

Multi-Platform User Interface Derivation from One Task

Model

EMAN SALEH
(1)

 , AMR KAMEL
(2)

,

AND ALY FAHMY

(3)

Department of Computer Science

University of Cairo

EGYPT

(1) eman_maghary@yahoo.com (2) a.kamel@fci-cu.edu.eg (3) a.fahmy@fci-

cu.edu.eg

Abstract:-The wide variety of interactive devices and modalities an interactive system

must support has created a big challenge in designing a multi-platform user interface

(MPUI) and poses a number of issues for the design cycle of interactive systems.

This paper presents a semi-automatic Model-Driven transformational approach

MPUI design.

Key-Words: ConcurTaskTrees, Dialog model, Model-Based User Interface Design,

StateCharts, UsiXML.

1 Introduction

To meet the challenges of the diverse

and unpredictable number of compu-

ting platforms, ad hoc development of

the user interfaces is no longer consi-

dered acceptable in terms of the cost

and time required for software engi-

neering development and mainten-

ance. There is an increasing interest

and adoption of Model-Based User

interface Approach [6, 9] due to the

applicability of the approach in MPUI

development. Today, due to the fact

that no method has really been

emerged from the various attempts to

establish a comprehensive Model-

Based approach for MPUI design, a

standardization process has been

adopted by researchers[8, 9], mainly

to follow a Model Driven Engineering

(MDE) approach by implementing the

Model Driven Architecture (MDA)

[13] launched by the OMG group

[12]. Calvary et al in [8] introduced

the CAMELEON Reference Frame-

work; the framework divides the de-

velopment process into four levels of

abstractions (Fig.1)[8, 16].

Structuring our design process accord-

ing to this framework and using

UsiXML [15] language as the target

modeling language supports the crea-

tion of MPUIs in a MDE compliant

approach [9].

2 Related Work
Many model-based UI design ap-

proaches have considered MPUI de-

sign and development. In this section

we will focus on the most recent re-

lated work. Dygimes [10] is a run time

environment that automatically gene-

rates UIs for mobiles and embedded

systems, the environment is a user

centered approach, similar to our ap-

proach; starts the UI design from task

specification using the Concur-

Fig. 1 CAMELEON Framework

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 299 ISBN: 978-960-474-166-3

mailto:eman_maghary@yahoo.com
mailto:a.kamel@fci-cu.edu.eg
mailto:a.fahmy@fci-cu.edu.eg
mailto:a.fahmy@fci-cu.edu.eg

TaskTrees (CTT) formalism [2]. TE-

RESA [7]; also based on the CTT; is a

transformational approach that

enables the design of multi-device UIs

with graphical or vocal modalities.

TERESA; similar to our approach; is a

transformational approach structured

according the CAMELEON Refer-

ence Framework [8] and followed a

forward engineering process; while

we use one task model to derive mul-

tiple UIs, TERESA requires the de-

signer to specify many task models by

filtering the original task model ac-

cording to the target platforms. Trans-

formiXML [16] is a UsiXML tool

based on attribute graph grammar; the

tool follows a transformational ap-

proach following transformation at the

same level of abstraction for a differ-

ent context of use. Another work

based on UsiXML is an approach

called “Graceful Degradation” [11],

the approach aims at creating Multi-

Platform UIs by splitting an existing

user interface designed for the least

constrained platform (e.g. a PC) to a

more constrained platform (e.g. a mo-

bile phone),the transformations are

semi-automatic but do not follow the

CAMELEON Framework. We ex-

tended the work done in both TERE-

SA and UsiXML by introducing the

Dialog-States model [6], which is

more concrete than the task model and

more abstract than their abstract user

interface model. Unlike TERESA and

UsiXML, our Dialog-States model

gives an explicit design of the naviga-

tional model, and gives the opportuni-

ty to adapt to context of use at early

stages of the design process.

3 The Design Methodology
Our methodology aims at producing

multiple Final UIs for multiple com-

puting platforms, at design time.

We believe that the navigation struc-

ture of the UI is the core aspect of the

UI and the most affecting model in

Multi Platform context. One of the

major difficulties on designing MPUIs

is how to distribute the user interface

over the available physical screen

space associated with every target de-

vice and how to handle the navigation

according to this distribution; hence,

we are placing dialog modeling

(DSM) is in the center of the design

process, this also helps to achieve

continuity and consistency between

the models and to allow designers to

predict earlier about the presentation

of the user interface. Fig. 2 describes

the design process as a four step

process supporting forward engineer-

ing from the “Tasks & concepts” level

to the “Final UI” level as depicted in

the CAMELEON Framework:

The following sections will explain

the steps of the design process; a case

study is used to illustrate the process.

Step 1: Creation of the task and do-

main model: The task model is ex-

pressed using the ConcurTaskTrees

(CTT) notation [4]: The designer uses

IdealXML [7] tool that enables the

creation of the task, domain model

and the mapping between them, Fig. 3

show the CTT for the payment task,

for a car rental system. Leaf tasks

should be specified using two

attributes: userAction and taskItem

Fig. 2 The design process

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 300 ISBN: 978-960-474-166-3

that enable a refined expression of the

nature of the task and are essential in

the next transformation to derive the

AUI model [15, 5]. The userAction

indicates a user action required to per-

form the task. The userAction values

are: start/go, stop/exit, select, create,

delete, modify, move, duplicate, tog-

gle, view, monitor, convey [14]. These

are the same values as for the action-

Type attribute for Abstract Individual

Components at the Abstract User In-

terface level [14]. The taskItem

attribute refers to a type object or sub-

ject of an action; which can be: an

element, container, operation or a col-

lection of them. For example for the

task “EnterName” actionType

=”input” and taskItem = “Element”,

the mapping model specifies that this

task maimpulates an attribute of the

domain model.

Step 2: Deriving the Abstract user

interface (AUI): Although we are us-

ing IdealXML [5] for specifying the

task model, we do not rely on the gen-

erated enabled task sets that were de-

fined in [10], nor the AUI presented in

the tool. The AUI in IdealXML re-

stricts the navigation since the con-

tainment of UI elements corresponds

to the user tasks is done based on the

level in the task tree; this indicates a

level of automation based on the

structure of the task model and is a

limitation of the approach which is

more flexible and can be tailored ac-

cording to the target device screen

size.

A pragmatic approach will be taken in

which usability is emphasized over a

completely automated transformation.

Thus, transformation from task model

to AUI model is done by our semi-

automated dialog model; the DSM. To

derive the AUI from the task model

two intermediate sub-steps are

performed:

Step 2.1) Task model to DSM map-

ping: At this step the DSM ; a model

based on Harel’s StateCharts [3]; is

created. We define a state in the DSM

as the set of all tasks that are logically

enabled to start their performance dur-

ing the same period of time; thus will

represent a presentation unit in the

user interface. This is similar to the

concept of Enabled Task Sets [9, 15].

A dedicated algorithm, based on the

semantics of the task types and tem-

poral relationships among tasks, au-

tomatically compute an initial DSM

[6], this model contains the maximum

set of states of the DSM [6] since our

initial target is devices with very small

screen size. Considering the semantics

of StateCharts, we identify a start state

Fig. 3 The task model

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 301 ISBN: 978-960-474-166-3

a final state and the transitions be-

tween these states are also computed,

also in an algorithmic way depending

on temporal relationships between the

tasks. Fig. 4 shows the initial DSM

calculated by the algorithm for the

tree in Fig. 3.

The details of the algorithm can be

found in our previous work [6].

After computing the initial DSM, the

designer can refine this model and/or

create one or more Dialog-State mod-

els, each for a target platform by

merging states; hence the DSM is our

initial step in handling adaptation to

context of use; (device screen size at

this phase); by mapping the same task

model to different DSMs. For exam-

ple the designer can save both DSMs

in Fig. 5. Note that in Fig 5(b) the de-

signer combined the three states into

one compound state according to tar-

get screen size.

Step 2.2: DSM to AUI mapping:

The AUI in UsiXML is composed of

Abstract objects: Abstract Containers

(ACs) and Abstract Individual Com-

ponents (AICs) [14, 16], at this step

we map composite states to ACs and

basic states AICs, then assigning the

suitable facets to the AICs, also we

define both the navigation and control

between AUI elements. Table 1

presents the potential mappings be-

tween the two models constructs.

According to transformation rules,

Each of the DSM in figure 5 will be

(a)

(b)

Fig. 5 Two possible combinations of

 the initial DSM

mapped to an AUI model. The DSM

in Fig. 5(a) will be transformed to an

AUI with three containers, the First

Conainer will contain two AICs, while

for the DSM in Fig 5(b) an AC that

embeds three ACs will be created.

DSM Construct UsiXML AUI model

construct

Basic state AIC

Composite State AC

Transition abstractDialogControl

relationship + AIC with

navigation facet

Hierarchy abstractContainment

relationship

Table 1 mappings between the DSM

and the AUI in UsiXML

Each AIC can be equipped with facets

describing its main functionality (in-

put, output, Navigation and con-

trol)[14]. These facets are derived

from the combination of task model,

Fig. 4 The initial DSM

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 302 ISBN: 978-960-474-166-3

domain model and the mappings be-

tween them, using transformation

rules, as these listed in table 2.

UserAction TaskItem Facet

Create Element Input

Select Element Input

Start Operation
Navigation

/ control

Convey Element Output

Start Container Navigation

Table 2: Mapping between task

attributes and AIC facet types

Transitions between the states of the

DSM are modeled by assuming se-

quential navigation and Global place-

ment on interaction components (i.e

NEXT button is placed in the outer

container); that is done by a transfor-

mation rule that creates AICs with na-

vigation facet (NEXT, PREVIOUS

buttons at the next step) and placing

them in the outer Container (line 15-

17 Fig. 6). At the AUI dialog control

between Abstract Objects is ensured

by dialogControl relationship, using

LOTUS operators (lines 58-.69.Fig. 7)

……………………………………

Fig. 7: Part of the AUI model ex-

pressed in UsiXML

Step 3: Mapping the AUI to Concrete

User Interface (CUI) Model: This lev-

el is modality dependent, at this level

the designer chooses the target modal-

ity, currently we only consider graphi-

cal modality. In UsiXML the CUI is

populated by Concrete Interaction

Objects (CIO’s) and Concrete User

Interface relationships between them.

For graphical modality UsiXML fur-

ther classifies graphical CIO’s in two

categories: graphical containers

(GCs) and graphical individual com-

ponents (GIC). A GC is a graphical

CIO that can contain other CIO’s, in-

cluding other containers. UsiXML's

metamodel [14,15] contains a list of

11 types of containers such as: dialog

box, menu bar, menu pop-up, tool bar,

status bar, window and box. GIC’s are

a direct abstraction of widgets found

in popular toolkits. For example,

UsiXML's checkbox component cor-

responds to <INPUT TYPE =

CHECKBOX> in HTML 4 or

JCheckBox in Java Swing. The list of

GICs in UsiXML includes: text com-

ponent, button, radio button, check-

box, combobox, etc. [14]. Dialog con-

trol relationship can be defined be-

tween both types of interaction ob-

jects. We derive the CUI by set of

transformation rules: mapping AC to

Graphical containers (GCs), AICs to

graphical Individual components

(GICs), some of these rules are shown

in table 3.

Many other rules are available for

matching the target platform, for ex-

ample an AIC with input facet and

actionType=select can be mapped also

to radio button group if the target plat-

form supports this widget. Other rules

as resizing rules can be applied; for

example to change the font size and

picture size. The dialog control rela-

tionship at this level is a reification of

the dialog control relationship at the

AUI, transitions at the DSM which

where mapped to AIcs with navigation

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 303 ISBN: 978-960-474-166-3

facet will be transformed to NEXT-

PREVIOUS buttons at this level, that

are endowed with graphicalTransition

relation[14]. That enables giving them

an activate/deactivate power. Two

rules are applied here:

R1: Endow the OK button with

graphicalRelationship type = ”graph-

icalTransition” and transitionType =

”activate”.

R2: Endow the Cancel button with

graphicalRelationship type = ”graph-

icalTransition” and transitionType =

”deactivate”.

AUI(AIC) CUI(GIC)

 Facet Type
Input Create

element

create two GICs:

An input text

and an output

text(for the la-

bel)

Input Select

element

create two GICs:

A list box and an

output text(the

label), for every

value in the tag

<selectionVa-

lue> create an

item in the list

box.

Naviga-

tion

Start

opera-

tion

Create GIG of

type button.

Table 3 Mapping AUI components to

CUI components

Step 4: from CUI to Final User Inter-

face (FUI): After the code of the CUI

is produced, this code could be either

interpreted or compiled by a rendering

engine. UsiXML can be rendered by

set of rendering engines (e.g. Gra-

fiXML, FlashiXML, QtkXML, Inter-

piXML)[9].

The FUI for the DSM in Fig. 6(a) and

Fig. 6(b), are shown in Fig. 8 and Fig.

9, as previewed by GrafiXML [1]

tool.

 Fig. 8 FUI for DSM in Fig. 6(a)

 Fig. 9 FUI for DSM in Fig. 6(b)

Conclusion
In this paper we presented a MDE

transformational approach to design

MPUI, the design process is structured

according to the CAMELEON Refer-

ence Framework and the target model-

ing language is UsiXML. A core mod-

el is integrated in the design process

to adapt to multiple platforms multip-

latform screen size limitations by de-

signer intervention. The approach is

more feasible than fully automatic ap-

proaches from usability view point.

The proposed methodology uses set of

tools for model based UI develop-

ment, storing the models in a model

repository allows reusability of the

models for new target devices. Future

work will focus in combining these

tools as a tool chain embedded in a

modeling framework, also taking oth-

er parameters of the context of use

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 304 ISBN: 978-960-474-166-3

model (environment and user) into

account, and considering other modal-

ities.

REFERENCES

[1] B. Michotte, and J. Vanderdonckt,

“GrafiXML, A Multi-Target User

Interface Builder based on

UsiXML,” Proc. of 4th Interna-

tional Conference on Autonomic

and Autonomous Systems

ICAS’2008 , IEEE Computer So-

ciety Press, Los Alamitos, 2008.

[2] CTTE: The ConcurTaskTrees

Environment

http://giove.cnuce.cnr.it/ctte.html,

2009

[3] D. Harel, StateCharts: A Visual

Formalism for Complex Systems,

Science of Comp. prog., 1987.

[4] E.Saleh, A. kamel, and A. Fahmy,

“Dialog States a multi-Platform

Dialog model”, ECS journal, vol.

33, Sep. 2009.

[5] F. Montero, V. Víctor López Ja-

quero, J. Vanderdonckt, P. Gonza-

lez, M. Lozano, and Q. Limbourg,

Solving the Mapping Problem in

User Interface Design by Seamless

Integration in IdealXML, Lecture

Notes in Computer Science, Vol.

3941, Springer-Verlag, Berlin, pp.

161-172, 2005.

[6] F. Paterno, Model-Based design

and Evaluation of Interactive Ap-

plications. Springer-Verlag, Lon-

don, 1999.

[7] F. Paterno, and C. Santoro, One

model, many interfaces, In Chris-

tophe Kolski and Jean Vander-

donckt, editors, CADUI 2002,

VOL 3, pp. 143-154, 2002.

[8] G. Calvary,J. Coutaz, D. Theve-

nin, Q. Limbourg, L. Bouil-lon,

and J. Vanderdonckt, A Unifying

Reference Framework for Multi-

Target User Interfaces, Interacting

with Computers, Vol. 15, No. 3,

pp. 289-308, June 2003.

[9] J. Vanderdonckt, Model-Driven

Engineering of User Interfaces:

Promises, Successes, and Fail-

ures, Proc. of 5th Annual Roma-

nian Conf. on Human-Computer

Interaction ROCHI’2008 , Bucar-

est, pp. 1-10, 2008.

[10] K. Luyten, T. Clercks, K. Con-

inx, and J. Vanderdonckt, Deriva-

tion of a Dialog Model from a

Task Model by Activity Chain Ex-

traction, Proc. Of DSV-IS2003,

Spriger-Verlag, pp. 203-217, 2003.

[11] M. Florins, F. Montero, J.

Vanderdonckt, and B. Michotte,

Splitting Rules for Graceful De-

gradation of User Interfaces, In

Proc. of 10th ACM Int. Conf. on

Intelligent User Interfaces

IUI’2006, ACM Press, New York

pp. 264–266, 2006.

[12] OMG: The object management

Group: http://www.omg.org

[13] OMG: Model Driven Architec-

ture available at:

http://www.omg.org/mda/mda_file

s/02F-SIW-004-OMG.pdf .

[14] UsiXML documentation version

1.8.0, available at:

http://www.usixml.org/index.php?

mod=download&file=usixml-

doc/UsiXML_v1.8.0- documenta-

tion.pdf

[15] Q. Limbourg, , J. Vanderdonckt,

,B. Michotte, and L. Bouillon and

V. López , UsiXML: a Language

Supporting Multi-Path Develop-

ment of User Interfaces, Lecture

Notes in Computer Science, VOL.

3425, Springer-Verlag, Berlin, pp.

200-220, 2005.

[16] Q. Limbourg, J. Vanderdonckt,

Transformational Development of

User Interfaces with Graph Trans-

formations, Proc. of the 5th Inter-

national Conference on Comput-

er-Aided Design of User Interfac-

es CADUI’2004, Madeira, Kluwer

Academics Publishers, Dordrecht,

2004.

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 305 ISBN: 978-960-474-166-3

http://www.isys.ucl.ac.be/bchi/members/bmi/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.iaria.org/conferences2008/ICAS08.html
http://giove.cnuce.cnr.it/ctte.html
http://www.dsi.uclm.es/personal/FranciscoMonteroSimarro/
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.i3a.uclm.es/consulta/investigador.php?lang=en¶m_0=4¶m_1=62¶m_2=1¶m_3=79509
http://www.i3a.uclm.es/consulta/investigador.php?lang=en¶m_0=4¶m_1=62¶m_2=1¶m_3=79509
http://www.dsi.uclm.es/personal/MariaLozano
http://www.isys.ucl.ac.be/bchi/members/qli/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://rochi.utcluj.ro/
http://www/
http://www/
http://www.omg.org/mda/mda_files/02F-SIW-004-OMG.pdf
http://www.omg.org/mda/mda_files/02F-SIW-004-OMG.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.isys.ucl.ac.be/bchi/members/qli/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.isys.ucl.ac.be/bchi/members/bmi/index.htm
http://www.isys.ucl.ac.be/bchi/members/lbo/index.htm
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/

