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Abstract: - In this paper we investigate the influence of viscous heating on capillary flows in polymer melt. The fluid 
properties are described by a power-law model with an exponential temperature dependence of viscosity. Solutions of 
the motion and energy balance equations have been obtained for nonisothermal flow in a finite length cylindrical 
channel. Experiments were performed to specify the rheological parameters.  
 

Key-Words: - non-Newtonian fluid flow, viscous heating, temperature-dependent viscosity, temperature distribution 
 
 

 

1   Introduction 
In recent years, advancements in technological 
applications have brought a wide range of rheological 
fluids. The practice of non-Newtonian fluids includes 
extrusion of polymer fluids, colloidal and suspension 
solutions, molten plastics and many others. Due to the 
diversity of fluids in nature many models have been 
proposed to describe their behavior. One particular non-
Newtonian model which has been widely studied is the 
Ostwald-deWaele power-law model. 
Viscous heating can play an important role in the 
channel flow dynamics of fluids with a temperature-
dependent viscosity such as polymers and silicate melts 
[4], [6]. In these fluids, the heat generated by viscous 
friction generates a local increase in temperature near the 
channel wall. The quantitative estimation of viscous 
heating in viscometry is a difficult matter. An overview 
of this subject has been given by Middleman [7]. Exact 
solutions are given for flows of power-law fluids, with 
heat generation and temperature dependent viscosity, in 
three situations, namely pressure flow through a circular 
tube, shear flow between rotating concentric cylinders 
and shear flow between parallel plates by Martin [8].  
It is well-defined that nonisothermal flows of fluids with 
strong temperature dependence viscosity can lead 
undesirable instability in technological processes. These 
phenomena can be mathematically described by 
nonlinear governing equations [9-13]. 
The polymer melt that is investigated in this work is a 
commercial grade low density polyethylene BRALEN 
RB 03-23 of Slovnaft Petrochemicals [16], s.r.o., further 
referred to as LDPE. BRALEN RB 03-23 which is 
designed for production of heavy duty and shrink films 
of thickness 0,07 - 0,25 mm. It is well suited for blow 

moulding of various containers, pipes, sheets and 
profiles extrusion and also for injection moulding. 
In this paper we focus our investigations to the physical 
quantities characterizes polyethylene flow in a capillary. 
First, the material characterization is given to obtain the 
necessary data. A quantitative description of the 
rheological behavior of polymer melts is crucial in 
understanding the relation between processing and 
product properties. As an intermediate step between the 
well-defined rheometrical flows and complicated 
industrial processing flows, simplified, experimentally 
accessible, inhomogeneous flows that exhibit a 
combination of transient shear and elongational 
deformation are investigated. The detailed analysis of 
these flows allows the assessment of constitutive models 
and numerical predictions for prototype industrial flows. 
One of the main problems in constitutive modeling is to 
obtain a correct description of the transient nonlinear 
behavior in elongation and shear flows simultaneously. 
Well-known and widely used models, such as the non-
Newtonian power-law model yield unsatisfactory results. 
The non-Newtonian viscosity depends strongly both on 
velocity gradient and on temperature. We shall use the 
power-law viscosity function. We consider an 
incompressible homogeneous fluid with constant density 
and the fluid viscosity is temperature-dependent. 
Although, the Arrhenius-type law of viscosity-
temperature dependence relationship 

TR

A

Aeηη =0                                  (1) 

is more general and adequate to describe the polymer 
viscosities, for simplicity in this study we assume the 
Nahme-type exponential approximation 
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where T  is temperature, A  is the activation energy (a 
rheological factor), R  is the universal gas constant and 
η  is the viscosity value at the reference temperature 0T , 

where 0RT

A

A eηη = . The Arrhenius-type law is less 

commonly used in the relevant literature, although this is 
able to fit data over a wider temperature range than the 
Nahme law. If we investigate the interval of 

temperatures for which 1/)( 00 <<− TTT  then the 

Arrhenius-type relationship (1) is well approximated by 
(2). 
The viscous heating of a finite length cylinder exposed 
to a steady uniform velocity non-Newtonian fluid has 
been analyzed. The solution determines the velocity and 
temperature fields of a non-Newtonian power-law model 
fluid in an axisymmetric cylinder. Computations were 
performed for an LDPE, for which the rheological 
parameters are determined by measurements. 
Our aim is to investigate the effect of the viscous heating 
for temperature-dependent viscosity on the temperature 
distribution of the fluid. 
 
 

2   Governing equations 
In this paper we consider a polymeric fluid flowing 

axially in a capillary of radius 0R  and length l  

( lR <<0 ). The wall temperature is assumed to be 

constant wT . For the sake of simplicity, the analysis is 

carried out under the assumptions that the flow is one-
dimensional, fluid properties, except for the viscosity 
factor, are constant. We postulate that  

),r(vv zz =  

)(),(,0,0 rTTzPPvv r ====ϕ , 

where zv  is the velocity component along the flow axis, 

z  and r , respectively, denote the axial and radial 
coordinates, T  stands for the fluid temperature, P  is the 
pressure. The equation of motion can be formulated as 
follows (see [1], [2], [6]) 
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and the energy equation is 
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where η  and k , respectively, designate the viscosity 

and thermal conductivity of the polymer. We apply the 
Oswald-de Waele power-law formula for non-
Newtonian viscosity ([1-6], [15])in which the shear 
stress to the strain rate is described by the expression  

r
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In (5) 0>n  is called the power-law index. The case 
1<n  is referred to pseudoplastic or shear-thinning fluid, 

the case 1>n  is known as dilatant or shear-thickening 
fluid. Most macromolecular fluids are pseudoplastic and 
values of n  in the range of 15.0  to 6.0  are common 
(see [1]). The Newtonian fluid is a special case where 
the power-law index 1=n . We assume that the power-
law constant n  is not dependent on the temperature. In 
(5) constants 0η  and n  are characteristic of each 

polymer and each polymer solution. To obtain an 
approximate description of non-isothermal problem the 

temperature dependence of 0η  is assumed by the 

Nahme-type law (2). In this paper we assume that the 
thermal conductivity k  and density ρ  of the fluid do not 

change appreciably with temperature and pressure. 
The equation of continuity is satisfied identically. The 
equation of motion (3) and the equation of energy (4) are 
restated as: 

























−=








−

− n

zTR

TT
A

dr

dv
er

dr

d

rdz

dP 2
0

0

1
η         (6) 

1
2

0

0

0
+

−
−









−+















=
n

zTR

TT
A

dr

dv
e

dr

dT
r

dr

d

r

k
η       (7) 

 

We will consider a no-slip boundary condition and axial 
symmetric property for the velocity. There is a constant 

temperature wT  at the surface 0Rr =  for 0>z . The 

system (6)-(7) should be completed by boundary 
conditions: 
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It is convenient to introduce dimensionless quantities 

                    
2
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0R

r
=ξ . 

Integrating (6) with respect to z  from 0 to l  ( the total 
length of the capillary) we obtain 
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and 1C  can be determined from the boundary condition 
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Applying (9) the energy equation (7) can be rewritten 
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and by the dimensionless quantities 
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3   Rheological behavior of LDPE 
In this section the experimental determination of the 
material parameters is discussed.  
Flow curves were measured by a Göttfert extrusiometer 
20 using a screw of 1:4 compression rate and long 
compression zone. The diameter of the screw is 20 mm 
and the L/D is 20. A round steel capillary die was used 
with 2.0 mm bore and 30 mm length. Inlet angle was 
90°. The die is fixed in the extruder barrel. Melt 
temperature and melt pressure can be measured at three 
points along the barrel. In order to minimize the 
measuring errors the temperature sensor thermocouple is 
isolated from the barrel by a ceramic of low thermal 
conductivity. Only the values obtained from the sensors 
placed at 20D (just before the die) were used in this 

study. Mass flow G  was determined by weight 
measurement of extruded rods cut in 1 minute period. 
Extrusion tests were carried out at 3 temperature setting 
using 160°C, 170°C and 180°C steel temperature at the 
die zone, respectively. Temperature of previous zones 
were set by 5°C lower (e.g. 150, 155 and 160°C). In 
consequence of internal friction heating, the measured 
mass temperature ϑ  is always higher than the set-point 
of the zone heating. 
Five different screw speeds ( =n 20, 40, 60, 80, and 100 
rpm) were applied for every temperature setting. 
The measured data are given in Table 1. 
 
n  
rpm 

G  
g/min 

Co160  Co170  Co180  

P3 
bar 

ϑ 
°C  

P3 
bar 

ϑ  

°C 

P3 
bar 

ϑ  

°C 

20 6 108 162.2 100 173.4 93 183.6 

40 12 130 162.7         

40 12.2      120 173.7      

40 12.5          115 184.5 

60 19 143 163.5 135 174.3 130 184.8 

80 24.5 155 164.2 145 174.5 135 185.1 

100 31 162 164.6           

100 31.5    155 175.3 145 185.3 

Table 1. 
 

From these measured data one can evaluate the shear 
rate by using the Rabinowitsch formula 

ρπ
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the shear stress 
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and the dynamic viscosity 

γ
τ

=η
ɺ

. 

The calculated flow characteristics (γɺ ,  τ , η ) are 

represented in Table 2-4 for different temperature values. 
 

γɺ  τ(160) η (160) ϑ (160) 1000/T(160) 

236.862 182304 769.7 162.2 2.29695 

473.724 219440 463.2 162.7 2.29431 

750.063 241384 321.8 163.5 2.29011 

967.187 261640 270.5 164.2 2.28645 

1223.79 273456 223.45 164.6 2.28436 

Table 2. Flow characteristics at Co160  

 
In Fig. 1 the measured pressure vs. extruder mass flow is 
shown for 160°C. The logarithm of the pressure vs. 
logarithm mass flow can be represented approximately 
by straight line (see Fig. 2) for the same temperature. 
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γɺ  τ(170) η (170) ϑ (170) 1000/T(170) 

236.862 168800 712.7 173.4 2.23934 

481.619 202560 420.6 173.7 2.23784 

750.063 227880 303.8 174.3 2.23484 

967.187 244760 253.1 174.5 2.23384 

1243.53 261640 210.4 175.3 2.22985 

Table 3. Flow characteristics at Co170  

 
γɺ  τ(180) η (180) ϑ (180) 1000/T(180) 

236.862 156984 662.8 183.6 2.18933 

493.463 194120 393.4 184.5 2.18503 

750.063 219440 292.6 184.8 2.18360 

967.187 227880 235.6 185.1 2.18217 

1243.53 244760 196.8 185.3 2.18122 

Table 4. Flow characteristics at Co180  

 
If a logarithmic plot of P3 versus G is gathered then the 
points are well approximated by a straight line (see Fig. 
2) and from the slope of the line the power-law exponent 
n  can be found: 

 

160 oC    0.24776 
170 oC    0.26555 
180 oC    0.26694 
 

It seems that n  is temperature dependent. For simplicity 
we take it constant with the average value: n =0.26. 
 

 
Figure 1. 

 

 
Figure 2. 

 
Figure 3. 

 

 
Figure 4. 

 
On Fig. 3 the shear stress vs. shear rate is illustrated at 
160°C (solid line), 170°C (dashed line) and 180°C 
(dotted line). The viscosity vs. shear rate is exhibited at 
different temperatures: 160°C (solid line), 170°C 
(dashed line) and 180°C (dotted line) in Fig. 4. 

Points ( )τγ,ɺ  and ( )ηγ ,ɺ  are well approximated by power 

expressions. Shear stress (τ) and viscosity (η) v.s. shear 
rate at 160°C steel temperature are displayed in Fig.5. 
 

 
Figure 5. 
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 The point set ( )ηγ ,ɺ  can be approximated by power 

functions of the form: 
 

  160 oC   7524042277 .−γ=η ɺ  

  170 oC   7354039628 .−γ=η ɺ  

  180 oC   7331036785 .−γ=η ɺ  
 

The density was measured 3920 cm/g=ρ . We note 

that 3919 cm/g=ρ  is given by the Slovnaft [16]. The 

specific heat pc  is determined by DSC measurement for 

polymer melt at 160 oC 

 

Kkg/kJ.cp 282=  

which shows good correlation with Kkg/kJ.cp 32=  

found in the literature [14]. 
 

 
Figure 6. 

 
In Fig. 6 ln(P3) v.s. reciprocal temperature is plotted of 
PE extrusion when the parameter is the screw speed 
(rpm). The graph is plotted using the measured mass-
temperature in front of the die. Because the output (mass 
flow) is almost independent of the temperature, depends 
on the screw speed only, the pressure can be used for 
energy of activation calculations. The heat dependence 
of the viscosity is exhibited on Fig.6 is found to be 
suitable approximated by the Arrhenius-law (1). The 
linear approximations of the plots are the following: 
 

20=n            ]mol/kJ[
T

..Pln
1

38801494613 +=   

40=n           ]mol/kJ[
T

..Pln
1

25001280023 +=  

80=n           ]mol/kJ[
T

..Pln
1

32461015723 +=  

100=n          ]mol/kJ[
T

..Pln
1

37101986013 +=  

In the further calculations the average of the slopes 1.388 
will be applied. Then one can obtain the energy of 
activation: mol/kJ.A 0811=  

 
 

4   Numerical Results 
 
In this section we apply the previous theoretical results 
to the study of the temperature distribution along the 
capillary. 
Equation (11) is solved for the dimensionless 
temperature θ  subject to the boundary conditions 
 

( )
2

0

0310
T

TT

Rn

A w −
=−θ , 

 

0)0(' =θ . 
 

Calculations for the LDPE, characterized in Section 3, 
were carried out with following data: 
 

mml 30= , 

 

mmR 10 = . 
 

The calculated temperature profiles are presented in Fig. 
7 at 160oC for different screw speeds. 
 

 
Figure 7. 
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At the center of the capillary the temperature increase is 
presented in Table 5 for 160°C, 170°C and 180 °C steel 
temperature and for different screw speed values. The 
numerical results show that even in the examined few 

hundred [ 1−s ] shear rate the temperature growth is 
remarkable. In case of heat sensible materials the heat 
increase can cause serious manufacturing problems.  
 

n  
[rpm] 

)160(T∆  

[K] 

)170(T∆  

[K] 

)180(T∆  

[K] 

20 2.719 2.382 2.223 

40 7.492 6.341 6.976 

60 13.852 13.248 15.508 

80 33.226 24.496 21.466 

Table 5. 
 
 

5   Conclusion 
In this paper solutions are given for flows of power-law 
fluids with heat dependent viscosity. The results are 
applied for a polymer, for a commercial, general purpose 
grade of low density polyethylene. The rheological 
characterization of this material is discussed in Section 
3. The assumptions are made that the capillary is 
sufficiently long for the attainment of a steady profile. 
The power-law constant n  is calculated from the slope 
of a best fitting straight line on a logarithmic flow 
volumetric rate-pressure plot. The temperature growth is 
determined numerically at the center of the capillary for 
isotherm boundary condition. 
 

List of symbols: 
 

pc  specific heat  [J/kg K] 

k  heat conductivity  [W/m K] 
l  length of capillary  [mm] 
n  power-law index  [ - ] 
n  srew speed    [rpm] 
A  activation energy  [J/mol] 
G  mass flow   [g/min] 

3P  pressure   [bar] 
R  gas constant   8.314 [J/mol K] 

0R  capillary radius   [mm] 

0T  reference temperature 400 [K] 

θ  mass temperature  [K] 
ρ  density   [g/cm3] 
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