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Abstract: An Intelligent Supervision Scheme for the Industrial Production is presented in this work. Such scheme is
tested for gas lift (GL) oil wells. The proposal is based on the possible production assessment, the process variables
(specifically, the bottom-well pressures), and the operational scenarios detection for the process (in the case of
study, as an oil producing well), with the objective of optimizing the producing performance of the well. The proposal
combines intelligent techniques (Genetic Algorithms, Fuzzy Classification, Neo-Fuzzy systems) and Energy Mass
Balance. The scheme in this specific study allows establishing the oil or gas flow that a well can produce, taking into
account the completion geometry and the reservoir potential, as well as the financial criteria related to the well’s
performance curves and the commercialization cost of the oil and gas. The possibility of estimating bottom-well
variables gives it a great operational significance to the presented approach; due to installation costs and bottom-well
technology maintenance are very high, turning out to be unprofitable to produce the well.

Key-words: nodal analysis, supervision system, gas lift wells, automation, fuzzy logic, neo-fuzzy systems,
evolutionary computation.

1 INTRODUCTION

With an increase of the degree of dependency of the
society on complex technological systems and
processes, their availability and right functioning have
become a strategic matter. This fact holds true for a
multitude of industrial domains: production systems,
aeronautical and aerospace industry, among others.
In all cases, the wrong functioning of these systems
can cause financial and human losses, undesired
environmental impacts, among others. Many of these
systems are highly associated to automation.
Automation of such systems through automatic
control, although it has freed the human operators of
their control and manual operation, it has not
immunized them against operational failures.

Therefore, with the objective of finding the highest
possible availability of the systems and processes, it
is necessary to complement the industrial automation
systems with potent and accurate supervision tools
that allow indicating undesired or unpermitted
performance states, as well as taking the proper
measures in order to keep the system within the
optimal performance states. 

On the other hand, the use of the Intelligent Systems
(IS) on supervision tasks in production systems is
becoming an area of great interest at industrial level
[1,3,5]. The IS have particularly started to gain more
and more influence in the oil industry, as they allow
approaching the problem of handling the complexity
of the hydrocarbon production systems [1,2]. This
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represents an attractive alternative to deal with highly
varying, complex, and confusing problems [7, 9].

So, in this work it has been proposed an Intelligent
Supervision System for optimizing continuous
production processes, specifically for Gas Lift wells. It
has been introduced the intelligent supervision
notion, from the perspective that “intelligence” must
be located at the well level. This intelligence is
understood as the well’s capacity for self-organizing
according to its conditions and the conditions of its
environment. In this approach, the production
demand is determined by the proposed mathematical
model, as well as by the bottom-well variables,
regarding the present operational scenario at
operational level. Additionally, this approach propose
a mathematical model to allow optimizing the gas and
oil production planning for several wells, in which
there is a known demand and a cost coefficient
associated to each well in the objective function.

2. THEORETICAL FRAMEWORK

2.1. Gas Lift Method

The Gas Lift method consists of injecting gas at an
established pressure at the lower part of the well
pipe’s fluid column, at different depths, with the
purpose of decreasing its weight, helping the
reservoir fluids rise from the bottom of the well to the
surface.The production curve of a well that produces
by the gas injection method (see Figure 1), indicates
as the Gas Lift Flow increases (GLF, expressed
“mpcdg” thousands of gas cubic feet days), the
production rate (Qprod, expressed “BNPD” Daily
Production Net Barrels) also increases until reaching
its highest value (Stable Region); such that additional
increases in the injection or below the necessary
injection will cause a decrease in the production
(Unstable Region) [1,2].

The mechanical completion installed at the bottom
and surface of the well and the characterization of the
physical properties of the fluid (Gravity of the oil,
water cut, Bottom-well pressure, Gas-liquid ratio) is
identified in the characterization; all of this is done
because the oil production behavior in the wells
injected with gas depends of variables, both of the
reservoir and of the mechanical design (valves,
production pipes, among others) [1]. After that,
techniques based on Mass and Energy Balances
called Nodal Analysis will be applied [1,4]. For its
calculation, a node (point of implementation of the
energy balance) must be chosen at any place of the
production system.

2.2 Intelligent Supervision

The IS allows us to incorporate skills to a Supervision
System in order to confer the following qualities to the
system being supervised: Autonomy in the decision
making process, anticipating the effect of the
supervision tasks on itself; Adaptive capacities for the
possibility of learning from the occurrence of events
on the industrial system under supervision; Self-
diagnosing and self-organizing capacities.
Additionally, the possibility for the intelligence
distributing at process level, for the decision making
to be made locally, thus minimizing the response
times of the supervision tasks. All this will allow to the
supervised system function autonomously in dynamic
(changing) environments.

This approach exceeds the classical approach of the
Data Control and Acquisition Systems (SCADA) that
limit them to supervision and control tasks, from the
following idea: it is based on a self-regulation process
in the wells, from the information they handle (status-
actions), which allows them to anticipate situations,
have a proactive knowledge, without losing the global
vision of the business. In that sense, our approach is
autonomous and distributed.

Generally, in this work we will call the supervision
systems with abilities for conferring these qualities
Intelligent Supervision Systems. This proposal is
oriented towards the provision of intelligence to the
well by giving it onsite self-diagnosing characteristics,
giving the production method better performance and
financial profitability. This is done through the
proposed supervision system. Wells with these
characteristics would be called “conscious wells”,
meaning by this term a well that, based on its
profitability, regulates its production, self-diagnoses,
controls its damages, watches and supervises the
behavior of its subsoil/surface infrastructure, among
other things [1].

Figure 1: Artificial Gas Lift well behavior´s model
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3. SUPERVISION SYSTEM SCHEME

The Intelligent Supervision System proposed in this
work is shown in Figure 2. Such Intelligent
Supervision System, at wellhead level, has been
designed for Gas Lift wells (“GL”), and confers
capacities for measuring, controlling, diagnosing,
identifying, and optimizing the GL process, in its
respective operational states. This way the well has
self-adapting and self-diagnosing capabilities (it
supervises the behavior of its subsoil/surface
infrastructure, watches the injection of external fluids,
among other things). Thus, the Intelligent Supervision
scheme has the virtue of being integrated by the
elements of the surface infrastructure, including the
reservoir model, with the purpose of sharing
information, which allows, for example, considering
production goals, surface and reservoir infrastructure
restrictions, among other things. Such scheme
proposed and implanted in this work, confers the
above qualities to the supervised system (in our
case, GL wells) at field level.

The supervision system is composed of one phase
(component) of well model generation (in this work is
proposed the utilization of techniques of Mass and
Energy Balance in this phase); one phase
(component) of Operational Scenario identification (in
this work is proposed the utilization of fuzzy logic in
this phase); and one phase (component) of
optimization of the productive process for the
identified scenario (in this work is proposed the
utilization of evolutional techniques based on process
restriction and operational production cost [2] in this
phase). Also, it has an instrumentation component
that allows it to capture the variables of the system
(in our particular case, variables of injection and
production); and a control component (not developed
in this work, but in our particular case it would be
applied to the gas injection rate through the PID
control [1,2]). Below, the phases (components) of the
Intelligent Supervision System that are developed in
this work are described.

3.1. First Phase: Generation of the Well
Production Model

It Obtains the Production Model of a Well at field
level, that consists of comparing the pressures profile

from the wellhead ( thpP ) to the bottom ( wfP ) of the

well, in order to determine the real capacity of

production ( prodQ ) the well exhibits through the gas

injection rate ( inyQ ). In order to do that, the method

called Nodal Analysis [1, 2] is used. Thus, a simple
gas lift model is proposed: the oil and gas “Inflow” of
the reservoir is modeled by the use of the productivity
index (existing ratio between the production rate

( prodQ ) and the differential between the reservoir

pressure ( wsP ) and the flowing pressure at the

bottom of the well ( wfP ). To that, the equation (1) is

used, which determines the capacity of contribution
of the oil reservoir. This equation represents an
instant snapshot of such capacity of contribution of
the reservoir towards the well, in a given time of its
productivity life. It is normal for such capacity to
decrease through time, for reduction of permeability
of the well surroundings, and for the increase of
viscosity of the oil as its light fractions vaporize. This
equation is considered as the energy offer, or fluid
affluence curve, that the reservoir yields to the well

( wfP vs  prodQ ).
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Where oQ represents a base production rate, which

is determined through reservoir core tests. As for the
“outflow”, gas is injected at a given depth to reduce
the weight of the column and reducing the bottom
pressure of the well, thus allowing to establish a
given production rate in which the capacity of fluid
contribution from the reservoir equals the capacity of
fluid extraction from the well. In this sense, in order to
inject gas, it is assumed that the pressure at the level
of the bottom injection valve located in the casing
must be greater than the pressure in the space of the

production pipe at the injection point ( )
inyTinyg PP ,, 〉 ,

in order to ensure a displacement of the gas towards
the production pipe. This is described by the following
restrictions:

Gas Lift

Well´s

Instrumentation
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Figure 2: Intelligent System Supervision for Production System Oil
proposed in this work (well LG)
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Where:

=inygP , Pressure of Injection Gas to the Valve

=inyTP , Pressure of the Production Pipe at the

Point of Injection

=gρ Gas Density

=c Constant related to the characteristics of the

valve

=inyQ Gas Injection Rate

For the model, the node at the gas injection valve is
assumed in order to establish the capacity of
production of the lifting system [1,7,8].

(3)

)( ,, wfthpinyginygiviny PPPCQ +−= ρ

From (1), (2) and (3) the mathematical model that
describes the behavior of a well by gas lift is
obtained:

(4)

3.2. Second Phase: Identification of Operational
Scenarios

This phase establishes the operational scenario of
the well by gas lift, starting from the value of its
variables. These operational scenarios can be:

• Under-injected Operational Scenario: It
takes place when the well generates a low
production due to it receiving gas with low
pressure that is generated because there is
a fissure in the pipe, or there is an injection
valve in poor condition, or there is a
problem in the producing formation.

• Normal Operational Scenario: It takes place
when the well generates the highest
production with the minimum rate of gas
injection.

• Over-injected Operational Scenario: It is
identified when the well presents low

production, because it receives gas with
high pressure, generated by the increase of
water cut (it generates an increase in the
weight of the fluid column in the production
pipe, requiring greater amount of gas to lift
the fluid up to the wellhead).

For that, a classification system based on the
variables at reservoir level (bottom pressure), at
wellhead level (pressure from the casing), and the
gas lift flow is proposed. These variables guarantee
obtaining the operational scenario, as they are
related to the energy balance applied in the previous
phase, both at bottom and surface levels. In order to
design the fuzzy classification system, the set of
fuzzy variables and the rules that will allow making
the analysis of the GL wells have to be established.
The fuzzy variables are: Pressure of the Casing,
Bottom Pressure, and Operational Scenario.

Next, the rules of the fuzzy classification system for
identifying the operational scenarios are described:

• If (Low Bottom Pressure) and (Low Casing
Pressure) then (Normal Operational
Scenario),

• If (Low Bottom Pressure) and (Medium
Casing Pressure) then (Normal Operational
Scenario),

• If (Low Bottom Pressure) and (High Casing
Pressure) then (Over-injected Operational
Scenario),

• If (Medium Bottom Pressure) and (Low
Casing Pressure) then (Normal Operational
Scenario),

• If (Medium Bottom Pressure) and (Medium
Casing Pressure) then (Normal Operational
Scenario),

• If (Medium Bottom Pressure) and (High
Casing Pressure) then (Normal Operational
Scenario),

• If (High Bottom Pressure) and (Low Casing
Pressure) then (Under-injected Operational
Scenario),

• If (High Bottom Pressure) and (Medium
Casing Pressure) then (Under-injected
Operational Scenario),

• If (High Bottom Pressure) and (High Casing
Pressure) then (Under-injected Operational
Scenario).

Followed, we show an example of one of the
functions of membership for one of the fuzzy
variables of the fuzzy classification system, the
variable bottom pressure, by the rest to see [1].
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3.3. Third Phase: Optimization of the Production
Process
The optimization problem of GL wells consists of
Increasing the Production of Oil and Minimizing the
Flow of injected Gas, based on three variables:

CostQprod ,  and .inyQ This optimization

problem is described by the objective function of the
equation (5), with the respective restrictions of the
process. The production pipe is modeled with the
pressure gradients “Pressure Drop in the Reservoir”
and “Pressure Drop in the Production Pipe”, through
the well model presented in the first phase. The union
of the pressure gradients is modeled as a “Node at
the Injection Valve Level at the Bottom of the Well”,
as it was previously explained.

The restrictions are contextualized in the operational
scenarios and reservoir conditions. We assume that:

wsP  is a constant, due to the slow dynamics of the

reservoir; wfP  must be lesser that of the reservoir,

for oil displacement to be generated towards the
bottom valve. From the well model we establish the
maximum production capacity that a reservoir can

contribute max,prodQ   and the gas lift flow inyQ ,

that at an operational level it is a limited resource and
of variable availability, which depends on the gas
plant assignment. The objective function, with its
respective restrictions, is:

(5)

Where:

=umPVPPetrole Selling price of oil in terms of

the daily barrel, Bs/bl,

=oductionCost Pr Production Cost,

=pressionCostGasCom In Bs/Mpcn,

TheCost  is defined in terms of the

udeOiloductionCrCost Pr  and

the pressionCostGasCom . The intervals

regarding the restrictions in (equation 5) depend on
the identified operational scenario, which are
characterized in the following table:

These ranges will be used by the optimization
technique to use, according to the operational
scenario identified in the previous phase.

4. EXPERIMENTATION WITH THE INTELLIGENT
SUPERVISION SYSTEM
A possible implementation of the intelligent
supervision system for GL wells, we tests our system
for the validation of GL wells from an oil field of the
Venezuelan oil industry. But this procedure would be
followed for any GL well.

4.1. FIRST PHASE: GENERATION OF THE
WELL’S PRODUCTION MODEL

The identification of the mathematical model of the
well by GL constitutes an important step towards the
operation of the supervision system. For the
purposes of the construction of the GL well
mathematical model, as it was previously indicated,
the node in the gas injection valve is assumed, with
the purpose of establishing the production capacity of
the lifting system. The pressures at which the
reservoir yields the production rate at the entrance
and exiting of the node, the energy “Inflow” of the
reservoir, and the energy “Outflow” of the surface

Operational

 Scenario

max,prodQ min,injQ max,injQ min,wfP max,wfP

Under-injected 235 291 681 410 1100

Normal 244 682 793 200 630

Over-injected 250 764 818 0 300

Figure 3: Variable Fuzzy Bottom Pressure
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Table 1: Values of the Variables according to each operational
scenario
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installation are established. To establish the “Inflow”
of oil and gas used in the equation (3), that
determines the capacity of contribution of the oil
reservoir. If a constant reservoir pressure is assumed

=wsP 2400 psi, and for a base production rate

=oQ 150 bpd, the results of the “Inflow” of the

reservoir. In order to establish the “Outflow” of energy
from the installation, equation (3) is used, which says

that gas ( inyQ ) must be injected with a fixed density,

as it will not change the concentration of the gas (the
way it is done in an experimental manner, where

inyg ,ρ  0,8 lbs/pie3), to decrease the bottom

pressure ( wfP ), so as to extract the oil up to the

wellhead generating a production pipe pressure

thpP . ivC corresponds to the valve adjustment

constant.

The behavior of the gas lift injection versus the
production in such well is as follows: it operates at a
gas injection rate between 550 and 650 mpcndg, and
the production associated to the well ranged between
190 bnpd and 220 bnpd. Thus, in Figure 4 the real
curve is presented (measured at flow station level
with a bottom pressure of 2400 psi), the established
curve using the oil and gas injection flow measured at
station level and evaluated in equation (4), and the
theoretical curve according to our model (equation 4).

Curve of Production
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4.2. SECOND PHASE: IDENTIFICATION OF
OPERATIONAL SCENARIOS
Values of casing pressure, production rate, bottom
pressure, and gas injection were identified through
the well model obtained in the first phase [1,3,5].
These values correspond to different operational
scenarios to be used in the validation of the
Classification System. In Table 2, the Input/Output
variables are shown with their respective operational
states, corresponding to the different scenarios
identified through the production model, which will be
used for validating the fuzzy classification system.

The fuzzy classification (FC) system allows to identify
operational scenarios (“normal, under-injected, and
over-injected”), giving a production value the
defuzzyfication process of the classification model
very close to the theoretical, which indicates the
effectiveness of the fuzzy classification system.

The fuzzy classification (FC) system allows to identify
operational scenarios (“normal, under-injected, and
over-injected”), giving a production value the
defuzzyfication process of the classification model
very close to the theoretical, which indicates the
effectiveness of the fuzzy classification system.

4.3. THIRD PHASE: OPTIMIZATION OF THE
PRODUCTION PROCESS
The optimization problem of GL wells consists of
increasing the Oil Production and minimizing the Gas
Lift Flow, based on the objective function and the
operational restrictions described in equation (5). In
order to solve that problem a genetic algorithm is
used, which presents the following components:

• Structure of individuals: coded in real numbers
composed of two fields, Casing pressure

( injgP , ) and Tubing pressures ( thpP ). These

variables are used because they are related to
the gas behavior and surface level production,
and they can be manipulated at an operational
level with a field instrumentation arrangement.

Pressure
Casing
(Psi)

Pressure
Bottom
(Psi)

Rate
Injecton
of Gas
(mpcndg)

Operational
Scenarios

injQ
(Theory
Model)

injQ
( Fuzzy
System)

1020 10 766,57 Normal 766,57 766,66

1190 200 754 Normal 754 766,66

1250 100 806 Over- 806 799,66

1090 420 640 Normal 640 633,33

1130 270 710 Normal 710 728,88

1320 630 648 Under-

injected

648 500

1190 1050 308 Under-

injected

508 500

1120 620 540 Under-

injected

540 536,51

Figure 4: Curve of Production Theory, Real and Test

Table 2: Results given by the FC, compared with the
theoretical model.
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This is important, because in the implementation
of the intelligent supervision system at
operational level such pressures can be
adjusted in terms of the optimum values
recommended by the genetic algorithm, and
thus achieve the best performance of the
producing well.

• Number of individuals: random, between 2 and
10,

• Number of generations: 25,

• Objective function: equation (5), including its
respective restrictions

• Crossover operator: single point cross, with 0.7
probability

• Mutation operator: random, with 0.03 probability

• Space of search: a population of individuals was
gathered with the set of values allowed to

variables thpP  y injgP , , according to the

operational scenario identified in the previous
phase (the specific values for variables

,min ,max ,min ,max, , ,iny iny wf wfQ Q P P  for the

restrictions of equation (5) are determined
according to the operational scenario (see table
2)). That means, the population of individuals
will be specific to the operational scenario
identified in the previous phase, so that the
genetic algorithm may establish the optimum
value of equation (5) for that operational
scenario. To evaluate equation (5), the
equations (3) and (4) are required to use. By
optimizing (5), the optimum value of production
and injection are established in the operational
scenario identified.

For example, our genetic algorithm was applied to
one of the operational scenarios identified in the
previous phase (normal). The final population given
by the genetic algorithm for that operational scenario
is shown in Table 5 (an individual is the value of

( thpP ) and ( injgP , ) specified on a row of that

table).The optimum values of that operational

scenario, of the variables Tubing Pressure ( thpP )

and Casing Pressure ( injgP , ) shown in Table 3, are

used in the models of the gas injection well, , giving

the results of injQ , prodQ  and ofitsPr  shown in

the same Table 3.

According to the results, the production system
presents an optimum behavior at a gas injection rate
of about 596,6 mpcndg, with an associated
production of 232,06 b/d, and a casing pressure of
1022 psi and production pipe of 170 psi. On the other
hand, for a gas flow of 619,1 mpcndg its production
rate is 230,21 b/d, generating a smaller profit and
greater consumption of gas with regard to the case of
596,6 mpcndg. Regarding to the gas flow of 689,1
mpcndg, a production of 233,71 b/d is expected,
higher than the one of 596,6 mpcndg (1,64892 b/d),
but more gas flow is required. Now, the profit
differential in its favor is 165141 Bs/d, which indicates
that this case could be interesting (more optimum) as
it better combines the two costs.

5.- CONCLUSIONS

Some specific conclusions of our work are:

1. We have proposed an Intelligent
Supervision System for the optimization of
processes of continuous production,
specifically for Gas Lift wells. The Intelligent
Supervision notion has been introduced
from the perspective that “the intelligence”
must be located at well level. This
intelligence is understood as the capacity of
the well for self-organizing according to its
conditions as well as its environment. This
approach improves the classic approach of
the Data Control and Acquisition Systems
(SCADA) that limit themselves to
supervision and control tasks, from the
following idea: it is based on a self-
regulation process in the wells, from the
information they handle (states-actions),
which allows them to anticipate situations,
have a proactive behavior, without losing
the overall vision of the business. In that
sense, our approach is autonomous and
distributed.

)(psiPthp )(, psiP injg )(mpcndgQinj )/( dbQprod Pr ( / )ofit Bs d

170 1022 596,6 232,0 29794346

170,4 1109,8 619,1 230,2 29544303

172,5 1226,3 689,1 233,7 29959487

Table 3: Results  Obtained.
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2. The Production Model obtained by using
the Characterization of the GL Process
using Nodal Analysis allows predicting the
production rate the well can produce.
Similar results are obtained with
commercial applications [15], which are
used for modeling and optimizing the
behavior of a well.. The advantage of our
well model is that it is implanted at
wellhead level and not at a distant
computer (which would generate delays in
the decision making processes).

3. The Fuzzy System for Well Analysis allows
us to analyze the data coming from the By-
phase Fluids extracted from the well. It
generates information from the reservoir
variables (bottom-well pressure), from
wellhead (casing pressure) and gas flow.
Normally, these variables are not used
together for not having the bottom
measurement. This will allow the well to
self-diagnose, control its damages, watch
and supervise the behavior of its
subsoil/surface infrastructure, all this at real
time. This is currently done through
commercial centralized applications that
depend on Communication Systems and
large Databases, generating delay in the
decision making processes and possible
operational impacts (low production, gas
recirculation, oil leaks, etc.).

4. The production of the GL method was
optimized in terms of the integrated subsoil
and surface information, which will allow
minimizing costs and guaranteeing the best
distribution of the injecting gas, maximizing
the production of oil. The subsoil-surface
integrated approach is innovative in the
sense that it integrates the
reservoir/wellhead infrastructure behavior.
This is done through an objective function,
with the respective restrictions of the
process, which allows contextualizing such
objective function to the operational
scenario and the reservoir conditions
identified in the previous phases of the
supervision scheme. The genetic algorithm
establishes the production and gas
injection value optimum for the identified
operational scenario. That optimization
scheme reduces the production costs and
optimizing the gas injection.          
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