
 

 
Abstract — When transients occur during the operation of 

Nuclear Power Plants (NPPs), their identification is critically 
important for both operational and safety reasons. Thus, plant 
operators have to identify an event based upon the evaluation of 
several distinct process variables, which might difficult operators’ 
actions and decisions. Transient identification systems have been 
proposed in order to support the analysis with the aim of achieving 
successful or effective courses of action, as well as to reduce the time 
interval for a decision and corrective actions. This article presents a 
system for accident and transient identification in a pressurized water 
nuclear reactor whose optimization step of the classification 
algorithm is based upon the paradigm of the Quantum Computing. In 
this case, the optimization metaheuristic Quantum Inspired 
Evolutionary Algorithm (QEA) was implemented  and works like a 
data mining tool. The system is able to identify anomalous events, 
without the use of an  initiating event (reactor scram, for instance)  as 
the start point of a time dependence related to postulated  transients. 
The results of the classification of  transients are compared with other 
results in the literature. 
 
 

Keywords — Nuclear Power Plant, Quantum Computer 
Transient Identification, Artificial Intelligence, Diagnosis Systems . 

I. INTRODUCTION 
oth the efficiency and the safety in the operation of a 
Nuclear Power Plant (NPP) depend on the performance 

and conditions of the thousands of components that compose 
its several subsystems. Therefore the monitoring and control 
of several process variables related to them is inextricably 
associated with the operation of the NPP. On the other hand, 
faults in such components or subsystems favor the appearance 
of abnormal situations that might cause serious consequences. 
Thus, the correct diagnosis in an adequate interval of time is 
essential for the NPP operation and safety 

  The identification of acidentes, that are also seen as 
transients, is related with process variables and therefore 
yours classification is constrained by the information provided 
by the number of instruments. The recognition of patterns 
existent on the dynamics of the variation of the measurements 
can be used to support the prediction of possible behaviors of 
subsystems in a plant. In this way, decision support systems 
assist operators increasing the chances of proper courses of 

action, according to each different situation. 

 
  

One of the major regulatory consequences after the Three 
Mile Islands accident was the proposal of normative 
documents by the United States Nuclear Regulatory 
Commission (1979) with the purpose of increasing the safety 
and the efficient operation of the NPP as well as the operator’s 
responsiveness. Thus, the concept of the Critical Safety 
Functions [1] and the usage of computerized systems for the 
control and monitoring of information related to safety [2]- 
[3]. 

One of the first systems for the identification of nuclear 
accidents based on artificial intelligence techniques was 
proposed by [4]. Other transient identification systems based 
on Artificial Intelligence techniques that deal with the high 
complexity of the search space have been proposed [5]- [6]. 
Despite the problem difficulty of the diagnosis and 
identification of transients, such systems help the operator in 
the diagnosis of the operational conditions of the NPP. 

Reference [2] proposed a new methodology for the 
identification of nuclear accidents, based upon the 
classification of anomalous events through direct 
measurements of Euclidean Distances, optimized by Genetic 
Algorithm GA [7]. Reference [6] applied the Particle Swarm 
Optimization [8] to this system. 

The present article presents a transient identification system  
that uses the quantum-inspired algorithm Quantum 
Evolutionary Algorithm [9] as an optimizer, was used to find 
an optimal solution that regardless of time elapsed from the 
beginning of the transient, and consequently independ on the 
identification of the instant of the initiating event itself 
(reactor scram for instance). Within this perspective, this 
paper presents a novel aspect in relation to current literature, 
since most identification systems cited depend on detection of 
an event that can be used as an initiating of change over time, 
usually the reactor scram, to compare the patterns of accidents 
in time series.

The QEA is an optimization metaheuristic algorithm 
inspired on Evolutionary Computation, more specifically on 
GA. As the GA, the QEA is based on a population and each 
individual is characterized as a chromosome.  

Notwithstanding, instead of a conventional binary 
representation, chromosome in the QEA is formed by Q-bits 
and unlike GA, which uses for instance the operators mutation 
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and crossover, the population evolves based upon a variation 
operator known as Q-gate. 

Our results in the identification of transient and accidents 
are compared to other results in the literature, showing that the 
QEA achieved outstanding performance as the optimizer to 
find the ideal prototype vectors, which can be viewed as 
Voronoi Vectors [10], of classes to be identified. The 
remainder of the paper is organized as follows. The problem 
of transient and accident identification is described in section 
II. The section III describes the QEA. The description of the 
system proposed for the identification and classification of 
transients is in section IV, as well as the results obtained. The 
discussion of the results and the comparison with other 
techniques in section V. The conclusion is presented in the 
section VI. 

II. TRANSIENT DIAGNOSIS SYSTEM 
 

The identification of a transient is considered a complex 
task, since it comprises the monitoring of several state 
variables such as pressure, temperature, flow etc. When a NPP 
is projected, transients that might occur during its operation 
are postulated. Such transients relative to the design-basis 
accidents present well defined curves which represent the 
temporal evolution of several state variables. Thus, a system 
for the diagnosis of transients is supposed to classify an 
anomalous event occurring during the operation of the NPP, 
associating it to one of those design-basis accidents in order to 
support the operators’ decision.  

The diagnosis system proposed in the present work is based 
upon Euclidean Distance such as in the systems proposed by 
[2] and [5]. Our system classifies an anomalous event in 
relation to the signatures of three design-basis accidents 
postulated by the FSAR [11] for Angra 2 NPP, located in the 
Southeast of Brazil.  

The system compares the distances between vector 
composed by the set of variables of the anomalous event, in a 
given time t, and the centroid, represented by prototype 
vector, of the design-basis transient variables. The less 
distance will indicate the class of the transient which the 
anomalous event belong to. Thus, the QEA was used to find 
the best position of the centroid of each class of the selected 
transients, which maximize the number of the correct 
classifications. In other words, the QEA was used for finding 
the ideal prototype vector (centroid) for each class to be 
identified and can be viewed as  the Voronoi Vectors  that 
represent the best solution to the problem, with the highest 
number of correct classifications. 

Notwithstanding, the work reported herein is different from 
the system proposed by [2]-[5] in the sense that, in such 
works, the optimization is also related to the smallest number 
partitions for the classification. In this case, we proposed a 
novel method of identification of transient based on only one 
partition, different from the models aforementioned, and 
independent of the event  detection that can be used as the 
initial mark (t=0) of the time series of the transient to be 

identified.  
The three accidents chosen for comparison with the existing 

works were the Blackout (BLKOUT), the Lost of Coolant 
Accident (LOCA) and the Steam Generator Tube Rupture 
(SGTR). Each transient was represented by the temporal 
evolution of the variables described in the Table I.  

 
 
 

TABLE I. 
STATE VARIABLES USED IN THE REPRESENTATION OF THE  

SIGNATURES OF THE DESING-BASIS ACCIDENTS. 
 

Variable Description Unit 

V01 Time s 

V02 Reactor water flow % 

 
 
 
 
 
 
 V03 Hot leg temperature ºC 

V04 Cold leg temperature ºC 

V05 Primary water flow kg/s 

V06 Steam generator water level – large range % 

 
 
 
 
 V07 Steam generator water level – narrow range % 

V08 Steam generator pressure 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

III. QUANTUM EVOLUTIONARY ALGORITHM 
 

A. Fundamentals of the Quantum Evolutionary Algorithm. 
 

Quantum Computation is based upon the principal concepts 
of the Quantum Theory [12]- [13], the superposition and 
interference of quantum states, which make possible the 
execution of parallel operations. 

In classical computers, the information is encoded as a 
sequence of bits. Unlike classical computers, quantum 
computers process the information using a set of quantum bits 
(Q-bits). A generic Q-bit ψ  might be represented not by an 
exact representation, but by a linear combination of the 
vectors 0  and 1 , given by :  

 

MPa 

V09 Feed water flow kg/s 

V10 Steam flow kg/s 

V11 Flow in the rupture kg/s 

V12 Primary system flow kg/s 

V13 Primary system pressure MPa 

V14 Thermal power % 

V15 Nuclear power % 

V16 Subcooling power ºC 

V17 Pressurizer water level % 

V18 Primary mean temperature ºC 
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in such way that 
 

10 βαψ +=                                                               (2) 
 
where α and β are complex numbers that satisfy 
 

122 =+ βα                                                                    (3) 
 
In Quantum Mechanics, the vector ψ  is also called state. 

Thus, the physical interpretation of the Q-bit (eq. 1) is that he 
assumes simultaneously the states 0  and 1 . In Quantum 
Mechanics, this ability of being simultaneously in two or more 
states is known as quantum states superposition. In other 
words, the information stored in ψ  is a combination of all 
the possible states of 0  and 1 . 

 In order to make the information in ψ  accessible in a 
classical way, it is necessary to make an observation, that is, a 
measurement. This measurement has as a probabilistic 
outcome, a unique value contained in the superposition. Thus, 
although there exist a superposition of states, when a Q-bit is 
observed, it is observed in a single state. Thus, when ψ  is 
measured, it is possible to find the state 0  with a probability 

2α or the state 1  with a probability 2β . 
 A set of N Q-bits may be put in a superposition of 2N states, 

and each one of these states corresponds to certain Q-bits in 
the state 0  and others in the state 1 , such as (000...0), 
(100...0), (010...0), (111...0), ..., (111...1). These states encode 
all the possible numbers represented by N bits. This allows the 
application of a physical operation that corresponds to a 
computational calculation simultaneously to all the possible 
values, with a consequent parallel computation.  

Although the Quantum Computing is promising in terms of 
processing, two issues prevent that its scale of utilization 
becomes larger: difficulties of implementation of a quantum 
computer and algorithms that can explore the ability of 
parallel processing of such computers. Notwithstanding, the 
development of quantum-inspired algorithms such as the 
QEA, and their procedures based on superposition and 
interference of quantum states, represent a promising 
possibility for the field of Optimization Metaheuristics for 
application to engineering problems. 

 

B. The canonic algorithm of the Quantum Evolutionary  
Algorithm. 

 
The main idea in the QEA is that the operations related to 

the search will be performed on quantum individuals of a 
population Q(t), whose collapse into classical information will 

provide, at each generation t, a classical population P(t) 
formed by classical candidate solutions. The quantum 
population Q(t) of n quantum individuals, or quantum 
chromosomes in terms used for the description of GAs, is 
represented by the set { })t(q...,),t(q),t(q)t(Q n21= . For a 
search space where the candidate solutions are represented by 
m bits, the quantum chromosome  is given by: )t(q i

 

⎥
⎦

⎤
⎢
⎣

⎡
=

)t(
)t(

...

...
)t(
)t(

)t(
)t(

)t(q
mi

mi

2i

2i

1i

1i
i β

α
β
α

β
α                                    (4) 

 
where, 1)t()t(

2
ij

2
ij =+ βα  according to eq. (3). The index 

n,...,2,1i = , corresponds to the quantum individual   
whereas the index 

)t(q i

m,...,2,1j =  corresponds to the number of 
a specific Q-bit of an individual i. Q(t) is initialized as 

{ })0(q...,),0(q),0(q)t(Q n21=  in such a way that 

2
2)0()0( ijij == βα  ∀ n,...,2,1i =  and .       m,...,2,1j =

    As a consequence, 
2
12

ij
2

ij == βα , which means that the 

Q-bits have the same probability of being in the states 0  or 

1  in the initialization. 
The classical population P(t) of n classical individuals is 

represented by the set  . 
The candidate solutions  with m bits, which will be 
evaluated by the fitness function , are represented 
by:  

{ })t(X...,),t(X),t(X)t(P n21=

)t(X i

))t(X(f i

 
[ ])t(x...)t(x)t(x)t(X im2i1ii =                                   (6) 

 
where  is the observed bit. According to our model of 

QEA, the best candidate solution of P(t) at each iteration t is 
stored in B(t), that is, 

)t(xij

 
[ ])t(b...)t(b)t(b)t(B m2i=                                  (7) 

 
where  represent the bits of the best solution. The 

algorithm of the QEA is described in Fig. 1.  
)t(b j

 
 
  1. t ← 0 

 
 
 
 
 
 
 
 
 
 

 2. Initialize Q(t)  

 3. Repeat until a stopping criterion is satisfied 

3.1. Generate P(t) observing the states of Q(t) 

3.2. For i = 1 to n evaluate f(Xi(t)) 

3.3. Store the best solution of P(t) in B(t) 

3.4. Update Q(t) using Q-gate U 

3.5. t ← t + 1 
 

 
Fig. 1.  Algorithm of the QEA. 

 

Proceedings of the International Conference on Applied Computer Science

408



 

The bits  obtained in the item 3.1 of  Fig. 1 are 

outcomes for the observation of the states of the individuals of 
Q(t). The algorithm for the production of P(t) is described in 
Fig. 2. The probabilities 

)t(x ij

2
ijα  and 2

ijβ  play a fundamental 

role during the observation of a quantum individual : if 

the value of the random parameter  is greater than 
)t(q i

2
ijα , then  

1|)t(x| 1i = , otherwise .  0|)t(x| 1i =

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The complex numbers ijα and ijβ , and therefore Q(t), are 

updated according to the Quantum Gate operator, which will 
be described hereafter. 

 

C. The Quantum Gate Operator 
 
The updating of the population in the QEA is done by the 

Quantum Gate operator, defined by the rotation matrix  
, which will be applied to each one of the columns of 

the each individual’s Q-bits. In practice, each pair of values 

)ij(U θΔ

ijα  and ijβ  is treated as a bi-dimensional vector and rotated 

using in such a way that )ij(U θΔ
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The operator  is given by: )ij(U θΔ
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with 

 

ij)ij,ij(S)ij( θΔβαθΔξ ×=                                             (10) 

 
where the sign function  represents the direction 

of rotation and the pass  represents the angle of rotation. 

Fig. 3 exhibits the procedure for application of the operator 
.

)ij,ij(S βα

ijθΔ

)ij(U θΔ   
Begin 
 0i =    
   while (i < n) do 

    
0j

1ii

=

+=
 

        while (j < m) do 
         1jj +=  

          if random [ ] 2||1,0 ijα>  

                then 1|x| ij =   

               else 0|x| ij =  

                 end if 

         end 

 end 

 

Fig. 2. Pseudo-code for update of the Q-bit. 

 
 Begin 

 0i =    
   while (i < n) do 

    
0j

1ii

=

+=
 

      while (j < m) do 
        1jj +=  

      Determine ijθΔ  with the lookup 

         Obtain 
)1t(
)1t(

ij

ij

+
+

β
α  as:  

              
)t(
)t(

)(U
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β
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β
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=
+
+  

       end 

   end 

 

Fig. 3. Pseudo-code for update of the Q-bit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Both ijθΔ  and  are obtained in accordance with 

[14].  

)ij,ij(S βα

 

D. The Quantum Gate Hε 
 
 QEA model applied to the transient identification model 

adopted corresponds basically to the model described above. 
In order to avoid the premature convergence of the Q-bit, 
[15], proposed the Quantum Gate Hε  defined by  

 

)ij),t(ij),t(ij(H)1t(ij

)1t(ij θβαε=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+β

+α
Δ                                   (11) 

 
     During the application of the Quantum Gate Hε, the 
rotation 
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is calculated as an intermediate step and the final updating 
depends on the value of the constant ε, in such a way that  
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This gate was  introduced in this model has the objective of 

reducing the chances of stagnation of the algorithm into local 
minima during the evolution of the population. The numerical 
value of ε is defined according to the problem and 0 < ε < 1. 
The value of ε  in used in this work was determined through 
experiments described in section VI. 
 

IV. IMPLEMENTATION AND COMPUTATIONAL EXPERIMENTAL       
RESULTS OF THE TRANSIENT IDENTIFICATION SYTEM FOR A PWR 

NUCLEAR POWER PLANT. 
 

In our transient identification system, the time axis was 
partitioned into 60 seconds after the beginning of the transient 
(t=0), reactor scram at 100% of nuclear power, which yields 
61 time values. Therefore, the maximum number of correct 
classifications for the three postulated accidents is 177 (59 
time values x 3 accidents types), since the two first seconds 
represent the plant operating at normal condition. 

During the data analysis of accidents to be identified, as 
well as a process of data miming,  the system needs to identify 
the most characteristic and representative set of values for the 
18 process variables (Table I) that correspond to the 
identification of each one of the three postulated accidents 
(LOCA, BLKOUT, SGTR). It should be noted that initially 
the variable time was considered as one of 18 state variables 
in the accident data set.  

Using a 12 bits precision, each candidate solution of the 
classical population P(t) is a vector represented by 54×12 = 
648 bits (since there exist 18 variables for each one of the 
three postulated accidents, we have the total number of 54 
variables in each individual). The choice to use 12 bits of 
precision in  this work aimed to compare the results from 
validation tests of  our implementation the QEA with the 
results found in the original work [9]. 

 In other words, inside a classical individual, each accident 
is represented by a group of 18×12 bits. In the QEA 
implemented, the number of individuals was n = 100, 
parameter delta was Δ = 0.005* π, considered in our previous 
work [16], and the value of the Quantum Gate He, ε = 0.01. 
The choice of the value of ε = 0.01 was based on a series of 
tests presented in Table II.  

 
 TABLE II. 

TEST FOR DIFFERENT VALUE OF  PARAMETER ε 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is observed in Table II that values of ε <0.01 prevent 

premature convergence of the algorithm QEA and not make 
the search process slower, in other words do not require a 
greater number of generations to find the optimal solution. 

The Table III show the results of the tests, for different 
values for the variable time, and presents the number of 
evaluations needed to find the optimal solution, 177 correct 
classifications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The graphic in Fig. 4 shows the position of prototypes 

Value 

of ε 

Convergence 

(generations) 

Correct 

Classification 

0.000 188 177 

0.005 188 177 

0.010 123 177 

0.050 188 177 

0.100 546 177 

0.200 618 177 

TABLE III. 
TEST FOR DIFFERENT VALUE OF  TIME  

 

Time 
Convergence Correct 

Classification (evaluation) 

5 2*103 177 

10 2*103 177 

20 2*103 177 

40 2*103 177 

60 2*103 177 
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vector of  transients in two-dimensional plane of one possible 
solution. The first variable (y axis) of the Table I normalized 
in the interval [0-1], and time in seconds (x axis). The circle 
represents the prototype vector of LOCA, the cross of 
Blackout and the triangle represents of  SGTR. 

 
 
Can be observed in the tests shown  in this paper that there 

are several ideal solutions to diferents time instants, and other 
words, for each fixed time instant  the system encountered a  
prototype vector (centroid) with the highest number of correct 
classification. This indicates that there must be an optimal 
solution invariant in the time, in the order words, the 
determination  of the prototype vector of transients there are 
not time dependent. 

 This fact motivated us to make changes in our system for 
the identification of transient, in order to eliminate the time 
variable of the set of variables (Table I) considered necessary 
and sufficient for determining the centroid vectors for the 
transient. 

Also in this case we use a 12 bits precision, each candidate 
solution of the new classical population P(t) is a vector 
represented by 51×12 = 612 bits (since there exist 17 variables 
for each one of the three postulated accidents, we have the 
total number of 51 variables in each individual without the 
time). In other words, inside a classical individual, each 
accident is represented by a group of 17×12 bits. 

In order to verify the robustness of the ideal solution found 
by the system has included a Gaussian noise of zero mean and 
standard deviation of 1% (σ = 1%) in the signal event to be 
identified for each transient. The choice of the 1% noise in 
signal event is due to the fact that the percentage of error 
usually corresponds to the error found in the nuclear 
instrumentation. 

The Table IV present the results for each accident and the 

level of noise introduced into the signal to be classified, where 
the maximum number of hits for each accident is 59 correct 
classifications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

V. DISCUSSION 
 
In order to compare the results obtained with previous 

techniques reported [5]–[6], the QEA was used to provide the 
prototype vector including the time variable, with maximum 
number of correct classifications is 177 (59 time points x 3 
accident types). The comparison between the best result of the 
QEA, PSO and GA is presented in Table V. According to this 
Table, QEA proved more efficient and with less 
computational effort. 

 
 
 
 
 
 

 
 
 
 
 
 
The results obtained with the QEA without the time 

variable are compatible to the techniques in the reference 
literature [2]-[5]-[6]-[16], for the transient identification 
problem, but were obtained with less computational effort 
(number of  evaluations). This system allow a solution that 
approximates the ideal solution, the Voronoi Vectors for the 
classes of accidents with robustness. 

TABLE V. 
COMPARISON OF GA, PSO AND QEA. 

 
 Population 

Size 

Convergence 

(evaluations) 

Correct 

Classification 

GA 2000 NA 98,0% 

PSO 500 2*106 98,9% 

QEA 100 1*104 100,0% 

TABLE IV 
INSTANTANEOS CLASSIFICATION RESULTS 

 

Transient Noise (%) 
Correct 

Classification 

BLKOUT 0 100% 

LOCA 0 100% 

SGTR 0 100% 

BLKOUT 1 100% 

LOCA 1 100% 

SGTR 1 100% 

BLKOUT 2 100% 

LOCA 2 100% 

SGTR 2 93% 
 
               Fig. 4.  Position of prototypes vector of  transients in  

                   two-dimensional plane 
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The adjustments in the value of ε and Δ, used by the 
algorithm QEA was successfully applied in the solution of the 
transient identification problem of a PWR NPP and was 
efficient in the search of solutions in multimodal high 
dimensional spaces.  

The graphic in Fig. 5 presents the fitness convergence of 
the QEA algorithm with 100 individuals, Δ = 0.005* π and 
220 generations (2.2*104 evaluations), and using the time as 
one data set variable. It was observed that the algorithm 
presents several stationary states, that is, it remains stuck 

several generations without significant learning. 
 
The results obtained by the system without the time 

variable, besides to classify the event independently of time 
and mainly without the need for detection or identification of 
an initiator event as the start point of t = 0, were obtained with 
less than 1.0*104 evaluations. This represents a significantly 
less computational effort than the other works presented in 
literature. 

VI. CONCLUSION 
 
    The present work shows the viability of the algorithm 

QEA as an optimization tool in discrete and continuous high-
dimensional search spaces. Besides, to the best of our 
knowledge, this is the first application of the QEA in 
multimodal and complex problem in Nuclear Engineering 
such as the transient identification in a PWR NPP operating at 
100% power.  

In this way, the present article described the implementation 
and results of a new model of transient identification based on 
search of the Voronoi Vectors, with only one partition and 
independent of the existence of an event that can be used as a 
starting point for t = 0, which yielded a more efficient system 
compared to other models described in the literature. The 

QEA is a potential metaheuristic technique for optimization 
problems in Nuclear Engineering. Future work comprises the 
application of the model of the system for transient 
identification with QEA for a set containing more transient 
signatures and the determination of minimal sets of variables 
for the identification of transient 
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