time in recording information</td>
<td>2</td>
</tr>
<tr>
<td>Inadequate working practices</td>
<td>2</td>
</tr>
<tr>
<td>Lack of clinical knowledge, by those who support the system</td>
<td>4</td>
</tr>
<tr>
<td>Lack of computer knowledge, by the clinical users</td>
<td>5</td>
</tr>
<tr>
<td>Institutions not oriented to technologies</td>
<td>6</td>
</tr>
<tr>
<td>Interface not used friendly</td>
<td>7</td>
</tr>
<tr>
<td>Resistance to change</td>
<td>8</td>
</tr>
</tbody>
</table>

Sort by increasing order of (1-8) the factors that contribute to the strength of the systems on a scale of importance, where 1 is the factor of greatest resistance and 8 is the factor of least resistance.

The second survey was also divided into four areas:
A - Data Related to the Experts;
B - Factors that justify the adoption of an IS;
C - Data Related to the Structure and Organization of the OR; and
D - Improved the adoption and use of the Clinical IS.

Below are presented the results obtained for this phase.

A - Data Related to the Experts

Years of professional practice:
<5 years - 6.7%
5 to 15 years - 13.3%
16 to 20 years - 6.7%
21 to 25 years - 33.3%
>25 years - 40%
This research occurred during the months of April, May and June 2010. The survey was applied to 29 Portuguese Anesthesiologist that are working in public and/or private Institutions, following the Delphi methodology. Two rounds of questionnaires were applied, and received a total of 19 responses to the questionnaire I, rate (65.5%). Regarding to the questionnaire-II, 15 answers were received corresponding to (78.9%). It was only possible to participate in the questionnaire-II the experts that responded to the questionnaire-I, until the deadline. After analyzing data from the questionnaire-I, it was necessary to repeat some questions in the second round to unite and meet consensus in the following topics:
- Functionalities that the Clinical IS should allow;
- Capital Gains of Clinical IS;
- Resistant factors that influence the adoption of Clinical IS.

Our findings confirm that 100% of the experts consider themselves Internet users and the same 100% of the experts would like to have available written algorithms on a screen in front of them. A curious fact detected, females believe that the main factor contributing to the resistance of clinical IS is the cost of the solution other than the male, that consider this factor the least resistant.

In this research 100% of the physicians that have private Institution has main place of professional practice admit that in the past they committed medical errors during anesthesia due to lack of medical information that can be found in a handbook. The same question asked to the experts from public Institutions, only 41.2% admit having committed the error, but at the same percentage, physicians affirm that they never committed that mistake, the remaining 17.6% do not know.

When selecting the panel of experts, it was intended that this research included experts from different age groups. It was also intentional that some physicians use IS in the OR and physicians who have never experienced this reality. On the second questionnaire, only the experts who had IS in the OR would respond to the questions of different dimensions of clinical IS from dissimilar points of view:
- Service Management;
- Clinical;
- Quality Management/Auditing Quality.

Since 83.3% of experts with over 25 years of IS professional experience in the OR, responded to the different dimensions of clinical IS, giving statistically significance to the research. Compared with other studies [6], data confirms that inside the OR, the Anesthesiologist experience lack of knowledge about drugs, medical conditions and/or specific anesthetic considerations, occurs more frequently (once a week - 36.8%).

Regarding to the same research, it demonstrates that 47.4%, of the anesthesiologists admit that in the past they have committed medical errors during anesthesia due to lack of
medical information that can be found in a handbook, 36.8%, do not commit medical errors and 15.8% do not know.

Inside the OR, when needed in real time, additional medical information, the experts usually use: Electronic device - 68.4%. The previous study obtained a different result, the physicians frequently use: Colleague or handbook – 68%.

To conclude we can say that the numerous results of our research, are not surprising. For instance:

• the place of professional practice;
• the management of the OR is under the responsibility of a surgeon;
• Anesthesiologist have committed medical errors during anesthesia and having a source of medical information online in the OR is very important.

VI. CONCLUSION

This paper presented a study conducted on Operating Rooms (OR) in order to better know about the impact of the adoption of Information Systems (IS) by clinical users.

Although, among health professionals it is consensus that the clinical IS minimize errors, improves productivity and collects and evaluates data in real time, there are Institutions that do not have a clinical IS in the OR.

This research demonstrates that the main resistance factor to adopt a clinical IS is the solution cost.

Further work includes the elicitation of a set of technical and functional recommendations to enhance the IS for OR.

ACKNOWLEDGMENT

The authors would like to thank all the Anesthesiologist that participated. Without your precious collaboration this research would not be possible.

REFERENCES