
 

 

  

Abstract—Micro-cantilever beams configuration with various size 

are designed to study static deflections of beams under transverse 

loading. Linear force-displacement relationship only suit for small 

displacements. For larger displacements, non-linear terms will appear 

in the force-displacement relationship. It is difficult to find the 

closed-form solutions for non-linear force-displacement relationship. 

The neural network method is a more precise approximation for 

nonlinear behavior. Because the original data contain noise terms, the 

data should be processed via wavelets analysis. The simulated results 

show mean of goodness of fit is 0.9998 for neural networks approach.  
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I. INTRODUCTION 

Micro Electro Mechanical System (MEMS) is a newly rising 

interdisciplinary technology. The recent focus of the MEMS 

world on optical applications of micromachined devices has 

pushed the field out of surface micromachining 

technology[1]-[3]. The mechanical design of MEMS is one of 

the frontiers of mechanical engineering[4]. Micro mechanical 

cantilever-based sensors have also been widely used for a 

variety of applications in telecommunications, as well as in 

biomedicine. Reference [5] gave a micro accelerometer 

configuration with four suspended symmetric beams and a 

central proof mass. The PZT thin film on each flexural beam is 

patterned into two transducer elements, thus eight piezoelectric 

transducers are arranged on four beams symmetrically to form 

the sensing devices in the structures, as shown in Fig. 1. 

Recently, micro accelerometers using piezoelectric thin film 

have drawn much research interest due to the miniaturization 

trend of electronic devices, their low cost and their suitability 

for batch manufacturing. Research has focused on the device’s 

measurement capabilities and structural analysis and modeling 

to increase the sensitivity of the devices. 
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II. STRUCTURAL ANALYSIS OF CANTILEVER BEAM 

We consider an array of polysilicon cantilever beams 

configuration. These beam arrays, which are designed by Fan 

Wei at the Institute of Microelectronics of Peking University, 

contain cantilever beams of four, eight, twelve suspended 

symmetric with various lengths and widths and a central proof 

mass. An example array is shown Fig. 2. These beams were 

designed to study static deflections of Micro-cantilever under 

transverse loading. When the central mass is subjected to 

vertical vibration (force), the suspending beams can produce 

bend. One issue critical to understanding beams is 

understanding how they bend under different loadings. Fig. 3 

illustrates the concept being described. The most common 

method to determine this involves the Euler-Bernoulli equation 

(1), as in [6]: 
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Where x = direction along the neutral axis. 

y = direction along the transverse axis. 

E = Young’s modulus. 

I = area moment of inertia,    
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M(x) = the bending moment in the beam, which is usually a 

function of x. 

b = beam width, h = beam thickness, L = beam length, 

n=beam number. 
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Fig.1 A 3D view of the piezoelectric thin film microaccelerometer   
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For a cantilever beam, which is one of the most structural 

beams in MEMS, with the boundary conditions of y(L)=0 and 

y’(L)=0 and a force, F, applied at one end, the equation yields: 
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Since Equation (3) describes a linear force-deflection 

relationship at a fixed point x, it is essentially describing a 

spring reacting to an applied load. This means that it is possible 

to extract a spring constant, k, from this expression. Evaluating 

y(x) at a specific point will determine the spring constant. For 

the specific point x=0, we have following formulation from 

equation (3): 
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Rearranging this equation yields: 
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While this expression is useful for predicting displacement 

under a given load , there are some limitations to it that must be 

understood. Hooke’s law only applies for small displacements. 

For larger displacements, non-linear terms will appear in the 

force-displacement equations, as in [6]. The degree to which 

this equation applies thus depends largely upon how large force 

is applied to the structure. Often, to simplify the development of 

devices, designers will construct structures that will operate 

solely within the linear regime. However it is important to 

understand that the linear force-displacement equation is only a 

first order approximation of the actual relationship between 

force and displacement. 

 

III. SIZE INFLUENCE OF CANTILEVER BEAM SPECIMENS 

We study an array of Micro-cantilever beams configuration 

showed in Fig. 2. These beam arrays contain cantilever beams 

of four, eight, twelve suspended symmetric beams with various 

lengths and widths and a central proof mass. When the central 

mass is subjected to vertical force, the suspending beams can 

produce bend. We investigate the relationship of force and 

deflection on the mass under different loadings and analysis 

how large force applied to the structure can get the linear 

force-displacement relationship. Fig. 4 gives the experiment 

results.  

For a set of experiment data of force and deflection, we 

approximate the data with small deflection by least-squares 

linear fitting curves algorithm. Fig. 4 show the relationship of 

force and deflection is linear when vertical deflections are about 

less than 800nm. The mean of absolute errors of least-squares 

linear fitting is less than 5 nm for each data. Component 

dimensions for each configuration are marked in Fig. 4.  

 

               
 

Fig.2 An array of Micro-cantilever beams configuration   

               
 

Fig.3 Configuration of a cantilever beam under transverse loading   
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Fig.4 Configuration of a cantilever beam under transverse loading   
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IV. MODELING OF NEURAL NETWORKS  

Because linear force-displacement relationship only suit for 

small displacements, for larger displacements, non-linear terms 

will appear in the force-displacement relationship. It is difficult 

to find the closed-form solutions for non-linear 

force-displacement relationship. The Artificial Neural 

Network(ANN) method may be a more precise approximation 

for nonlinear behavior. With neural network approximation 

methods, we approximate the unknown nonlinear process with 

less-restrictive models[7]. The goal is to find an approach or 

method that forecasts well data generated by often unknown and 

highly nonlinear processes, with as few parameters as 

possible[8]. The linear model may be a very imprecise 

approximation to the real world, but it gives very quick, exact 

soluteions. The neural network may be a more precise 

approximation, capturing nonlinear behavior, but it does not 

have exact solutions. Most of MEMS have nonlinear and 

complex models. So it is difficult or impossible to detect the 

faults by traditional methods, which are model-based.  

In this paper, A two-layer feed-forward back-propagation 

network is created with a five-element input and LOGSIG 

neurons in the hidden layer, as in [9]. Back propagation 

algorithm is a training algorithm with teachers, whose training 

procedures are divided into two parts: a forward propagation of 

information and a backward propagation (BP) of error. The 

numbers of each layer’s neurons in the networks are 5-30-1. The 

five components of input examples are beam width, beam 

thickness, beam length, beam number and vertical force. The 

component of output example is vertical deflection. The 

network has several constant parameters to be chosen: the 

learning ratio is lr=0.01, increasing training ratio, lr_inc =1.05, 

decreasing training ratio, lr_dec =0.7; the momentum factor mc 

=0.9; max epochs is 1000. The residue is used of the sum of 

squared errors, goal=0.05. 

Because the original data we collected contain noise terms, 

the original data have obvious false data that can’t be used 

directly.  So the data should be processed via wavelets analysis. 

We decompose the data into discrete wavelet transform 

coefficients, from which we can then reconstruct our original 

series. The basic idea is to modify the elements of the discrete 

wavelet transform coefficients to produce, from which an 

estimate of the signal can be synthesized. According to the 

wavelet denoising, wavelet decomposition and wavelet 

reconstruction, the nonstationarity existed in the data are 

extracted and separated by wavelet transformation. The ANN 

model, trained with 45 training datasets, converged with mean 

square error (MSE) values of 5E-2 . The MSE has been chosen 

as a performance index for each training method, as shown in 

Fig. 6. When the network begins to overfit the training data, the 

error on the validating dataset will typically begin to increase, 

thus resulting in the termination of the training process. 

The simulating results are showed in Fig. 5. The mean of 

absolute errors of is 6.46nm. The mean of goodness of fit (R2 

statistics)The pure linear approximation are compared with the 

ANN model. The linear models have closed-form solutions for 

estimation of the regression coefficients. The linear model may 

be a very imprecise approximation to the real world, but it gives 

very quick, exact solutions. The neural network may be a more 

precise approximation, capturing nonlinear behavior, but it does 

not have exact solutions. The simulating results are showed in 

table 1. The mean of goodness of fit (R2 statistics) is 0.5589 and 

0.9956 for linear and neural network. From table 1, we can see 

that neural network approximation is superior to the linear . This 

results show the neural networks approach does better than the 

linear approach in terms of accuracy and parsimony. This 

results show the neural networks approach does this good for 

nonlinear behavior. 
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Fig.5 The simulation results of neural network approach   
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V. CONCLUSION 

In this paper, we present a theoretical model and neural 

networks modeling of an array of micro-cantilever beams 

configuration, which contain 4-24 symmetric beams with 

various lengths and widths and a central proof mass. These 

beams were designed to study static deflections of 

Micro-cantilever under transverse loading and size influence. 

The experiment results takes into account the effect of device 

geometry and elastic properties of the specimens, and agrees 

well with the results obtained by the theoretical model for small 

deflection. When vertical deflections of specimens are about 

less than 800nm, the relationship of force and deflection are 

linear. The mean of absolute errors of least-squares linear fitting 

are less than 10 nm for each data. This study shows that the 

vertical deflection increases with increase in the beam length for 

a fixed beam width and thickness and the vertical deflection 

decreases with increase in the beam width for a fixed beam 

length and thickness with 4-24 beams number, respectively. The 

results of this study can be applied to sensitivity analysis of 

piezoelectric microaccelerometer. 

On the other hand, because linear force-displacement 

relationship only suit for small displacements, for larger 

displacements, non-linear terms will appear in the 

force-displacement relationship. We create a two-layer 

feed-forward back-propagation network with a five-element 

input and LOGSIG neurons in the hidden layer. With neural 

network approximation methods, we approximate the unknown 

nonlinear process of force-displacement relationship. The pure 

linear approximation are compared with the ANN model. The 

simulating results are showed that the mean of goodness of fit 

(R2 statistics) is 0.5589 and 0.9956 for linear and neural 

network approximation. The results show neural network 

approximation is superior to the linear. The neural networks 

approach does this good for nonlinear behavior. 
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