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Abstract: - Skeletal muscle force can be estimated using surface electromyographic (sEMG) signals. Usually, the 
sEMG location for the sensors is near the respective muscle motor unit points. Skeletal muscles generate a temporal 
and spatial distributed EMG signal, which causes cross talk between different sEMG signal sensors. In this paper, an 
array of three sEMG sensors is used to capture the information of muscle dynamics in terms of sEMG signals and 
generated muscle force. The recorded sEMG signals are filtered utilizing optimized nonlinear Half-Gaussian Bayesian 
filter, and a Chebyshev type-II filter prepares the muscle force signal. The filter optimization is accomplished using 
Genetic Algorithm (GA). Multi nonlinear Auto Regressive eXogenous (ARX) and Wiener-Hammerstein models with 
different nonlinearity estimators/classes are obtained using system identification (SI) for three sets of sensor data. The 
outputs of these models are fused with a probabilistic Kullback Information Criterion (KIC) for model selection and an 
adaptive probability of KIC. First, the outputs are fused for the same sensor and for different models and then the final 
outputs from each sensor. The final fusion based output of three sensors provides good skeletal muscle force estimates. 
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1   Introduction 
     Aftereffects of the loss of upper limbs are a reduction 
of functionality and psychological disturbance for the 
person. According to [1] there are 1.7 million peoples 
with amputation in the United States and this number is 
on rise after the Afghanistan and Iraq war in 2003 [2]. 
Conversely, a prosthetic limb can considerably increase 
the functionality of an amputee and benefit the person in 
everyday life. 
     In the past, there have been various research works 
towards prosthetic hand design, having similar 
functionality and appearance as human hand [3-4]. Most 
of these research works are based on electromyography 
(EMG). The EMG signal is activated and controlled by 
the central nervous system, which depends on the flow 
of specific ions such as sodium (𝑁𝑎+), potassium (𝐾+) 
and calcium (𝐶𝑎++). 
     An EMG signal recorded on the surface of the limb is 
expressed as an electric voltage ranging between -5 and 
+5 mV. This method is known as surface 
electromyography (sEMG). sEMG is utilized as an input 
to the controller to realize the movements of the 
prosthesis and force control [5-6]. Past research results 
show that EMG signal amplitude generally increases 
with skeletal muscle force. However, this relationship is 
not always rigid; various factors affect this relationship. 

EMG signals are a result of the varying motor unit 
recruitments, crosstalk, and biochemical interaction 
within the muscular fibres. This makes EMG signals 
random, complex and dynamic in nature and the control 
of the prosthesis difficult. Moreover, it changes 
continuously due to the onset and progression of muscle 
fatigue which results because of continuous high 
frequency stimulation or because of titanic stimulation 
[7]. Synchronization of active motor units along the 
muscle fibres, and a decrease in conduction velocity are 
reflected in the EMG signal as an increase of amplitude 
in time domain and a decrease of medium frequency in 
frequency domain [8]. All these factors make the 
relationship between EMG and force nonlinear. Correct 
interpretation of EMG signal is vital to achieve precise 
motion and force control of prosthesis. 
     The present work presents a novel approach to 
estimate skeletal muscle force using an adaptive multi-
sensor data fusion algorithm with hybrid nonlinear ARX 
and Wiener-Hammerstein models. Here, an array of 
three sEMG sensors is used to capture the information of 
muscle dynamics in terms of sEMG signals. The 
recorded sEMG signals are filtered utilizing optimized 
nonlinear Half-Gaussian Bayesian filter parameters, and 
the skeletal muscle force signal is filtered by using a 
Chebyshev type-II filter. A simple Genetic Algorithm 
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code is used to optimize the Bayesian filter parameters. 
Using an input/output approach, the EMG signal 
measured at the skin surface is considered as input to the 
skeletal muscle, whereas the resulting hand/finger force 
constitutes the output. Multi nonlinear ARX and 
Wiener-Hammerstein models with different nonlinearity 
estimators/classes are obtained using SI for three sets of 
sensor data obtained from the vicinity of a single motor 
unit. Different nonlinearity estimators/classes are used 
for nonlinear modeling as they capture the dynamics of 
the system differently. The outputs of estimated 
nonlinear models are fused with a probabilistic Kullback 
Information Criterion (KIC) for model selection and an 
adaptive probability of KIC. First, the outputs are fused 
for the same sensor and for different models and then the 
final outputs from each sensor. The final fused output of 
three sensors provides good skeletal muscle force 
estimates. 
 

 
Fig. 1: The Flow Chart for Skeletal Muscle Force Estimation. 
 
     Fig. 1 shows the flow chart for skeletal muscle force 
estimation. This paper is structured as follows. First, the 
experimental set-up, pre-processing and filter parameter 
optimization for sEMG signals are discussed. Second, 
nonlinear ARX and Wiener-Hammerstein modeling are 
covered. Third, the fusion of various nonlinear model outputs 

using KIC and adaptive probability of KIC is covered. Finally, 
the results, discussion and future work are provided followed 
by a conclusion to summarize the importance of this work. 
 
2   Experimental Set-Up and Pre-
Processing 
     The experimental set-up is shown in Fig. 2. Both 
sEMG and muscle force signals were acquired 
simultaneously using LabVIEW™ at a sampling rate of 
2000 Hz. The sEMG data capturing was aided by a 
DELSYS® Bagnoli-16 EMG system with DE-2.1 
differential EMG sensors. The corresponding force data 
was captured using Interlink Electronics FSR 0.5” 
circular force sensor. One sEMG sensor was placed on 
the motor point of the ring finger and two adjacent to 
the motor point of a healthy subject. Prior to placing the 
sEMG sensors, the skin surface of the subject was 
prepared according to International Society of 
Electrophysiology and Kinesiology (ISEK) protocols. 
 

 
Fig. 2: Experimental Set-Up. 

 
     According to previous research, the Bayesian based 
filtering method yields the most suitable sEMG signals 
[9]. The nonlinear filter significantly reduces noise and 
extracts a signal that best describes EMG signals and 
may permit effective use in prosthetic control. An 
instantaneous conditional probability density 𝑃(𝐸𝑀𝐺|𝑥) 
provides the resulting EMG for the latent driving signal 
𝑥 [9]. The model for the conditional probability of the 
rectified EMG signal 𝑒𝑚𝑔 =  |𝐸𝑀𝐺| is used in this 
current estimation algorithm. EMG signals are usually 
described as amplitude-modulated zero mean Gaussian 
noise sequence [10]. For the rectified EMG signal, the 
“Half-Gaussian measurement model” in [9] is given by 
Equation (1). 
𝑃(𝑒𝑚𝑔|𝑥) = 2 ∗ 𝑒𝑥𝑝(−𝑒𝑚𝑔2

2∗𝑥2
)/(2 ∗ 𝜋 ∗ 𝑥2)1/2.        (1) 

     The EMG signal is modeled for the conditional 
probability of the rectified EMG signal as a filtered 
random process with random rate. The likelihood 
function for the rate evolves in time according to a 
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Fokker–Planck partial differential equation [9]. The 
discrete time Fokker–Planck Equation is given by 
equation (2).  
𝑝(𝑥, 𝑡−) ≈ 𝛼 ∗ 𝑝(𝑥 − 𝜀, 𝑡 − 1) + (1 − 2 ∗ 𝛼) ∗ 𝑝(𝑥, 𝑡 −
1) + 𝛼 ∗ 𝑝(𝑥 + 𝜀, 𝑡 − 1) + 𝛽 + (1 − 𝛽) ∗ 𝑝(𝑥, 𝑡 − 1).                       
                                                                                      (2)  
Here, 𝛼 and 𝛽 are two free parameters, 𝛼 is the expected 
rate of gradual drift in the signal, and 𝛽 is the expected 
rate of sudden shifts in the signal. The unknown driving 
signal 𝑥 is discretized into bins of width 𝜀. These two 
free parameters of the non-linear Half-Gaussian filter 
model are optimized for the acquired EMG data using 
elitism based GA. 
     A Chebyshev type II low pass filter with a 550 Hz 
pass frequency is used to filter the force signal. Fig. 3 
depicts the raw and Chebyshev type-II low pass filtered 
force signals. 
 

 
Fig. 3: (a) Raw and (b) Chebyshev Type-II Filtered 
Skeletal Muscle Force Signals. 
 
3   Nonlinear ARX and Wiener-
Hammerstein Modeling 
     In this paper, we are using nonlinear ARX and 
Wiener-Hammerstein models with different nonlinearity 
estimators/classes to model three sEMG sensors data as 
input and skeletal muscle force data as output. The 
nonlinear ARX model uses a parallel combination of 
nonlinear and linear blocks [11]. 
     Fig. 4 shows the nonlinear ARX model structure. The 
nonlinear ARX model uses regressors as variables for 
nonlinear and linear functions. Regressors are functions 
of measured input-output data [11]. The predicted output 
𝑦�(𝑡) of a nonlinear model at time 𝑡 is given by the 
general Equation (3): 
𝑦�(𝑡) = 𝐹(𝑥(𝑡))                                                            (3)  
where 𝑥(𝑡) represents the regressors, 𝐹 is a nonlinear 
regressor command, which is estimated by nonlinearity 
estimators/classes [11]. As shown in Fig. 4, the 
command 𝐹 can include both linear and nonlinear 
functions of 𝑥(𝑡). Equation (4) gives the description of 
𝐹. 
𝐹(𝑥) = ∑ 𝛼𝑘𝑑

𝑘=1 𝜅(𝛽𝑘(𝑥 − 𝛾𝑘))                                  (4) 

where 𝜅 is the unit nonlinear command, 𝑑 is the number 
of nonlinearity units, and 𝛼𝑘 , 𝛽𝑘 and 𝛾𝑘 are the 
parameters of the nonlinearity estimators/classes [11]. 
 

 
Fig. 4: Nonlinear ARX Model Structure. 

      
     The Wiener-Hammerstein model uses one or two 
static nonlinear blocks in series with a linear block. 
Structural representation of a nonlinear Wiener-
Hammerstein is shown in Fig. 5 [11]. 
 

 
Fig. 5: Nonlinear Wiener-Hammerstein Model Structure. 
 
     The general Equations (5), (6), and (7) can describe 
the Wiener-Hammerstein structure [11]. 
𝑤(𝑡) = 𝑓(𝑢(𝑡))                                                           (5) 
𝑥(𝑡) = 𝐵𝑗,𝑖(𝑞)

𝐹𝑗,𝑖(𝑞)𝑤(𝑡)                                                       (6) 

𝑦(𝑡) = ℎ(𝑥(𝑡)).                                                           (7) 
where 𝑢(𝑡) and 𝑦(𝑡) are input and output of the system, 
respectively, 𝑓 and ℎ are nonlinear functions, which 
corresponds to input and output nonlinearity, 
respectively, 𝑤(𝑡) and 𝑥(𝑡) are internal variables, where 
𝑤(𝑡) has the same dimensions as 𝑢(𝑡) and 𝑥(𝑡) has the 
same dimensions as 𝑦(𝑡), and 𝐵(𝑞) and 𝐹(𝑞) 
corresponds to the linear dynamic block, these are 
polynomials in the backward shift operator. 
     The nonlinearity classes used in this work are 
Wavenet, Treepartition, Sigmoidnet, Pwlinear, 
Saturation, and Deadzone. For motor point and ring1 
sensors, three nonlinear ARX and four nonlinear 
Wiener-Hammerstein models with different nonlinearity 
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estimators/classes are obtained. For ring2 sensor, three 
nonlinear ARX and five nonlinear Wiener-Hammerstein 
models with different nonlinearity estimators/classes are 
obtained. 
 
4   Data Fusion and Adaptive KIC 
Probability 
     Data fusion of multiple outputs of nonlinear ARX 
and Wiener-Hammerstein models is done by assigning a 
particular probability to each individual model [12]. 
First, the fusion algorithm is applied to the outputs of 
different nonlinear ARX and Wiener-Hammerstein 
models for each sensor obtained using different 
nonlinearity estimators. Second, the fusion algorithm is 
again applied to the final fusion based outputs of each 
sensor; this gives good force estimate. SI model fit 
value gives the probability for each model, which is 
given by �1− |𝑌−𝑌�|

|𝑌−𝑌�|� ∗ 100. The model selection 
criterion used in this paper is KIC. The sum of two 
directed divergences, which is the measure of the 
models dissimilarity, is known as Kullback’s symmetric 
or J-divergence [13], as given by Equation (8). 
𝐾𝐼𝐶(𝑝𝑖) = 𝑛

2
log𝑅𝑖 + (𝑝𝑖+1)𝑛

𝑛−𝑝𝑖−2
− 𝑛𝜓�𝑛−𝑝𝑖

2
� + 𝑔(𝑛),   (8) 

where 𝑔(𝑛) = 𝑛 ∗ log(𝑛/2). 
     The following fusion algorithm as given by [12] is 
applied for data fusion of the outputs of different 
nonlinear ARX and Wiener-Hammerstein models: 
1) Identify models 𝑀1, 𝑀2, … ,𝑀𝑘 using sEMG data 
(𝑢) as input and force data (𝑌) as output, for 𝑘 number 
of sensors collecting data simultaneously. 
2) Compute the residual square norm  

𝑅𝑖 = �𝑌 −Φ𝑖Θ�𝑖�
2 = �𝑌 − 𝑌��, where 

Θ�𝑖 = {Φ𝑖
𝑇Φ𝑖}−1Φ𝑖

𝑇𝑌, and 

 Φ =

⎣
⎢
⎢
⎢
⎡ 𝑌𝑝
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⋮
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⎥
⎤
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3) Calculate the model criteria coefficient using 
Equation (8). 

4) Compute the model probability 𝑝(𝑀𝑖|𝑍) = 𝑒−𝑙𝑖

∑ 𝑒−𝑙𝑗𝑘
𝑗=1

, 

where 𝑙 is model selection criterion, i.e. 𝐾𝐼𝐶(𝑝𝑖). 
5) Compute the fused model output 
𝑌�𝑓 = ∑ 𝑝(𝑀𝑖|𝑍)𝑌�𝑖𝑘

𝑖=1 . 
6) Compute the overall model from 𝑌�𝑓 and force data. 
Here all the computation from step 2) to 6) is adaptive 
i.e. the residual square norm, 𝐾𝐼𝐶(𝑝𝑖), model 
probability 𝑝(𝑀𝑖|𝑍), and fused model output 𝑌�𝑓 are 
being updated with time or for each data point. Fig. 6 

shows the flow chart for fusion of outputs and adaptive 
probability of KIC. 
 

 
Fig. 6: Data Fusion and Adaptive KIC Probability. 

 
5   Results, Discussion and Future Work 
     This section deals with the results, discussion and 
future work. The following plots show the nonlinear 
(ARX and Wiener-Hammerstein) model and adaptive 
fusion algorithm based estimated force output for each 
sensor first and then finally combined adaptive fusion 
based output for all three sensors. Fig. 7 shows the 
overlapping plot of the original and adaptive fusion 
based force output for the motor point sensor. The 
output is the result of the adaptive fusion algorithm on 
three nonlinear ARX and four nonlinear Wiener-
Hammerstein models for the motor point sensor signal. 
 

 
Fig. 7: Original and Fusion Based Output for Motor 

Point Sensor. 
     Fig. 8 shows the overlapping plot of the original and 
adaptive fusion based force output for ring1 sensor. The 
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output is the result of adaptive fusion algorithm of three 
nonlinear ARX and four nonlinear Wiener-Hammerstein 
models for ring1 sensor signal. 
 

 
Fig. 8: Original and Fusion Based Output for Ring1 

Sensor. 
 

     Fig. 9 shows the overlapping plot of the original and 
adaptive fusion based force output for ring2 sensor. The 
output is the result of adaptive fusion algorithm on three 
nonlinear ARX and five nonlinear Wiener-Hammerstein 
models for ring2 sensor signal. 
 

 
Fig. 9: Original and Fusion Based Output for Ring2 

Sensor. 
 

  
Fig. 10: Final Plot - Original and Fusion Based Output 

for All Three Sensors. 
 
     Fig. 10 shows the overlapping plot of the original and 
final combined adaptive fusion based force output for 

motor point, ring1 and ring2 sensors. The output is the 
result of adaptive fusion algorithm on the final outputs 
of three sensors i.e. motor point, ring1 and ring2 as 
shown in Fig. 7 to 9. Fig. 10 shows the best skeletal 
muscle force estimate, which is the result of the multi 
nonlinear ARX and Wiener-Hammerstein models and an 
adaptive hybrid data fusion on these nonlinear models. 
Fig. 11 shows the error plot of the original and best-
estimated model output for the motor point sensor.   

 

 
Fig. 11: Error Plot – Original and Best-Estimated Model 

Output for Motor Point Sensor. 
 

     Fig. 12 shows the error plot of original and final 
multi nonlinear modeled and adaptive hybrid data fusion 
based force estimate (results from three sensors, 
nonlinear modeling and adaptive data fusion algorithm). 
If we compare Fig. 11 and 12, it is very clear and 
conspicuous that the error has decreased remarkably and 
is very close to zero. 
 

 
Fig. 12: Final Error Plot – Original and Fusion Based 

Output for Motor Point, Ring1 and Ring2 Sensors. 
 
     Future work will focus on the improvement of the 
data collection techniques and experimental set-up. By 
using the combination of linear and nonlinear modeling, 
and adaptive hybrid data fusion, the skeletal muscle 
force estimate can be improved further. Furthermore, the 
authors believe that by using different model selection 
criteria such as Akaike Information Criterion (AIC), 
Kullback Information Criterion (KIC) and the Bayesian 
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Information Criterion (BIC) together to obtain final 
skeletal muscle force estimate will give improved 
results. 
 
6   Conclusion 
     sEMG and force data acquired using three EMG and 
one common FSR force sensor is modeled using 
nonlinear SI. Using different nonlinearity 
estimators/classes, multi nonlinear ARX and Wiener-
Hammerstein models are obtained for each sensor. First, 
the outputs of different models for each sensor are fused 
with a data fusion algorithm and an adaptive KIC 
probability. Finally, the fused outputs from each sensor 
are again fused with same algorithm and adaptive KIC 
probability. The final estimated force using this 
technique gives the best estimate. 
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