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Abstract: - A scale invariant model of statistical mechanics is applied to describe a modified statistical theory 
of turbulence and its quantum mechanical foundations. Hierarchies of statistical fields from cosmic to Planck 
scale are described. Energy spectrum of equilibrium isotropic turbulence is shown to follow Planck law. 
Predicted velocity profiles of turbulent boundary layer over a flat plate at four consecutive scales of LED, 
LCD, LMD, and LAD are shown to be in close agreement with the experimental observations in the literature. 
The physical and quantum nature of time is described and a scale-invariant definition of time is presented and 
its relativistic behavior is examined.  New paradigms for physical foundations of quantum mechanics as well 
as derivation of Dirac relativistic wave equation are introduced.  
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1 Introduction 
It is well known that the laws of nature appear to 
reveal ever increasing similarities over a broad 
range of scales of space and time from the 
exceedingly large scale of cosmology to the minute 
scale of quantum optics (Fig.1).  The similarities 
between stochastic quantum fields [1-17] and 
classical hydrodynamic fields [18-29] resulted in 
recent introduction of a scale-invariant model of 
statistical mechanics [30], and its application to 
thermodynamics [31] and fluid mechanics [32].   
 More recently, the implication of the model to 
the statistical theory of turbulence [33, 34] was 
investigated.  In the present study the physical 
foundations of the problems of turbulence and 
quantum mechanics are further examined. 
Homogenous isotropic turbulence is identified as a 
spectrum of eddies (energy levels) with Gaussian 
velocity distribution, Planck energy distribution, 
and Maxwell-Boltzmann speed distribution.  The 
nature of dissipation spectrum of isotropic 
turbulence is examined and a derivation of Dirac 
relativistic wave equation is presented. 
 

2 A Scale Invariant Model of 
Statistical Mechanics  
Following the classical methods [35-39] the 
invariant definitions of density , and velocity of 
atom u, element v, and system w at the scale  
are given as [31] 
ρ n m m f du                    1 u v  (1) 

1m f d

    
  v u



 

Similarly, the invariant definition of the peculiar and 
diffusion velocities are introduced as  



u

            
 1 w v  (2) 
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such that   


1 
V V  (4) 



 For each statistical field, one defines particles that 
form the background fluid and are viewed as point-
mass or "atom" of the field.  Next, the elements of the 
field are defined as finite-sized composite entities 
composed of an ensemble of "atoms" as shown in 
Fig.1.   
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Fig.1 A scale invariant view of statistical mechanics 
from cosmic to tachyon scales.  
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Finally, the ensemble of a large number of 
"elements" is defined as the statistical "system" at 
that particular scale.        
 

3 Scale Invariant Forms of the 
Conservation Equations for 
Chemically Reactive Fields  
Following the classical methods [35-37], the scale-
invariant forms of mass, thermal energy, linear and 
angular momentum conservation equations at scale 
 are given as [40] 
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that involve the volumetric density of thermal 
energy , linear momentum , and 

angular momentum

ρ h    ρ p
ρ    .  Also,  is the 

chemical reaction rate,  is the absolute enthalpy 
[40],  

h
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h c d
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T

and  is the stress tensor [35] ijP
 

ijβ β iβ iβ jβ jβ β βm (  )(  )f du  P u v u v
                       

(10)
  

In the derivation of (7) we have used the definition 
of the peculiar velocity (3) along with the identity 
 
 

i j i i i j j i j i( )( ) j         
      V V u v u v u u v v   (11) 

 

 The classical definition of vorticity involves 
the curl of linear velocity  v   thus giving 
rotational velocity a secondary status in that it 
depends on translational velocity v.  However, it is 
known that particle’s rotation about its center of 
mass is independent of the translational motion of its 
center of mass.  In other words, translational, 
rotational, and vibrational (pulsational) motions of 
particle are independent degrees of freedom that 
should not be necessarily coupled.  To resolve this 

paradox, the iso-spin of particle at scale  is defined as 
the curl of the velocity at the next lower scale of 
 
 

1     v u  (12) 
 

such that the rotational velocity, while having a 
connection to some type of translational motion at 
internal scale  retains its independent degree of 
freedom at the external scale  as desired. A schematic 
description of iso-spin and vorticity fields is shown in 
Fig.2. The nature of galactic vortices in cosmology 
and the associated dissipation have been discussed [25, 
42]. 
 
 

   
 
 

Fig.2 Description of internal (iso-spin) versus 
external vorticity fields in cosmology [41].  
 
 The local velocity in (5)-(8) is expressed in 

terms of the convective  and the diffusive 
v
w V  

velocities [40]  

 

g   w v V            (13a)g D ln( )   V  
 

tg   w v V            (13b)tg ln( )   V  
 

hg   w v V       hg ln( )   V p  (13c) 
 

rhg   w v V        rhg ln( )   V π  (13d) 
 

 

where (Vg, Vtg, Vhg, Vrhg) are respectively the 
diffusive, the thermo-diffusive, the translational and 
rotational hydro-diffusive velocities.  
 Because by definition fluids can only support 
compressive normal forces, no shear forces, the total 
stress tensor for fluids is expressed as [40] 
 
 

ij ij ij lk lk ijp 2      P v e 
        ij ij ijp     v v  

    

Making the conventional Stokes assumption, i.e. 
setting the bulk viscosity b to zero, the two Lame 
constants will be related by [43] 

(14)

2 0
3

  b        (15)  
 

and (14) reduces to [40] 
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that involves thermodynamic pt and hydrodynamic 
ph pressures [40].  Following the classical methods 
[35-37], by substituting from (13)-(16) into (5)-(8) 
and neglecting cross-diffusion terms the invariant 
forms of conservation equations are written as [40] 
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The main new feature of the modified form of the 
equation of motion (19) is its linearity due to the 
difference between the convective w versus the local 
velocity v.  The linearity of (19) in harmony with 
Carrier equation [44] resolves the classical paradox 
of drag reciprocity [45, 46]. 
 

4 A Modified Statistical Theory of 
Turbulence 
The invariant model of statistical mechanics (1)-(4) 
suggests that all statistical fields shown in Fig.1 are 
turbulent fields and governed by (5)-(8) [33, 34]. 
First, let us start with the field of laminar molecular 
dynamics LMD when molecules, clusters of 
molecules (cluster), and cluster of clusters of 
molecules (eddy) form the “atom”, the “element”, 
and the “system” with the velocities .  
Similarly, the fields of laminar cluster-dynamics 
LCD and eddy-dynamics LED will have the 
velocities , and  in 
accordance with (1)-(2).  For the fields of LED, 
LCD, and LMD, typical characteristic “atom”, 
element, and system lengths are 

m m m( ,  , )u v w

e e e( ,  , )u v wc c c( ,  , )u v w

 

EED      (21a) 
5 3 1

e e e( ,  , L ) (10 , 10 ,  10 ) m   

ECD     (21b) 7 5 3
c c c( ,  , L ) (10 , 10 ,  10 ) m   

EMD   
 

(21c) 9 7 5
m m m( ,  , L ) (10 , 10 ,  10 ) m   

 
 

If one applies the same (atom, element, system) = 
( ,  , L )    relative sizes in (21) to the entire 
spatial scale of Fig.1, then the resulting cascades or 

hierarchy of overlapping statistical fields will appear 
s schematically shown in Fig.3.   a  
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Fig.3 Hierarchy of statistical fields with ( ,  , L )    
from cosmic to Planck scales [34].  
 
 
 

According to Fig.3, starting from the hydrodynamic 
scale  after seven generations of 
statistical fields one reaches the electro-dynamic scale 
with the element size , and exactly after seven 
more generations one reaches the Planck length scale 

, where G is the gravitational 
constant. Similarly, seven generations of statistical 
fields separate the hydrodynamic scale 

 from the scale of planetary 
dynamics (astrophysics)  and the latter from 
galactic-dynamics (cosmology) m. 

3 1 1 3(10 10 10 10,  ,  ,  ) 

1710

353 1/ 2/ c 10) m

3 1 1 310 10 10, , , ) 

10

( G

(10
17

3510
 The left hand side of Fig.1 corresponds to 
equilibrium statistical fields when the velocities of 
elements of the field are random since at 
thermodynamic equilibrium particles i.e. oscillators 
of such statistical fields will have normal or 
Gaussian velocity distribution.  For example, for 
stationary homogeneous isotropic turbulence at EED 
scale, the experimental data of Townsend [47] 
confirms the Gaussian velocity distribution of eddies 
as shown in Fig.4. 
  

 
 

Fig.4 Measured velocity distribution in isotropic 
turbulent flow [47].  
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Because at thermodynamic equilibrium the mean 
velocity of each particle, Heisenberg-Kramers 
virtual oscillator [48], vanishes <u> = 0 the energy 
of particle oscillating in two directions (x+, x-) is 
expressed as  
 

2 2
x xm u / 2 m u / 2              

          (22) 2 2 1/2 2 1/2
xm u p             

 

where m<u2
x>1/2 = <p> is the root-mean-square 

momentum of particle and <u2
x> =<u2

x> by 
equipartition principle.  At any scale , the result 
(22) can be expressed in terms of either frequency 
or wavelength  
 

2 2 1/ 2 2 1/ 2m u p h                 





h k

     (23) 
 

2 2 1/ 2 2 1/ 2m u p k                       (24) 
 
when the definition of stochastic Planck and 
Boltzmann factors are introduced as [33] 
 

2 1/ 2h p                (25) 
 

2 1/ 2k p               (26) 
 

 At the important scale of EKD (Fig.1) 
corresponding to Casimir vacuum [49] composed 
of photon gas, the universal constants of Planck 
[50, 51] and Boltzmann [31] are obtained from 
(23)-(24) as 
 

2 1/ 2 34
k k kh h m c 6.626 10       J-s (27) 

 

2 1/ 2 23
k k kk k m c 1.381 10       J/K (28) 

 

Next, following de Broglie hypothesis for the 
wavelength of matter waves [2]  
 

h / p    (29) 
 

the frequency of matter waves is defined as [31] 
 

k / p              (30) 
 

When matter and radiation are in the state of 
thermodynamic equilibrium (29) and (30) can be 
expressed as 
 

kh h    ,         (31) kk k  
 
 The definitions (27) and (28) result in the 
gravitational mass of photon [31] 
 
 

3 1/ 2 41
km (hk / c ) 1.84278 10    kg    (32) 

 

that is much larger than the reported value of 
514 10  kg [52].  The finite gravitational mass of 

photons was anticipated by Newton [53] and is in 
accordance with the Einstein-de Broglie theory of 
light [54-58].  Avogardo-Loschmidt number was 
predicted as [31]  
 

o 2
kN 1/(m c ) 6.0376 10   23

2
x

                   (33) 
 

leading to the modified value of the universal gas 
constant  

 
o oR N k 8.338    kJ/(kmol-K)     (34) 

 

 The classical definition of thermodynamic 
temperature that is based on two degrees of freedom  
 

2
xkT m u 2m u             (35) 

 

was recently modified to a new definition based on 
single degree of freedom [59] 
 

2
xkT m u                (36) 

 

such that  
 

T 2T                (37) 
 

The factor 2 in (37) results in the predicted speed of 
sound in air [60] 
 

2 1/2
xa u p / (2 ) 357       m/s      (38) 

 

in close agreement with observations.  Therefore, the 
square root of 2 in (38) resolves the classical problem 
of Newton concerning his prediction of velocity of 
sound as 
 

p /a               (39) 
 

discussed by Chandrasekhar [61]  
 
 

“Newton must have been baffled, not to say 
disappointed.  Search as he might, he could find no 
flaw in his theoretical framework—neither could 
Euler, Lagrange, and Laplace; nor, indeed, anyone 
down to the present” 
 

 The factor of 2 in (37) also leads to the modified 
value of the mechanical equivalent of heat J [59] 
 

cJ 2J 2 4.169 8338    J/(kcal)    (40) 

where the value [kJ/kcal] is the 
average of the two values Jc = (4.15, 4.19) reported 
by Pauli [62].  The number in (40) is thus identified 
as the universal gas constant (34) when expressed in 
appropriate MKS system of units  

cJ 4.169 4.17 

 

o oR kN 8338        J/(kmol-K)            (41) 
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The modified value of the universal gas constant 
(41) was recently identified [63] as De Pretto 
number 8338 that appeared in the mass–energy 
equivalence equation of De Pretto [64] 
 

2 2Joules E mc      = mc / 8338    kcal   (42) 

5 Energy Spectra of Isotropic 
Turbulence given by Planck Energy 
Distribution Law  
The field of isotropic homogeneous turbulence is 
identified as equilibrium eddy dynamics EED, 
Fig.1, with turbulent eddies defined as clusters of 
molecular clusters constituting the elements of the 
field.  In a recent investigation [33], it was shown 
that the energy spectrum of eddies in isotropic 
turbulence is governed by invariant Planck energy 
distribution law [33, 50]  
 

3

h / kT3

dN 8 h
d

u e 1
 



    


 
 

V
                      (43) 

 

schematically shown in Fig.5. 
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Fig.5 Planck energy distribution law governing the 
energy spectrum of eddies at the temperature T = 
300 K. 
      
 From application of Boltzmann distribution of 
molecules in clusters and clusters in eddies it was 
found that [33] 

h / kT

g

e 1
N




 


                       (44) 

 

that along with Rayleigh-Jeans number for 
degeneracy [51, 65, 66] 
 

3
28
d

u
dg  



 


 

V
                       (45) 

 

and  = h give (43).  It is interesting to examine 
a new interpretation of (45) that is directly relevant 
to number of particles rather than being derived 
from field quantization [67].  To this end the 

number of degeneracy of particles, Heisenberg-
Kramers oscillators [48], in volume VS is written as 

3
S2g /  V                         (46) 

where 3
  is the volume occupied by each oscillator 

and the factor 2 comes from allowing particles to 
have two modes either (up) or (down) iso-spin 
(polarization). Spherical volume VS and rectangular 
volume V are related as 
 

3 3
S

4 4 4R L
3 3 3
  

  V V                       (47) 

 For systems in thermodynamic equilibrium 
temperature 23kT m u    

1/2 2 1/2 2
 

 will be constant and 

hence 2 1/2u        or 
 

/u                          (48) 
 

Substituting from (47) and (48) into (46) results in 
 

3
38g

3u

 


 

V
                      (49) 

 

that leads to the number of oscillators between 
frequencies   and d     

3
28dg d

u

  


  

V
                     (50) 

in accordance with (45). 
 With Gaussian velocity distribution, Fig.4, the 
same chain of reasoning as employed in the classical 
kinetic theory of gas requires that the distribution of 
the speeds of oscillators (eddies) in stationary 
isotropic turbulence be given by the invariant 
Maxwell-Boltzmann distribution function  
 

2m u / 2kTu 3/ 2 2dN m
4  ( ) u  e du

N 2 kT
   

 



 


         (51) 

 

By (51), one arrives at a hierarchy of embedded 
Maxwell-Boltzmann distribution functions for EED, 
ECD, and EMD scales shown in Fig.6.  
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 Fig.6 Maxwell-Boltzmann speed distribution viewed as 
stationary spectra of cluster sizes for EED, ECD, and 
EMD scales at 300 K [33]. 
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 To summarize, at equilibrium the statistical 
fields of any scale shown on the left-hand-side of 
Fig.1 will have elements with (a) Gaussian 
velocity distribution, (b) Planck energy 
distribution, and (c) Maxwell-Boltzmann speed 
distribution. For the conventional fields of ECD 
and EMD, it is well known that the conditions (a) 
and (c) are true and because of equilibrium 
between matter and radiation fields it is reasonable 
to expect that the condition (b) above will also 
apply to LCD and LMD.  At the scale of LED, the 
conditions (a) shown by Townsend’s data in Fig.4 
and hence condition (c) are known to hold.  
Preliminary examination of the three-dimensional 
energy spectrum E(k) for isotropic turbulence 
measured by van Atta and Chen [68] in Fig.7 
 
 

     
 

Fig.7 Normalized three-dimensional energy spectra 
for isotropic turbulence [68]. 
 
appear to support the validity of condition (b).   
 The schematic diagram given in Fig.8 from 
Landahl and Mollo-Christensen [69]  
 
 

                    
 

Fig.8 Behavior of three-dimensional spectrum E(k, t) 
in various wave number ranges [69]. 
 
also appears to support the validity of condition (b) 
namely that Planck law governs the energy 
spectrum of eddies in isotropic turbulence.  
Unfortunately, in spite of the large number of 
experimental studies, data that clearly and directly 
show the variation of three-dimensional energy 
spectrum E(k) with wave number k are still 
lacking. 
 According to Fig.8, the Kolmogorov-Obukhov  
k-5/3 law [22, 23] is a local feature, valid only in the 

inertial subrange, of the more universal Planck law 
(43).  For stationary isotropic turbulent fields, energy 
input into the system cascades down to smaller and 
smaller oscillators until it finally reaches the 
Kolmogorov dissipation length scale k at which 
point all of the added energy blends into background 
white noise and is removed from the system as heat.  
In view of Fig.6, k is naturally identified as the 
atomic length le of LED scale which is the same as 
he element c of LCD scale t  

k e c                     (52) 
 

that appears in Boussinesq eddy diffusivity [70] 
 

1 1 v
3 3e e e cu c                     (53) 

 

On the other hand, the kinematic viscosity of LCD 
field is related to the “atomic” length lc or the 
molecular mean free path m that appears in 
Maxwell’s formula for kinematic viscosity [30] 
 

1 1 v
3 3c c c mu m      ,           (54) 

 

associated with viscous dissipation in fluid 
mechanics. 
 In stationary isotropic turbulent fields, energy 
flux occurs between randomly moving eddies of 
diverse size while leaving the system stochastically 
stationary in time. A schematic diagram of energy 
flux across hierarchies of eddies from large to small 
size is shown in Fig.9 from the study by Lumley et al 
[71]  
 

              
 
     Fig. 9 A realistic view of spectral energy flux [71]. 
 
In the following section, it will be suggested that the 
exchange of particles, clusters, between various size 
eddies (energy levels) is governed by quantum 
mechanics through an invariant Schrödinger 
equation.  Hence, the stochastically stationary state of 
various size eddies will be parallel to Bohr’s 
stationary states in atomic theory [48]. 
 For stationary isotropic turbulent fields the net 
energy flux across hierarchies of eddies should be a 
constant independent of viscosity such as is 
commonly assumed in the inertial subrange.  Also, at 
equilibrium, the temperature will be constant 

23 Bk T m u   = .  Therefore, if one expresses 
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the cluster energy as = mu2, and the eddy energy 
as , with the cluster velocity given as 

u =  such that  
where =  is the wave number, one arrives at 

E    

Fd  
2/3 1

2du d(2 / ) d    

2/3 2/3 22 ( )u d    
2/3 5/3d d



 
 

dE mudu  
  

     = 4/3 2( ) 

2/3 5/3( )    

      

5/3

    (55) 
 

leading to the distribution function 
 
 

F                    (56) 
 
 

that is the Kolmogorov-Obukhov  law [22, 
23].  
 The most central concept associated with 
turbulent dissipation is the spectral definition of 
turbulent viscosity introduced by Heisenberg [26]  
 

 

3

( )
k

F



d 





 

 
  

 
                (57) 

 

This is because the spectral definition of kinematic 
viscosity (57) suggests that in stationary isotropic 
turbulence the dissipation spectrum should be 
closely related to the energy spectrum and thereby 
to Planck energy spectrum. Preliminary 
examination of dissipation spectrum shown in Fig. 
10 from McComb and Shanmugasundaram [72] 
appears to support such a conjecture. 
 

 

     
 
 

Fig.10 Comparison of scaled one-dimensional 
dissipation spectrum with experimental data [72]. 
 
The experimental data of Fig.10 along with Planck 
distribution function as well as this same 
distribution function shifted by a constant amount 
of energy are shown in Fig.11. One may view the 
experimental data in Fig.10 as dissipation spectrum 
of energy associated with the Planck energy 
spectrum plus a constant amount of energy added 
in order to maintain the turbulent field stationary.   
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Fig.11 One-dimensional dissipation spectrum [72] 
compared with (1) Planck energy distribution (2) 
Planck energy distribution with constant displacement. 
 
Similar comparison with Planck distribution as 
shown in Fig.11 is obtained with the more recent 
experimental data of one-dimensional dissipation 
spectrum of isotropic turbulence from study by 
Saddoughi and Veeravalli [73] given in Fig.12. 
 

      
 
Fig.12 One-dimensional dissipation spectra measured 
at mid-layer for the low speed case (y = 515 mm, R= 
600) (a) u1–spectrum (b) u2-spectrum (c) u3-spectrum 
[73].  
 
 

Systematic comparisons of the three-dimensional 
energy spectrum in Fig.9 and the one-dimensional 
dissipation spectra in Figs.10-12 with Planck 
distribution (Fig.5) require further future 
investigations. In particular, the definitions used for 
the presentation of the experimental data in Figs.9-12 
must be examined. 
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 The normalized three-dimensional energy 
spectrum for homogeneous isotropic turbulent field 
was obtained from the transformation of one-
dimensional spectrum of Lin [74] by Ling and 
Huang [75] as 
 
 
 

2
2( ) exp(- )

3
E K K

      K              (58) 

 

with the distribution shown in Fig.13.  
 

      
 

Fig.13 Normalized three-dimensional energy 
spectrum of weak turbulence [75]. 
 
The similarity between Fig.13 and the Planck 
distribution function shown in Fig.5 is apparent 
and with h/kT = c1 one can express (43) as 
 

3
2 1 1 exp( - ) / [1 exp( - )]dN c c c            (59) 

 

to facilitate comparison with (58).   
 Because the velocity distribution of eddies in 
isotropic turbulence is known to be Gaussian, 
Fig.4, the distribution of the speed of eddies in 
isotropic turbulence must follow Maxwell-
Boltzmann distribution function in accordance with 
the kinetic theory of gas.  On the other hand, in a 
recent investigation [33] the invariant Maxwell-
Boltzmann distribution function was directly 
derived from the invariant Planck energy 
distribution function.  Therefore, it is expected that 
the energy spectrum of eddies in isotropic 
turbulence should follow the Planck law [33, 34]. 
 In the scale invariant statistical theory of 
turbulence described above the statistical nature of 
the problem does not arise from the notion of fluid 
instabilities as in the classical theories of 
turbulence, but rather arises from similar 
considerations as those in the kinetic theory of gas 
in harmony with perceptions of Heisenberg [26] 
 
“Turbulence is an essentially statistical problem of 
the same type as one meets in statistical mechanics, 
since it is the problem of distribution of energy 
among a very large number of degrees of freedom.  
Just as in Maxwell theory this problem can be solved 
without going into details of the mechanical motions, 

so it can be solved here by simple considerations of 
similarity.” 
 
It was also emphasized by Heisenberg that the study 
of flow instabilities cannot in principle lead to the 
understanding of turbulent phenomena itself as noted 
by Chandrasekhar [76] 
  
“However, as Heisenberg has recently emphasized, 
investigation of stability along these lines, even if 
successful, cannot, in principle, lead to an understanding 
of the phenomena of turbulence itself; for the basic 
problem of turbulence is of an entirely different 
character.  That this is the case becomes apparent when 
we ask ourselves the very elementary question, “What is 
the reason that a phenomena like turbulence can occur 
at all?”.  The answer must be that an ideal fluid is a 
mechanicals system with very large number of degrees 
of freedom and that, in consequence, it is theoretically 
capable of a very large number of different types of 
motions.  Laminar flow is only one of the many possible 
motions that the system is capable of, and to expect that 
it will always be realized is as futile as  to expect that in a 
gas we shall find all the molecules moving with the same 
velocity parallel to one another.  It is far more likely that 
all forms of possible motions will be simultaneously 
present.  The fundamental problem of turbulence would 
therefore appear to be a statistical one of specifying the 
probability with which the various types of motions may 
occur and are present.  Stated in this way, it is clear that 
the problem of turbulence has an analogy with the 
problem of analyzing a continuous spectrum of 
radiation.” 
 
 The significance of analogy between the energy 
spectra in turbulence and in optics, dry 
hydrodynamics [17], was further emphasized by 
Chandrasekhar [76] 
 

“Now, returning to the optical analogy I referred to 
earlier, we know that under condition of equilibrium 
the distribution of energy in the continuous spectrum 
will be that given by Planck’s law.  We may ask 
whether a similar equilibrium spectrum exists for 
turbulence.  In answering this question, we must keep 
in mind one important distinction between the optical 
analogue and turbulence. In optical case the 
equilibrium Planck spectrum will be reached, no 
matter what the initial distribution is.  In contrast, 
turbulence can be maintained only by external energy, 
like continuous stirring, the energy available from 
thermal instability, or rotation in differentially rotating 
atmosphere.  In other words, energy is required for the 
maintenance of turbulence; in the absence of such an 
agency, turbulence will decay and the spectrum will be 
a function of time.” 
 
The optical analogy discussed by Chandrasekhar in 
the above quotation becomes complete if one allows 
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a constant energy input at small wave numbers (at 
system scale Le of EED) that moves through the 
hierarchy of eddies (Fig.9) until it is dissipated into 
heat that is removed at Kolmogorov scale k = le.   
 According to the modified statistical theory of 
turbulence [33, 34], and in harmony with the 
perceptions of Heisenberg and Chandrasekhar 
discussed above, all flows that may appear laminar 
at scale  are actually bulk advection of turbulent 
flows at the scale of .  The hierarchies of 
embedded turbulent flows are most clearly seen in 
turbulent boundary layer over a flat plate when the 
solutions of (19) at scales  and  were 
respectively found to be [34]    
 

2
1v 5 8(2 / )  erf ( y / 3

    2)             (60) 
 
 

and   
 

1v 8 (2/ ) erf ( / 8y
   )

     (61) 
 

For example, the solutions in (60) and (61) at  = 
e and  = c correspond to LED and LCD and their 
comparisons with experimental data [36, 69, 77-79] 
are shown in Fig.14.   
 

 

                5 10 15 20 25 30
y+

5

10

15

v+

                                            
 
 
 

Fig.14 Comparison between the predicted velocity 
profiles from (60) and (61) at LED and LCD scales 
and experimental data in the literature [36, 69, 77-79]. 
 
Similarly, the solutions in (60) and (61) at  = c 
and  = m correspond to LCD and LMD and at  
= m and  = a corresponding to LMD and LAD and 
their comparisons with experimental data of Lancien  
et al. [80] and Meinhart  et al. [81] are shown in 
Figs.15 and 16, respectively. 
 

                                                   
 
 
 
 

Fig.15 Comparisons between the predicted velocity 
profiles from (60) and (61) at LCD and LMD scales 
and experimental data in the literature [80]. 
 

                                     
 
 
 
 
 

Fig.16 Comparisons between the predicted velocity 
profiles from (60) and (61) at LMD and LAD scales and 
experimental data in the literature [81] 
 
 
 

The results in Figs.14-16 show close agreement 
between predictions and measurements for four 
consecutive statistical fields of LED, LCD, LMD, 
and LAD spanning a factor of 108 in spatial range. 

6 Quantum Mechanical Foundations of 
Turbulence  
The fact that the energy spectrum of equilibrium 
isotropic turbulence is given by Planck distribution 
(Figs.5, 9, 13) is a strong evidence for quantum 
mechanical foundation of turbulence [33, 34].  This 
is further supported by recent derivation of invariant 
Schrödinger equation from invariant Bernoulli 
equation [33]. For an incompressible potential flow 
the velocity potential   gives   and the 
conservation equations (17) and (19) lead to the 
invariant Bernoulli equation [33] 

  v  

 
 

 

2(ρ ) ( ρ )
p cons tan t

t 2
   





   
0   

 
   (62) 

 

Comparison of (62) with the Hamilton-Jacobi 
equation of classical mechanics [2] 
 

2S ( S)
U 0

t 2m
 

  


        (63) 

 

resulted in the introduction of the invariant action 
and quantum mechanic wave function as [33, 82] 
 

S ( , t) ρ   x   ,   ( , t) S ( , t)
   

    x x    (64) 
  
The wave function (64) was recently applied to 
derive [33] the invariant time dependent Schrödinger 
equation [83] 
 

2
2

oi U
t 2m
 

 



0      




    (65)  

 

It is now clear that the potential energy [33] 
 

LATEST TRENDS on SYSTEMS (Volume II)

ISSN: 1792-4235 488 ISBN: 978-960-474-214-1



2U p ρ V n U      


1

         (66)  
 
in (65) may be identified as Poincaré stress [84-86] 
that is responsible for the stability of “particles” or 
de Broglie wave packets.   
 It is emphasized that stability of particle, 
Heisenberg-Kramers virtual oscillator [48], is due 
to the external force it experiences because of the 
pressure (66) induced by the peculiar velocity of 
the “atoms” of the field itself.  In other words, it is 
the peculiar motions of atoms themselves that 
stabilizes different size atomic clusters.  For 
example, peculiar motions of clusters are 
responsible for stability of eddies, and peculiar 
motions of molecules are responsible for stability 
of clusters, and so on.  Hence, at the scale of 
stochastic electrodynamics  = s ESD and chromo-
dynamics  = k, EKD (see Figs. 1, 3) the model 
suggests that peculiar motions of photons and 
tachyons are respectively responsible for the 
stability of electrons and photons.  In view of the 
invariant Planck (43) and Schrödinger (65) 
equations, the model also suggests that Planck 
spectrum in equilibrium radiation represents 
stationary sizes of photon clusters, de Broglie 
molecules of light [86] or light bundles.  Therefore, 
different “colors” of light are now recognized to 
correspond to different size photon clusters, photon 
wave packets, in accordance with the perceptions 
of Newton [53] and Einstein [66].   
 The formal derivation [33] of Schrödinger 
equation (65) from Bernoulli equation (62) 
provides for a new paradigm of the physical 
foundation of quantum mechanics. Soon after the 
introduction of his equation, Schrödinger himself 
[88] tried to identify some type of ensemble 
average interpretation of the wave function.  
Clearly, according to (64) the statistical ensemble 
nature of  naturally arises from the velocity 
potential .  Therefore, the dual and seemingly 
incompatible objective versus subjective natures of 
 emphasized by de Broglie [1-3] can now be 
resolved.  This is because the objective part of 
(64) is associated with the density and 
accounts for the particle localization while the 
subjective part of  is associated with the 
complex velocity potential  that accounts for the 
observed action-at-a-distance as well as 
renormalization [89] and thereby the success of 
Born’s [90] probabilistic interpretation of .  
 The definition of wave function (64) also 
helps to clarify the nature of wave-particle duality 
and de Broglie’s theory of double solutions [1-3, 
91, 92].  This is because the velocity potential  

acts as guidance wave that contains global 
information about the environment while remaining 
non-observable since it operates at the “hidden” 
“atomic” scale.  Thus, the reason for success of 
separation of particle from wave according to de 
Broglie [1-3] and Bohm and Vigier [7, 9] becomes 
understood.   Moreover, the reason for the failure of 
von Neumann no hidden variable theory [92-94] 
becomes clear since (65) for hierarchies of embedded 
statistical fields, Fig.1, could be subject to infinite 
hidden variables in harmony with Gödel’s 
incompleteness theorem. 
 As one moves to smaller scales, one always finds 
a continuum because each element is composed of an 
entire statistical field (see Fig.1), such that one can 
again define a velocity potential  and thereby 
define a new wave function 1 1ρ     .  The 
cascade of particles as singularities embedded in 
guidance waves is in exact agreement with the 
perceptions of de Broglie concerning interactions 
between the particle and the "hidden thermostat" [3] 
 
 “Here is another important point.  I have shown in 
my previous publications that, in order to justify the 
well-established fact that the expression (x,y,z,t)2 d 
gives, at least with Schrödinger's equation, the 
probability for the presence of the particle in the 
element of volume d at the instant t, it is necessary 
that the particle jump continually from one guidance 
trajectory to another, as a result of continual 
perturbation coming from subquantal milieu.  The 
guidance trajectories would really be followed only if 
the particle were not undergoing continual 
perturbations due to its random heat exchanges with 
the hidden thermostat.  In other words, a Brownian 
motion is superposed on the guidance movement.  A 
simple comparison will make this clearer.  A granule 
placed on the surface of a liquid is caught by the 
general movement of the latter.  If the granule is heavy 
enough not to feel the action of individual shocks 
received from the invisible molecules of the fluid, it will 
follow one of the hydrodynamic streamlines.  If the 
granule is a particle, the assembly of the molecules of 
the fluid is comparable with the hidden thermostat of 
our theory, and the streamline described by the particle 
is its guiding trajectory.  But if the granule is 
sufficiently light, its movement will be continually 
perturbed by the individual random impacts of the 
molecules of the fluid.  Thus, the granule will have, 
besides its regular movement along one of the 
streamlines of the global flow of the fluid, a Brownian 
movement which will make it pass from one streamline 
to another.  One can represent Brownian movement 
approximately by diffusion equation of the 
form =t D     , and it is interesting to seek, as 
various authors have done recently, the value of the 
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coefficient D in the case of the Schrödinger equation 
corresponding to the Brownian movement. 
 I have recently studied (14) the same question 
starting from the idea that, even during the period of 
random perturbations, the internal phase of the 
particle remains equal to that of the wave.  I have 
found the value , which differs only by 
a numerical coefficient from the one found by other 
authors. 

/D = (3m)

 This concludes the account of my present ideas 
on the reinterpretation of wave mechanics with the 
help of images which guided me in my early work.  
My collaborators and I are working actively to 
develop these ideas in various directions.  Today, I 
am convinced that the conceptions developed in the 
present article, when suitably developed and 
corrected at certain points, may in the future provide 
a real physical interpretation of present quantum 
mechanics.” 
 
 To reveal the truly universal (Fig.1) nature of 
quantum mechanics one notes that for each 
statistical field shown in Figs.1 and 3 one can write 
a Bernoulli equation and by (62)-(65) arrive at a 
Schrödinger equation. At the Planck scale 

 (see Fig.3) the 
hydrodynamic field represents the physical space 
[95] or Casimir vacuum [49] with its fluctuations 
and energy spectrum.  According to definitions 
(27)-(28), the universal Planck and Boltzmann 
constants (h, k) respectively relate to spatial () 
and temporal () aspects of vacuum fluctuations. 
Also, at cosmic scales 1035 with = g (Figs.1, 3), 
the wave function g will correspond to the wave 
function of the universe [96, 97].  The wave-
particle duality of galaxies has been established by 
their observed quantized red shifts [98].  Indeed, it 
has been suggested by Laughlin and Pines [98] that 
Schrödinger equation may account for a part of the 
final theory, i.e. the theory of everything (TOE). 
Also, Feynman et. al. [100] suggested that 
Schrödinger equation may very possibly describe 
life itself. 

353 1/ 2( G / c 10)   m

 In regards to the universality of quantum 
mechanics discussed above, it is interesting to 
examine the connections between classical and 
quantum mechanics.  It seems that the new 
paradigm of quantum mechanics presented herein 
is in harmony with the perceptions of Heisenberg 
[101]  

 
 “We no longer say “Newtonian mechanics is false 
and must be replaced by quantum mechanics, which 
is correct.”  Instead we adopt the formula “Classical 
mechanics is a consistent self–enclosed scientific 

theory.  It is strictly correct description of nature 
wherever its concepts can be applied” 
 
 

This is because according to (62)-(66) quantum 
mechanics concerns behavior of virtual oscillators, 
wave packets in statistical fields such as in 
cosmology, hydrodynamics, molecular dynamics, 
electrodynamics or optics.  Classical Newtonian 
mechanics is often concerned with motion of a few 
bodies such as the earth-moon-sun three-body 
problem. 
   According to Fig.3, a factor of 10-17 seems to 
separate the spatial scales of the stochastic fields of 
chromodynamics (10-35), electrodynamics (10-17), 
hydrodynamics (100), astrophysics (1017), and 
cosmology (1035). However, there are no 
mathematical or physical reasons to limit either large 
or small ends of the hierarchies shown in Fig.3.  If 
one assumes with Newton that space is infinite and 
our universe is just one of many universes as 
suggested by Fig.3, then the recent observed 
asymmetry in the power spectrum from the right 
versus the left side of our universe [102] 
schematically shown in Fig.17. 
  
  

P(k)

k

Right

Left

       

P(k)

k

Right

Left

 
         (a)                                    (b) 
 
Fig.17 Asymmetry in measured cosmic power 
spectrum (a) calculated (b) measured [102]. 
 
appears to suggest that our universe is rotating in 
harmony with Kerr’s perceptions [103] as well as all 
statistical fields of lower scales shown in Fig.1. 
 One may now introduce a new paradigm of the 
physical foundation of quantum mechanics according 
to which Bohr’s stationary states will correspond to 
the statistically stationary sizes of clusters, de Broglie 
wave packets, which will be governed by Maxwell-
Boltzmann distribution function (51) as shown in 
Fig.6 [33]. Next, different energy levels of quantum 
mechanics are identified as different size clusters 
(elements).  For example, in EED field one views the 
transfer of a cluster from a small rapidly oscillating 
eddy (j) to a large slowly oscillating eddy (i) as 
transition from the high energy level (j) to the low 
energy level (i), see Fig.6, as schematically shown in 
Fig.18. 
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Fig.18 Transition of cluster cij from eddy-j to eddy-i 
leading to emission of molecule mij [34]. 
 
 

Such a transition will be accompanied with 
emission of a “sub-particle” that will be a 
“molecule” (see Fig.18) to carry away the excess 
energy [34] 
 

ji j i j ih( )                (67) 
 

in harmony with Bohr’s theory of atomic spectra 
[48].  Therefore, the reason for the quantum nature 
of “molecular” energy spectra in equilibrium 
isotropic turbulence is that transitions can only 
occur between eddies with energy levels that 
satisfy the criterion of stationarity imposed by 
Maxwell-Boltzmann speed distribution function 
[95].   

7 Compressibility of Physical Space 
and its impact on Special Theory of 
Relativity  
The invariant time dependent Schrödinger equation 
(65) was derived from Brenoulli equation for an 
incompressible fluid. According to the scale-
invariant statistical theory of fields schematically 
shown Fig.1 physical space is identified as a 
tachyonic fluid [95] that is Dirac's stochastic ether 
[104] or de Broglie's "hidden thermostat" [3]. 
Photons are considered to be composed of a large 
number of much smaller particles [95] called 
tachyons [105].  The importance of Aristotle’s 
ether to the theory of electrons was emphasized by 
Lorentz [106, 107] 
 

"I cannot but regard the ether, which is the 
seat of an electromagnetic field with its energy 
and its vibrations, as endowed with certain 
degree of substantiality, however different it 
may be from all ordinary matter" 
 

Since the velocity of light is the mean thermal 
speed of tachyons, uk = c = vt, at least some of the 
tachyons must be superluminal.   
 The tachyonic fluid that constitutes the 
physical space is considered to be compressible in 
accordance with Planck's compressible ether [105].  
If the compressible tachyonic fluid is viewed as an 

ideal gas, its change of density when brought 
isentropically to rest will be given by the expression 
involving Michelson number  [108] v / cMi

1 1

1 12

o o

2

2

1 v 1
ρ ρ 1 ρ 1

2 c 2
Mi

    
   

  
    


     (68) 

 

With  = 4/3 for photon gas, (68) leads to Lorentz-
FitzGerlad contraction [108] 
 

2
o 1 (v / c)               (69) 

 

that accounts for the null result of Michelson–Morley 
experiment [109]. 
 Therefore, supersonic Ma > 1 (superchromatic 
Mi > 1) flow of air (tachyonic fluid) leads to the 
formation of Mach (Poincaré-Minkowski) cone that 
separates the zone of sound (light) from the zone of 
silence (darkness).  Compressibility of physical space 
can therefore result in Lorentz-FitzGerald contraction 
[106], thus accounting for relativistic effects [84-86, 
106, 109-112] and providing a causal explanation 
[110] of such effects in accordance with the 
perceptions of Poincaré and Lorentz [84-86, 106, 
112]. 
 In view of the above considerations and in 
harmony with ideas of Darrigol [113] and Galison 
[114], one can identify two distinct paradigms of the 
Special Theory of Relativity [108]: 
 
 

 (A) Poincaré-Lorentz 
      Dynamic Theory of Relativity 
     Space and time (x, t) are altered due to causal 
     effects of motion on the ether. 
 
 

 (B) Einstein 
      Kinematic Theory of Relativity 
     Space and time (x, t) are altered due to the two  
     postulates of relativity: 

1- The laws of physics do not change form for 
all inertial frames of reference. 

2- Velocity of light is a universal constant 
independent of the motion of its source. 

 
 
 

 The result (69) and the constancy of the speed 
of light  
 

o o c                   (70) 
 

lead to the frequency transformation 
 

2
o 1 (v / c)/                   (71) 

 

The relativistic transformation of frequency in (71) 
may also be expressed as contraction of time duration 
or transformation of period  as 
 

2
o 1 (v / c)             (72) 
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Hence, time durations and space extensions 
contract by (72) and (69) such that the speed of 
light remains invariant (70).  It is emphasized 
however that the relation between time and space 
according to the dynamic theory of relativity of 
Poincaré-Lorentz is causal as emphasized by Pauli 
[110] and is induced by compressibility of physical 
space itself rather than being a purely kinematic 
effect as suggested by Einstein [111] according to 
paradigm (B) above.   
 Parallel to ideas of Lorentz [106], the concept 
of ether always played a crucial role in Poincaré’s 
perceptions of relativity [113, 114] as he explicitly 
stated in his Principle of Relativity [115] 
 
 
 

 “We might imagine for example, that it is the ether 
which is modified when it is in relative motion in 
reference to the material medium which it penetrates, 
that when it is thus modified, it no longer transmits 
perturbations with the same velocity in every 
direction.” 
 
As opposed to Einstein who at the time found the 
ether to be superfluous [111], Poincaré anticipated 
the granular structure of the ether and its possible 
role in electrodynamics [115]  
 
 

 “We know nothing of the ether, how its molecules 
are disposed, whether they attract or repel each 
other; but we know this medium transmits at the 
same time the optical perturbations and the electrical 
perturbations;” 
 
 

 “The electrons, therefore, act upon one another, but 
this action is not direct, it is accomplished through 
the ether as intermediary.” 
 
Also, the true physical significance of Lorentz’s 
local time [106] was first recognized by Poincaré 
[116].  In his lecture delivered in London in 1912 
shortly before he died Poincaré stated [114, 117] 
 
 

 “Today some physicists want to adopt a new 
convention.  It is not that they are constrained to do 
so; they consider this new convention more 
convenient; that is all.  And those who are not of this 
opinion can legitimately retain the old one in order 
not to disturb their old habits.  I believe, just between 
us, that this is what they shall do for a long time to 
come.” 
 

 The definitions of lengths (L ), ,    in (21) 

and velocities ( , , )  w v u

( , , t )

 in (1)-(2) result in the 
following definitions of system, element, and 
atomic "times"      for the statistical field 
at scale [30] 
 

 = L/w=    (73a) 
= /v= t (73b) 
t= l/u=  (73c) 
 

where l, and  are the free paths of atoms, and 
elements, and L = is the system size.  Atomic 
time (73c) could also be based on the rotation 
velocity of particles since the equipartition principle 
of Boltzmann  

2 2 2/ 2 / 2 / 2tm u I m r        2

ru

    

results in  2tu r       that leads to  

1 / 2 / /rt ur ru         (73d) 
 

Therefore, there exists an internal clock associated 
with the random thermal motions of atoms t =  
for each statistical field from cosmic to tachyonic 
scales [95] 
 

          . . . e> c> m> p> s> . . .    (74) 
 
 

The physical model schematically shown in Fig.1 
suggests a hierarchy of embedded clocks each 
associated with its own periodic motions as 
schematically shown in Fig.19. 
 
 

            
 

          Fig.19 Hierarchies of embedded clocks. 
 
Clearly, the problem of time reversal at any scale  is 
now much more complex and requires reversal of the 
entire hierarchies of times of lower scales (74).   
 The most fundamental and universal physical 
time is the time associated with the tachyon 
fluctuations t = tk [95] of Casimir vacuum [49] at 
Planck scale. One may associate the absolute 
mathematical time of Newton to the equilibrium state 
of tachyon-dynamics (tt) that in the absence of any 
non-homogeneity (light) will be a timeless (eternal) 
world of darkness irrespective of its stochastic 
dynamics because, in accordance with the 
perceptions of Aristotle [118], the concept of time 
without any change is meaningless. 
 The classical problem of time emphasized by 
Aristotle [118] concerns the nature of time as past, 
present, and future that was most eloquently 
described by St. Augustine [118] 
 

“But the two times, past and future how can they be?, 
since the past is no more and the future is not yet?” 
 

“Thus we can affirm that time is only in that it tends 
towards not-being” 
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 “Yet Lord, we are aware of periods of time; we 
compare one period with another and say that some 
are longer, some shorter” 
 

“Does not my soul speak truly to You when I say that 
I can measure time?  For so it is, O Lord my God.  I 
measure it and I do not know what it is that I am 
measuring” 
 
 Now, the classical problem of how could a 
finite time be constructed from multitudes of 
instants, “nows”, that do not exist can be addressed 
by the invariant definition of atomic time in (73c)  
 

 = t =         (75) 
 
 

This is because the “atomic” instant t = 0 of scale 
 has a finite duration at the lower scale  
(73c). Thus, one uses clocks of  scale to 
measure time of  scale, clocks of  scale to 
measure time of  scale, and so on at infinitum.  
Therefore, similar considerations employed for 
description of analysis in space continuum [119] 
will be required to describe the temporal continuum 
discussed by Weyl [120] 
 

 “Exact time- or space-points are not the ultimate, 
underlying, atomic elements of the duration or 
extension given to us in experience.  On the contrary, 
only reason, which thoroughly penetrates what is 
experientially given, is able to grasp exact ideas” 
 

Accordingly, if one does not wish to allow for 
infinite divisibility of time and space, then 
following Leibniz [119] one must introduce the 
temporal monad just like the spatial monad to 
represent the absolute smallest “atom” of time or 
chronon.  Also, parallel to Heisenberg’s spatial 
uncertainty principle [121] 
 

 p h        (76) 
 

that limits the resolution of spatial measurements, 
the temporal uncertainty principle [95] 
 

 p k           (77) 
 

limits the resolution of time measurements.   
 Since time is identified as a physical attribute 
of the dynamics of tachyonic atoms (73c) and 
space is identified as this compressible tachyonic 
fluid itself, it is clear that the causal connections 
between space and time in relativistic physics 
become apparent.  For example, in the classical 
problem of twin paradox of the special theory of 
relativity, the different times experienced by the 
twins could be attributed to the different rates of 
biological reactions in their body induced by the 
compressibility of physical space.  According to 
the causal dynamic theory of relativity of 

Poincaré-Lorentz, the reason for the coincidence of 
directions of biological and cosmological times [122] 
becomes apparent.   
 The physical space or Casimir vacuum [49] 
when identified as a compressible tachyonic fluid 
provides a new paradigm for the physical foundation 
of quantum gravity [95].  The general implications of 
the model to time reversibility in quantum 
cosmology and to Everett’s many-universe theory 
[96, 123-124] require further future investigations. 
Because of the definition of atomic time in (73c), 
quantum theories of gravity [123-130] may have 
wave functions g that instead of Wheeler-DeWitt 
equation [96, 123, 124, 126, 130] 
 

gH 0                 (78) 
 

satisfy the modified Wheeler-DeWitt equation  

g
g

1

i H
t


 


     (79) 

that is Schrödinger equation (65). The resurrection of 
time in (79) is made possible because the new 
“atomic” time arises from internal degrees of 
freedom, permitting g (x1, x2, x3, t, t) and the 
associated gij(x1, x2, x3, t, t), that by 
thermodynamic considerations is related to the 
temperature of the field [95]. 
 The definition of time in (73) is in accordance 
with ephemeris time in astronomy [128, 131]  
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Substituting in (80) the kinetic energy 
 and mass fraction Yi = mi/m 

results in 
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that is in accordance with (73). The mean extension 
d and duration t are mass-average of the 
component extension di and duration ti and the 
corresponding velocity defined as  
 

2( )
2( )

i i
i

i i

m d
t

E V

 


    ,         v i
i

i

d

t




     (82) 

 

where i iE K Vi 
/i j ijm m r

, , and 2v / 2i i iK m

iV G  .  The invariant definition of time in 
(73) suggests that the description of temporal 
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continuum [120] requires introduction of “temporal 
measure” that relates to the important problems of 
duration and simultaneity identified by Poincaré in 
1898 [132] as emphasized by Barbour [128]. 

8 Implications to Dirac Relativistic 
Wave Equation  
It is interesting to explore the implications of the 
quantum mechanical wave function (64) to Dirac’s 
relativistic wave equation [133].  To do this one 
notes that since the peculiar velocity of particle at 
scale   
 

  
  V u v    ,           (83) 

 

is the diffusion velocity of scale () one can 
express (83) in terms of the velocities of the lower 
scale  as in (3) 
 

1 1 1  V v w           (84) 
 

Thus, the results (83) and (64) relate the quantum 
mechanic wave function to the equation of motion 
at scale  through diffusion velocity (84). 
  Hence, one starts with Cauchy equation of 
motion (7) at scale    
 

iβ-1
iβ-1 jβ-1 ijβ-1

j

( )
t x

 
  

 

p
p v P       (85) 

 

Next, the stress field within the particle at the lower 
scale  is considered to be uniform such that 

and (85) reduces to ijβ-1 0P
 

iβ-1 j
iβ-1

j

x
( )

t x t
 

 
  

p
p 0         (86) 

 

 Parallel to derivation of Schrödinger equation 
[33], one next considers the moving coordinates 
 

jβ jβ j βW t x z              (87) 
 

that for uniform velocity W results in 
 

jβ-1 jβ-1 j β-1 jβ-1 jβ-1W   v V V W      (88) 
 

in accordance with (84). The components of 
convective velocity (87) are expressed as 
 

jβ-1 j β-1WW            (89) 

 

such that 
 

2 2 2
β-1 j β-1 jβ-1W W   2W        (90) 

 
Expressing (86) in terms of the uniformly moving 
coordinate (87) and substituting from (13c) gives 

2
iβ-1 iβ-1 iβ-1

j β-1 2
j j

W
t z  

  
 

 

p p
z
p

      (91) 

 

 For a coordinate system moving with uniform 
convective velocity W (88) becomes 
 

iβ-1 iβ-1 ijβ-1 ijβA    v W V V          (92) 
 

where A is a constant. Also, for an incompressible 
fluid with A = B one obtains from (92) 
 

β-1 iβ-1 β-1 ijβ β-1 i β βρ ρB B Y ρ    v V            (93) 
 

that by (64) gives 
 

   

iβ-1 β-1 i βB Y  p            (94) 
 

Substituting from (94) into (91) leads to 
 

2
β β

j β-1 2
j j

W
t z m  β

z
  

 
 




        (95) 

 

where the viscosity tensor m by (13c) is defined as 
 

β ijβ m        ,   j
ij ij

i

ln

x


 


 



p
V     (96) 

 

Following Dirac [133], by (96), and (84)-(89) the 
parameters (j, m) are considered to be tensors 
representing 4 4  matrices. However, since 
according to Dirac one of his four equations is 
redundant [133], the final wave equation will only 
involve three components such that by (90)  
 

2 2
1 21 2

3                 (97) 
 

leading to
. 

for an isotropic field as 

compared to 
1 2 3

1 2 3

2 2 2 1 / 3    

2 2 2 1    
 

[133]. The definitions 
(89) and (96) are in harmony with the perceptions of 
Dirac [133] who anticipated that (j, m) may be 
related to some coordinates associated with internal 
degrees of freedom. 
 Finally, one introduces the wave function 
 

2
β β-1 β-1 jexp[( m W / ) ]i   z           (98) 

 

into (95) to obtain the scale invariant relativistic wave 
equation 
 

j m β-1 β-1 β
β-1 j

1[ ] m W
W t

i
z

 
    0      
   (99)

 

 

At the important scale of electrodynamics  = s (ESD 
in Fig.1) when W = Wk = c is the speed of light c, 
(99) becomes Dirac relativistic wave equation for 
massive particles [133] 
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j m β
j

1[ ] mc
t z

i
c

 
         
 0


v

          (100) 

 

 Because it was by shear genius and 
mathematical intuition that Dirac arrived at his 
relativistic wave equation (100), the physical basis 
of this equation remains quite abstract and 
mysterious.  Therefore, the simple derivation of 
Dirac equation presented above may help the 
understanding of this important equation.  It is also 
noted that the wave function  in (64) remains 
well defined even in the presence of spin as long as 

 such that  by (83).  The 
true significance of the tensors (j , m) in (89) and 
(96) as well as the wave function (98) require 
further future investigations.   


  u 0


  V

9 Concluding Remarks  
A modified statistical theory of turbulence was 
presented and the connections between the 
problems of turbulence and quantum mechanics 
were further explored. New paradigms for physical 
foundations of invariant Planck law, Schrödinger 
equation, and Dirac relativistic wave equation 
were presented.  The predicted velocity profiles for 
flow over a flat plate were compared with 
measurements for LED, LCD, LMD, and LAD 
scales. The universal nature of turbulence across 
broad range of spatio-temporal scales is in 
harmony with occurrence of fractals in physical 
science emphasized by Takayasu [134]. 
 
 

Acknowledgments: This research was in part 
supported by NASA grant No. NAG3-1863.   
 
 

References: 
 

[1] Broglie, L. de, C. R. Acad. Sci., Paris, 183, 447 
(1926); 184, 273 (1927); 185, 380 (1927). 

[2] Broglie, L. de, Non-Linear Wave Mechanics, A 
Causal Interpretation, Elsevier, New York, 1960. 

[3] Broglie, L. de, Found. Phys.1, 5 (1970). 
[4] Madelung, E., Z. Physik. 40, 332  (1926). 
[5] Schrödinger, E., Berliner Sitzungsberichte,144 

(1931). 
[6] Fürth, R., . Phys. 81, 143 (1933). 
[7] Bohm, D., Phys. Rev. 85, 166 (1952). 
[8] Takabayasi, T., Prog. Theor. Phys. 70, 1 (1952). 
[9] Bohm, D., and Vigier, J. P., Phys. Rev. 96, 208 

(1954). 
[10] Nelson, E. Phys. Rev. 150, 1079 (1966). 
[11] Nelson, E. Quantum Fluctuations, Princeton 

University Press, Princeton, New Jersey, 1985. 
[12] de la Peña, L., J. Math. Phys. 10, 1620 (1969). 
[13] de la Peña, L., and Cetto, A. M., Found. Phys. 

12, 1017 (1982). 
[14] Barut, A. O., Ann. Physik. 7, 31 (1988). 

[15] Barut, A. O., and Bracken, A. J., Phys. Rev. D 23, 
2454 (1981). 

[16] Vigier, J. P., Lett. Nuvo Cim. 29, 467 (1980); 
Gueret, Ph., and Vigier, J. P., Found. Phys. 12, 
1057 (1982); Cufaro Petroni, C., and Vigier, J. P., 
Found. Phys. 13, 253 (1983);Vigier, J. P., Found. 
Phys. 25, 1461 (1995). 

[17] Arecchi, F. T., and Harrison, R. G., Instabilities and 
Chaos in Quantum Optics, Springer-Verlag, Berlin 
1987. 

[18] Reynolds, O., Phil. Trans. Roy. Soc. A 186, 123, 
(1895). 

[19] Taylor, G. I., I-IV, Proc. Roy. Soc. A 151, 421 
(1935). 

[20] Kármán, T. von, and Howarth, L., Proc.  Roy. Soc. 
A 164, 192 (1938). 

[21] Robertson, H. P., Proc. Camb. Phil. Soc. 36, 209 
(1940). 

[22] Kolmogoroff, A. N., C. R. Acad. Sci. U. R. S. S. 30, 
301 (1941); 32, 16 (1942). J. Fluid Mech. 13, 82 
(1962). 

[23] Obukhov, A. M., C. R. Acad. Sci. U. R. S. S. 32, 19 
(1941); J. Fluid Mech. 13, 77 (1962). 

[24] Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943). 
[25] Chandrasekhar, S., Stochastic, Statistical, and 

Hydrodynamic Problems in Physics and 
Astronomy, Selected Papers, vol.3, University of 
Chicago Press, Chicago, 1989. 

[26]  Heisenberg, W.,  Proc. Roy. Soc. A 195, 402 
(1948); Z. Phys. 124, 628 (1948). 

[27] Batchelor, G. K., The Theory of Homogeneous 
Turbulence, Cambridge University  Press, 
Cambridge, 1953. 

[28] Landau, L. D., and Lifshitz, E. M., Fluid Dynamics, 
Pergamon Press, New York, 1959. 

[29] Tennekes, H., and Lumley, J. L., A First Course In 
Turbulence, MIT Press, 1972. 

[30] Sohrab, S. H., Proceeding of the 31st ASME 
National Heat Transfer Conference, HTD-Vol. 328, 
37-60 (1996). 

[31] Sohrab, S. H., Rev. Gén. Therm. 38, 845 (1999). 
[32] Sohrab, S. H., In: Theoretical and Experimental 

Aspects of Fluid Mechanics, S. H. Sohrab, H. C. 
Catrakis, and F. K. Benra (Eds.), WSEAS Press, 
27-35, 2008. 

[33] Sohrab, S. H., WSEAS Transactions on 
Mathematics 6 (2), 254 (2007). 

[34] Sohrab, S. H., In: Recent Advances in Fluid 
Mechanics & Aerodynamics, S. Sohrab, H. Catrakis, 
and. N. Kobasko (Eds.), pp:134-140, WSEAS Press, 
2009, ISBN: 978-960-474-106-9. 

[35] de Groot, R. S., and Mazur, P., Nonequilibrium 
Thermodynamics, North-Holland,  1962. 

[36] Schlichting, H., Boundary-Layer Theory, McGraw 
Hill, New York, 1968. 

[37] Williams, F. A., Combustion Theory, Benjamin 
Cummings, New York, 1985. 

[38] Chapman, S., and Cowling, T. G., The 
Mathematical Theory of Non-uniform Gases, 
Cambridge University Press, Cambridge, 1953. 

LATEST TRENDS on SYSTEMS (Volume II)

ISSN: 1792-4235 495 ISBN: 978-960-474-214-1



[39] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 
Molecular Theory of Gases and Liquids, Wiley, 
New York, 1954. 

[40] Sohrab, S. H., In: New Aspects of Fluid 
Mechanics and Aerodynamics, S. H. Sohrab, H. 
J. Catrakis, N. Kobsko, N., Necasova, and N. 
Markatos (eds.) WSEAS press, 2008. 

[41] Sohrab, S. H., O., In: Recent Advances in 
Systems, N. Mastorakis, V. Mladenov, Z. 
Bojkovic, S. Kartalopoulos, A. Varonides, and 
M. Jha (Eds.), pp: 557-568, WSEAS Press, 2009, 
ISBN: 978-960-474-097-0. 

[42] Lugt, H. J., Vortex Flow in Nature and 
Technology, Wiley, New York, 1983. 

[43] Bahatia, A. B. , and Singh, R. N., Mechanics of 
Deformable Media, IOP publication, Boston, 
1986. 

[44] Carrier, G.  On slow viscous flow, Nonr-653-00-
1, (1953). 

[45] Olmstead, W. E. Reciprocity relationships in 
viscous hydrodynamics, Acta Mechanca. 21, 289 
(1975). 

[46] Roper, M., and Brenner, M. P., PNAS 106, 2977 
(2009). 

[47] Townsend, A. A., Proc. Camb. Phil. Soc. 43, 560 
(1947). 

[48] van der Waerden, B. L., Sources of Quantum 
Mechanics, B. L. van der Waerden (ed.), Dover, 
New York, 1967 

[49] Casimir, H. B. G., Proc. K. Ned. Akad. Wet. 51, 
793 (1948). 

[50] Planck, M., The Theory of Heat Radiation, 
Dover, New York, 1991.  

[51] Planck, M., Ann. der Physik 4, 553 (1901). 
[52] Jackson, J. D., Classical Electrodynamics, Wiley, 

New York, 1975. 
[53] Newton, I., Optics, Dover, New York, 1952. 
[54]  Broglie, L., Le Mechanique Ondulatoire du 

photon 1, Paris: Herman et Cie, 1940. 
[55]  Bass, L., and Schrödinger, E., Proc. Roy. Soc. A 

232, 1-6 (1955).  
[56] Vigier, J. P., Found. Phys. 24 , 61 (1994). 
[57] de Beauregard, O. Costa., In:  Waves and 

Particles in Light and Matter. Alwyn van der 
Merwe and Augusto Garuccio (Eds.), Plenum 
Press, New York, 1994. 

[58] Evans, M. W., In: Waves and Particles in Light 
and Matter. Alwyn van der Merwe and Augusto 
Garuccio (Eds.), p.259, Plenum Press, New York, 
1994. 

[59] Sohrab, S. H., O., in New Aspects of Heat 
Transfer, Thermal Engineering, and 
Environment, S. H. Sohrab, H. J. Catrakis, N. 
Kobasko, (Eds.), pp: 434-442, WSEAS Press, 
2008, ISBN: 978-960-6766-97-8. 

[60]  Sohrab, S. H., Bull. Am. Phys. Soc. 49 (1) 255 
(2004). 

[61] Chandrasekhar, S., Newton’s Principia for the 
Common Reader, Oxford University Press, New 
York, 1995. 

[62] Pauli, W., Pauli Lectures on Physics, Vol.3, p.14, 
MIT Press, 1973. 

[63] Long, C. A., and  Sohrab, S. H., In:  Recent 
Advances on Applied Mathematics, Long, C. A., 
Sohrab, S. H., Bognar, G., and Perlovsky, L., 
(Eds.), p.87-97, WSEAS Press, 2008. 

[64] De Pretto, O., Ipotesi dell’etere nella vita 
dell’universo. Atti del Reale Inst. Veneto di 
Scienze, Lettere ed Arti. 63 (2), 439-499  (1904). 

[65] Rayleigh, Lord., Phil. Mag.,  49, 539 (1900). 
[66] Einstein, A., Ann. Phys. (Leipzig) 17, 132 (1905). 
[67] Sonntag, R. E., Van Wylen, G. E., Fundamentals of 

Statistical Thermodynamics, Wiley, New York, 
1966. 

[68] Van Atta, C. W., and Chen, W. Y., J. Fluid Mech. 
 38, 743 (1969). 
[69] Landahl, M. T., and Mollo-Christensen, E., 

Turbulence and Random Processes in Fluid 
Mechanics, Cambridge University Press, 
Cambridge, 1992.  

[70] Darrigol, O., World of Flow, Oxford University 
Press, New York, 2005. 

[71] Lumley, L. J., Berkooz, G., Elezgaray, J., Holmes, 
P., Poje, A., and Volte, C., In: Simulation and 
Modeling of Turbulent Flows. Gatski, B. T., 
Hussaini, M. Y., Lumley, L. J. (Eds), Oxford 
University Press 1996. 

[72] McComb, W. D., and Shanmugasundaram, V., J. 
Fluid Mech. 143, 95 (1984). 

[73] Saddoughi, G. S., and Veeravalli, V. S., J. Fluid 
Mech. 268, 333 (1994). 

[74] Lin, C. C., Turbulent Flows and Heat Transfer, 
Princeton University Press, Princeton, 1959. 

[75] Ling, S. C., and Huang, T. T., J. Phys. Fluids. 13, 
2912 (1970). 

[76] Chandrasekhar, S., Turbulence- A physical theory 
of astrophysical interest, in [25], (1949). 

[77] Martinelli, R. C., Transactions, ASME 69, 947 
(1947). 

[78] Ueda, H., and Hinze, O. J., J. Fluid Mech. 67, 125 
(1975). 

[79] Zagarola, M. V., Perry, A. E., and Smits, A. J., Log 
laws or power laws: The scaling in the overlap 
region, Phys. Fluids 9 (7), 2094 (1997). 

[80]  Lancien, P., Lajeunesse, E., and Metivier, F., Near 
wall velocity measurements by particle-tracking, 
arXiv:physics/0701131v1 [physics.flu-dyn],  11 
January 2007.    

[81] Meinhart, C. D., Wereley, S. T., and Santiago, J. 
G., Experiments in Fluids 27, 414 (1999). 

[82]  Sohrab, S. H., Bull. Am. Phys. Soc. 43 (1) 781 
(1998). 

[83]  Schrödinger, E., Ann. Physik 79, 361 (1926); 81, 
109 (1926). 

[84]  Poincaré, H., Sur la dynamique de l’électron,  C. R. 
Acad. Sci. Paris  140, 1505 (1905). 

[85]  Poincaré, H., Sur la dynamique de l’électron,  Rend. 
Circ. Mat. Palermo  21, 129 (1906). 

LATEST TRENDS on SYSTEMS (Volume II)

ISSN: 1792-4235 496 ISBN: 978-960-474-214-1



[86] Logunov, A. A., On the Articles by Henri 
Poincaré, “On the Dynamics of the Electron”, 
Dubna: JINR, 2001. 

[87]  Broglie, L. de, Matter and Light-The New 
Physics, Dover, New York, 1937. 

[88] Schrödinger, E., Phys. Rev.  28, 1049 (1926). 
[89] ‘t Hooft, G., Rev. Mod. Phys.72 (2), 333 (1999). 
[90] Born, M., Z. Physik 37, 863 (1926). 
[91] Vigier, J. P., Louis de Broglie—Physicist and 

Thinker, In: Quantum, Space and Time-The 
Quest Continues, Asim O. Barut, Alwyn van der 
Merwe, and Jean-Pierre Vigier (Eds.), 
Cambridge University Press, 1984. 

[92] Lochak, G., In: Quantum, Space and Time-The 
Quest Continues, Asim O. Barut, Alwyn van der 
Merwe, and Jean-Pierre Vigier (Eds.), pp.11-33, 
Cambridge University Press, 1984. 

[93] Polkinghorne, J. C., The Quantum World, 
Princeton University Press, 1984. 

[94] Bell, J. S., In: Quantum, Space and Time-The 
Quest Continues, Asim O. Barut, Alwyn van der 
Merwe, and Jean-Pierre Vigier (Eds.), pp.66-76, 
Cambridge University Press, 1984. 

[95] Sohrab, S. H., WSEAS Transactions on 
Mathematics 4, Vol.3, 764 (2004). 

[96] DeWitt, S. B., Phys. Rev. 160, 1113 (1967). 
[97] Hartle, J. B., and Hawking, S. W., Phys. Rev. D 

28, 2960 (1983). 
[98] Dersarkissian, M., Lett. Nuovo Cim. 40, 390 

(1984). 
[99] Laughlin, R. B., and Pines, D., PNAS 97 (1) 28-

31 (2000). 
[100] Feynman, R., Leighton, R. B., and Sands, M., 

Lectures on Physics, Vol. II, p.41-11, Addison-
Wesley Publishing, New York, 1964.  

[101] Bokulich, A., Reexamining the Quantum-
Classical Relation, Cambridge University Press, 
New York, 2008. 

[102] Kamionkowski, M., Is the universe (statistically) 
isotropic? Lecture delivered at physics 
department, Northwestern University, Evanston, 
Illinois, March (2010).   

[103] Kerr, R. P., Phys. Rev. Let. 11 (5), 237 (1963). 
[104] Dirac, P. A. M., Nature 168, 906 (1951). 
[105] Recami, E., Riv. Nuovo Cim. 9, No.6, (1986); 

Tachyons, Monopoles and Related Topics, North-
Holland, Amsterdam, 1978. 

[106]  Lorentz, H. A., Selected Works of L.H. Lorentz, 
vol.5, Nersessian, N. J., and Cohen, H. F., (Eds), 
Palm Publications, Nieuwerkerk, 1987, p.7.   

[107] Kox, A. J., in Einstein and the History of General 
Relativity, Howard, D., and Stachel, J. (Eds.), 
pp.201-212, Birkhäuser, Boston, 1989. 

[108] Sohrab, S. H., in New Aspects of Heat Transfer, 
Thermal Engineering, and Environment, S. H. 
Sohrab, H. J. Catrakis, N. Kobasko, (Eds.), pp: 
434-442, WSEAS Press, 2008, ISBN: 978-960-
6766-97-8. 

[109]  Michelson A. A., and Morley, E. W., On the relative 
motion of the earth and luminiferous ether, Amer. J. 
Sci.34, 333-345 (1887). 

[110] Pauli, W., Theory of Relativity, Dover, New York, 
1958. 

[111] Einstein, A., Ann. Phys. (Leipzig) 18, 639 (1905). 
[112] Whittaker, E. T., A History of the Theories of Aether 

and Electricity, vol.2, Tomash Publishers, New 
York, 1987. 

[113]  Darrigol, O., Isis 95, 614-626 (2004). 
[114]  Galison, P., Einstein’s Clocks, Poincaré’s Maps, 

W. W. Norton & Company, New York, 2003. 
[115] Poincaré, H., Bulletin des Sciences Mathématiques 

28, 302-324 (1904), English translation in: The 
Monist XV, No.1, 1 (1905). 

[116] Poincaré, H., Arch. Neerland. 5, 252 (1900). 
[117] Poincaré, H., Mathematics and Science Last Essay, 

p.19, General Books, Memphis, Tennessee, 2010. 
[118]  Aristotle, In: Time, Westphal J. and Levenson, C., 

(Eds.), Hackett Publishing Company, Indianapolis, 
Indiana, 1993. 

[119] Bell, L. J., The Continuous and the Infinitesimal in 
Mathematics and Philosophy, Polimetrica, Milano, 
Italy, 2006. 

[120] Weyl, H., The Continuum, The Thomas Jefferson 
University Press, Kirksville, MO, 1987. 

[121] Heisenberg, W., The Physical Principles of 
Quantum Theory, Dover, New York, 1949. 

[122]  Hawking, S. W., A Brief History of Time, Banton 
Books, 1988; Phys. Rev. D 32 (10), 2489 (1985). 

[123] DeWitt, S. B., Physics Today, September, 1970. 
[124] Wheeler, J. A., Superspace and the nature of 

qunatuim geometro-dynamics. In: Battelle 
rencontres, edited by C. M. DeWitt and J. A. 
Wheeler, 242-307, Bejamin, New York 1968. 

[125] Ashtekar, A., Current Science 89 (12), 2064 
(2005). 

[126] Kiefer, C., Does Time Exist in Quantum Gravity? 
www.fqxi.org/communitty/forum/topic/265 (2008). 

[127] Rovelli, C., Forget Time, 
www.fqxi.org/communitty/forum/topic/237 (2008). 

[128] Barbour, J., The Nature of Time, 
www.fqxi.org/communitty/forum/topic/360 (2008). 

[129] Smolin, L., The Life of the Cosmos, Oxford 
University Press, Oxford, 1997; In: Conceptual 
Problems of Quantum Gravity, Ashtekar, A., and 
Stachel, J. (eds.), Birkhäuser, Boston, 1991. 

[130]  Zeh, H. D., The Physical Basis of the Direction of 
Time, Springer-Verlag, 1999. 

[131] Clemence, G. M., Rev. Mod. Phys. 29, 2  (1957). 
[132] Poincaré, H., Rev. Metaphys. Morale 6, 1 (1898); 

English translation; “The measure of time,” in: 
Poincaré, H., The Value of Science. 

[133] Dirac, A. M. P., Directions in Physics, Wiley, New 
York, 1978. 

[134] Takayasu, H., Fractals in Physical Science, Wiley, 
New York, 1990.  

 

LATEST TRENDS on SYSTEMS (Volume II)

ISSN: 1792-4235 497 ISBN: 978-960-474-214-1

http://www.fqxi.org/communitty/forum/topic/265
http://www.fqxi.org/communitty/forum/topic/237
http://www.fqxi.org/communitty/forum/topic/360



