
Facilitating tacit-knowledge acquisition within requirements

engineering

Abdulmajid Hissen Mohamed

Department of Computer Science

Sebha University

PO Box 18758, Sebha, LIBYA

abdulmajid.h@gmail.com http://www.sebhau.edu.ly/cs/faculty.html

Abstract: - Software maintenance represents one of the most challenging tasks for software engineers. This

can be attributed to many problems related to how software applications are built. However, the lack of

enough historical knowledge about legacy software projects is a major software maintenance issue. Though

software documentation is heavily used to guide maintainers tasks, but it only cater for documented experience

knowledge in the form of diagrams, code, test cases, etc. On the other hand valuable experience knowledge

can not be recalled simply because it is implicitly embedded in the minds of expert software engineers. This

includes views, assumptions, and observations made as part of managing legacy software projects. The lack of

such valuable experience knowledge during software maintenance would certainly lead to misinterpretations

and wrong assumptions about the software being maintained. Within the software lifecycle, software

requirements phase accommodates extensive expert deliberations. This represents a major source of software

tacit or undocumented knowledge. Capturing tacit knowledge in the form of requirements rationale is expected

to provide greater help for software maintainers to understand the complexity of the software application being

maintained. This paper presents an approach for capturing experts' tacit knowledge. It is aimed to provide the

ability to capture requirements tacit knowledge resulted from the collaborative requirements verification and

validation.

Key-Words: - Requirements engineering, Knowledge Management, tacit knowledge, knowledge reuse

1 Introduction
Software engineering is a team-based process, and

any collaborative task involves great part of

deliberation and discussion between members

involved. Meanwhile, huge volume of professional

knowledge is usually communicated as part of the

software team deliberations. Usually part of this

knowledge is explicitly documented in the form

of meeting minutes, modelling diagrams, test cases,

code, etc. This explicitly documented knowledge

can be organized and shared easily. But, Substantial

experience knowledge remains undocumented and

implicitly kept in software engineers' minds. This

experience knowledge is classified as tacit

knowledge, which is usually communicated orally or

through observation. Though its importance,

capturing tacit knowledge has twofold challenges,

firstly it is unseen and secondly it is usually

unconsciously exploited by knowledge experts. In

other words it is hardly explicated. This

characteristic is best reflected by Polanyi’s theory of

personal knowledge “we know more than we can

tell” [1]. In fact, usually experts practicing their

craft demonstrate know-how and do so without

conscious reflection [2].

From the view point of organizations, knowledge is

central to the competitive advantage of

organisations [3], and therefore the issue of tacit-

knowledge mismanagement forms a major threat for

organisations. Because though experts' know-how

should be considered as part of the organizational

memory, but organizations have no control on the

experience knowledge kept in experts' minds. This

is especially applicable to knowledge-intensive

organizations such as software organizations.

According to Hoffman et al[4], such organisations

are subjected to lose their ability to conduct

business as their workforce ages and critical

knowledge walks out the door. The rest of the paper

is organised as follows: an overview of knowledge

management is highlighted in Section 2. An

overview of software requirements engineering is

presented in Section 3. Sections 4 discuses the

characterization of tacit knowledge generated as part

of the requirements engineering phase. The

proposed approach to tacit-knowledge management

is presented in Section 5 followed by overview of

related research. The paper ends with a conclusion

and suggestion for further work.

2. Knowledge management

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 27 ISBN: 978-960-474-231-8

Currently, knowledge management is a very active

multidisciplinary research. It aims to formulate

knowledge models and group-communication

frameworks to manage knowledge creation and

reuse. Nonetheless, the term knowledge still

sometimes considered as a buzzword. According to

Fenstermacher, despite debating the topic for

millennia, philosophers have yet to agree on a

definition of knowledge themselves [2].

Traditionally, knowledge is described hierarchically

with the concept of data, information and

knowledge [5]. And in regard to knowledge

taxonomy, knowledge management researchers

classify knowledge as explicit (i.e. formal) and tacit

(i.e. informal) knowledge. Formal knowledge is the

stuff of books, manuals, documents, memos, white

papers, plans and training courses, whereas informal

knowledge is the knowledge that is created and used

in the process of creating the formal results. It

includes ideas, facts, assumptions, questions,

guesses, stories, points of view, etc.[6]. In other

words, tacit knowledge constitutes what Koskinen

describes as the practical know-how [7], which

cannot be transferred simply by symbolic

communication [8]. However, tacit and explicit

knowledge tend to co-exist [9], because tacit

knowledge is often crucial for the interpretation of

the explicit knowledge” [10]. it forms what Gal

et.al calls the guidance of human behaviour [11],

because in any problem solving process, experts

usually rely on the experience they had which

deeply embedded in their minds.

Traditionally, documenting explicit knowledge is

the common practice. But recently there is a

growing recognition that tacit knowledge

management is expected to provide great

improvement to computer supported decision

making. According to Zack [12], explicating tacit

knowledge so it can be efficiently and meaningfully

shared and reapplied, especially outside the

originating community, is one of the least

understood aspects of knowledge management.

As part of the conscious and unconscious use of

experience knowledge, experts’ knowledge tends to

develop from tacit to explicit and vice versa. This

form of knowledge dynamics is depicted by

Nonaka’s model of knowledge creation and

transformation a.k.a. SECI [13]. As shown in Fig. 1,

Nonaka defined four modes of knowledge

conversion, firstly, in the socialisation mode (tacit

to tacit), knowledge workers acquire new

knowledge directly from each other. Secondly, the

externalisation mode represents the articulation of

tacit knowledge into tangible form. Thirdly, in the

combination mode, different forms of explicit

knowledge are combined to generate new factual

knowledge. Finally, the internalisation mode

(Explicit to Tacit) comes as a result of the three

previous modes. Through experience, workers

enrich their understanding and new tacit knowledge

is embedded into their mind as a result. Notice that

Nonaka’s model considers tacit knowledge as

mainly generated and reused as part of the

socialization cycle. Because humans naturally share

knowledge by telling stories [14] and debating.

3. Software requirements

engineering
Software requirements engineering (RE) is the

initial phase of software development lifecycle. It is

the phase where customers’ requirements are

identified. This process involves lengthy customer-

developer and developer-developer deliberations.

The aim is to conclude complete, accurate and

unambiguous list of software project requirements.

An individual software requirement can be defined

as a capability or a condition needed by a client to

accomplish software facilitated tasks. Meanwhile,

the requirements engineering process is concerned

with the identification, modelling and verification of

the functionalities of a software system. This

includes the context within which the system will be

developed or operated. RE has four main tasks

includes requirements elicitation, negotiation,

specification, and validation/verification [15]. There

are many requirements elicitation techniques

available such as Joint Application Development

(JAD) [16; 17], Storyboarding [18], and Rapid

Application Development (RAD) [16; 19]. The

objective of these techniques is to provide

requirement engineers or system analysts a platform

to conclude final list of requirements

collaboratively. However, in terms of capturing tacit

knowledge, none of these techniques pay attention

to documenting the rich collaborative discussions

held during the RE process.

4. The Characterization of tacit

knowledge embedded in RE phase

Because requirements engineering involves

intensive discussions and deliberations, this makes it

the richest software development phase in terms of

tacit knowledge generation. Meanwhile, numerous

studies asserted that higher percentages of software

failures are attributed to poorly articulated

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 28 ISBN: 978-960-474-231-8

requirements. According to Grünbacher and Briggs,

one common cause of poor requirements is that

critical knowledge of stakeholders remains often

hidden and unshared in the course of a negotiation

[20]. This is happened because conflict is inherent

in any team-based project such as software

engineering projects. As part of the requirements

verification and filtering, requirements engineers

need to examine huge matrix of features, technical,

and domain constraints. Within this collaborative

process, arguments and conflicts arise naturally to

form the requirements rationale. Traditionally, the

rationale behind the concluded list of requirements

is not documented.

The representation of tacit knowledge in the form of

requirements rationale is a very complex process,

because it may take many forms including gestures,

signs, and other forms of personal expression.

Accordingly, it is hardly possible to manage the

mapping of the full richness of discourse elements

into a formal representation. However, simple

discourse ontologies can be employed to grab

significant part of tacit knowledge, keeping in mind

that users tend not to disclose all information they

know.

5. Our approach
Our approach relies on the use of IBIS model [21]

as an ontology to represent requirements' rationale.

IBIS is initially proposed as generic deliberation

ontology to capture design rationale. Fig. 2 shows

our adaptation of the IBIS deliberation ontology.

Replies to

Proposes

1

1

1
Req. Engineer

Argument

Position

Fig. 2: An adapted version of IBIS argumentation model

N
N

1 1

Related to

Requirements

item

Posts

Justifies

1

Explicit knowledge Tacit knowledge

Tacit

Knowledge

Explicit

Knowledge

Socialization

Internalization

Combination

Externalization

Figure 1: Nonaka’s model of knowledge creation

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 29 ISBN: 978-960-474-231-8

Fig. 3 An example of captured tacit knowledge fragments associated with a sample

application requirement

The adapted model provides requirement engineers

simple vocabularies to express their argument details.

It encourages team members to debate the validity of

elicited requirements. Basically, the model provides

debaters a formalism to represent Issues that need to

be debated, and members' Positions in response to

raised Issues. Positions represent Arguments to

support or disprove these other members' Positions

[21]. Our adaptation attached deliberation details to

individual software requirement Items proposed by

Requirement Engineers. Fig.3 shows part of our

implementation of the proposed approach in capturing

software requirement's tacit knowledge. The

screenshot represented by Fig. 3 shows a sample of an

individual functional requirement. The lower pane of

the screenshot shows deliberations conducted as part

of the verification and the approval of the sample

software requirement. The title of the sample software

requirement is ticket payment. It is part of the

requirements list of the budget public bus system

(BPBS). Each software requirement can be debated

while its associated arguments are captured in a

structured format showing its approval's rationale. RE

team deliberation is started by one of the team

members raised the issue of what forms of ticket

payment should be considered (i.e. cash or prepaid

tickets or credit cards). In response, a team member

replied by supporting the previous argument. He/she

suggested the use of machine-readable prepaid tickets.

As shown in Fig. 3, the two followed arguments are

posted in favour of the use of machine-readable

prepaid tickets. Both justified their arguments by

avoiding cashed change or paying extra service and

telecommunication cost if credit cards are used. Each

argument is visually recognised by a one of the

symbolic icons shown in Table 1.

Asynchronous arguments continue posted by team

member until consensus is reached and the respective

software requirement is finally approved by assigned

team leaders. Approved requirements shall only be

available for viewing, and no further arguments can be

posted after their approval. Such captured rationale is

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 30 ISBN: 978-960-474-231-8

expected to help maintenance engineers to have

exposure to all historical issues related to the software

requirements being maintained. In addition, this would

also help apprentice requirement engineers to learn

from experience of skilled requirement engineers.

Table 1: Icons used to symbolise argument types

Argument type

Symbolic icon

Issue

Supporting argument

Objection argument

6. Related work
There are various attempts made to capture tacit

knowledge. A generic approach is exemplified by

OMEX [14], which is a web-based knowledge

acquisition tool aimed to build a large-scale

commonsense knowledge base. OMEX's knowledge

base is populated by descriptions and explanations of

everyday, commonsense experiences from volunteer

contributors distributed across the Internet.

Readers[10], is also a tacit-knowledge management

approach aims to replicate and transfer of

experimental know-how issues in the form of software

Lab Packages. Each laboratory package describes an

experiment in specific terms and provides materials

for replication, highlights opportunities for variation,

and builds a context for combining results of different

types of experimental treatments. Our previous work,

LiSER [22], also represents a similar approach to

tacit-knowledge management, however, the scope of

LiSER includes knowledge artefact in all software

development phases. Asgari et. al. [23] proposed the

“tribal lore” or “folklore” which constitutes experts’

knowledge collected through surveys and group

discussions.

Another domain-specific approach to capture tacit

knowledge is proposed by Abidi et al [24]. It is based

on defining a health-care “scenario” which is a goal-

oriented description of the problem situation. Each

scenario includes the “environmental context; the

problem description in terms of actors, role of actors,

temporal events and inputs; and the problem’s

solution in terms of the expert’s interventions and

outcomes”. Each scenario goes through a

crystallization process during which it is assessed and

validated by experts and practitioners, and finally

made available for downstream knowledge sharing

and utilization. The approach introduced by Friedrich

and Poll [25] is the nearest to our approach. They too

focus on the requirements engineering phase, but they

mainly focus on capturing customer's tacit knowledge

rather than the tacit knowledge owned by software

engineers. Their assumption is that requirements

engineers need to tap into customers' tacit knowledge

in order to maintain full understanding of the

application domain. In many situations customers

presume that requirement engineers are familiar with

certain domain-specific business details, so they do

not elaborate on that. But what might be 'obvious' to

customers is necessarily the case for software

engineers.

7. Conclusion
Organisations competitiveness is under threat as a

result of workforce aging and other management

practices such as downsizing and layoff. Critical

experience in the form of workers' tacit knowledge

could be lost consequently. Software engineering is a

very knowledge-intensive task and a great portion of

software engineering experience is usually held in

professionals’ heads as practical know-how. This

paper introduces an approach to capture tacit

knowledge resulted as part of the requirements

engineering process. We adapted the IBIS

argumentation model for the characterisation of

requirements tacit knowledge in the form of

asynchronous arguments posted by software

requirement engineers. Eventually, the captured

deliberations represent the rationale associated with

each individual requirement of software projects.

Managing the corpus of the captured tacit knowledge

is then expected to provide software maintainers with

relevant historical knowledge which is very critical to

accomplish software maintenance easily.

References:

[1] Polanyi, M. (1997). "The Tacit Dimension," in

Knowledge in Organizations, L. Prusak, Ed. Boston,

MA: Butterworth-Heinemann, 1997, pp. 135-146.

[2] Fenstermacher, K. D. (2005). The tyranny of tacit

knowledge: What artificial intelligence tells us about

knowledge representation, Proceedings of the 38`th

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 31 ISBN: 978-960-474-231-8

Hawaii International Conference on System Sciences,

IEEE.

[3] Yang, L. (2009). Knowledge, Tacit Knowledge

and Tacit Knowledge Sharing: Brief Summary of

Theoretical Foundation, International Conference on

Management and Service Science, MASS '09, 20-22

Sept. Wuhan, IEEE Computer society.

[4] Hoffman, R.R.; Ziebell, D.; Fiore, S.M. Becerra-

Fernandez, I. (2008). Knowledge Management

Revisited, Intelligent Systems, IEEE

Volume: 23, IEEE Computer society.

[5] Halonen, R., Laukkanen, E. (2008). Managing

tacit and explicit knowledge in organisational teams,

IEEE Computer society.

[6] Conklin, E. J. (1996). Designing Organisational

Memory: Preserving Intellectual Assets in a

Knowledge Economy. Retrieved May 2000, URL:

http://www.gdss.com/DOM.htm

[7] Koskinen K., Pihlanto P., Vanharanta H. (2003).

Tacit knowledge acquisition and sharing in a project

work context. International Journal of Project

Management, Volume 21, Number 4, May 2003, pp.

281-290(10), Elsevier Science.

[8] Balconi, M. (2002). Tacitness, codification of

technological knowledge and the organisation of

industry", Research Policy, Vol. 31 No.3, pp.357-79.

[9] Grimaldi, R., Torrisi, S. (2001). Codified-tacit and

general-specific knowledge in the division of labour

among firms- A study of the software industry,

Research Policy 30 (2001) 1425–1442.

[10] Shull, F., M. Mendonca, et al. (2004).

Knowledge-sharing Issues in Experimental Software

Engineering. Empirical Software Engineering - An

International Journal. 9(1): 111-137.

[11] Gal, Y.; Kasturirangan, R.; Pfeffer, A.; Richards,

W. (2009). A Model of Tacit Knowledge and Action,

International Conference on Computational Science

and Engineering, IEEE Computer Society, Pages: 463-

468

[12] Zack, M. H. (1999). Managing codified

knowledge, Sloan Management Review 40 (4), p. 45-

58.

[13] Nonaka, I. (1998). The knowledge creating

company, Harvard Business review on Knowledge

Management, Harvard Business School Press, 1998.

[14] Singh P., Barry, B., (2003). Collecting

Commonsense Experiences, K-CAP’03, October 23-

25, 2003, Sanibel Island, Florida, USA, ACM press

[15] Pohl, K. (1997). Requirements Engineering: An

Overview. Encyclopaedia of Computer Science and

Technology, Volume 36, Marcel Dekker, Inc., New

York, 1997.

[16] Hughes, B., & Cotterell, M. (2006). Software

project management (4th ed.). McGraw-Hill.

[17] Wood J., & Silver, D. (1995). Joint application

development (2nd ed.). John Wiley & Sons.

[18] Snyder, C. (2001). Paper prototyping, IBM

developerWorks. URL: (http://www-

106.ibm.com/developerworks/ library/us-

paper/?dwzone=usability, accessed: June 2003.

[19] Pressman, R. S. (2006). Software engineering – A

practitioner’s approach (7th ed.). McGraw-Hill

[20] Grünbacher P., Briggs B. (2001). Surfacing Tacit

Knowledge in Requirements Negotiation: Experiences

using EasyWinWin, Proceedings Hawaii International

Conference on System Sciences, IEEE Computer

Society.

[21] Lee, J. (1991). Extending the Potts and Bruns

Model for Recording Design Rationale, IEEE

Computer society.

[22] Mohamed, A. H. (2008). Capturing Software-

Engineering Tacit Knowledge, European computing

conference (ECC’08), Malta.

[23] Asgari, S. Hochstein, L. , Basili1, V., Zelkowitz,

M., Carver, J., Hollingsworth, J., Shull, F. (2005).

Generating Testable Hypotheses from Tacit

Knowledge for High Productivity Computing.

Workshop on Software Engineering for High

Performance Computing Applications (SE-HPCS),

ICSE, St. Louis, MO. May 2005.

[24] Abidi, S.S.R., Cheah Y-N, and Curran, J. A.

(2005). Knowledge Creation Info-Structure to Acquire

and Crystallize the Tacit Knowledge of Health-Care

Experts, IEEE TRANSACTIONS ON

INFORMATION TECHNOLOGY IN

BIOMEDICINE, VOL. 9, NO. 2, JUNE 2005.

[25] Friedrich, W. R. and, Poll J. A.V.D. (2007).

Towards a Methodology to Elicit Tacit Domain

Knowledge from Users, Interdisciplinary Journal of

Information, Knowledge, and Management Volume 2,

2007.

SELECTED TOPICS in APPLIED COMPUTER SCIENCE

ISSN: 1792-4863 32 ISBN: 978-960-474-231-8

