
     Abstract — In this paper, the problem of 2-D (two-
dimensional) inverse and 2-D Wiener filtering is studied. 2-D 

Inverse and Wiener filters are designed. For the 2-D Wiener 

Filter design appropriate 2-D IIR Notch filters must be 

placed in cascade before the Wiener Filter itself. 
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I. INTRODUCTION 

mage filtering and image restoration occurs in almost 

all the image processing applications since any image 

acquired by optical or digital means is likely to be 

degraded by the sensing environment. This degradation is 

due to blur, distortion, vignetting (light falloff), lateral 

chromatic aberration, lens flare, veiling glare and other 

forms of noise. From a signal processing standpoint, 

blurring due to linear motion in a photograph is the result 

of poor sampling. All this forms of noise can be 

considered as additive noise degrading the 2-D signal 

(image). On the other hand, Wiener filtering is a standard 

technique of signal processing that has been applied also 

to 2-D signals with success. The solution of the Wiener 

filtering is known [1], however the practical design of the 

Wiener filter appears to have some problems. On the other 

hand, in the theoretical case where no noise exists, our 

Wiener Filter yields an Inverse filter. In general the 

problem of 2-D filter design has received considerable 

attention during the recent years, due to its numerous 

applications in Biomedical Signal Processing, Digital 

Imaging, Radar Image Analysis, Seismic Data Processing, 

Geophysical Signal, Remote Sensing, Petroleum 

Research, Computer Vision, Sonar, X-Rays enhancement 

etc…[2]÷[19]. The concept of 2-D Stability  has also 

received considerable attention [20]÷[26]. 

Suppose that our 2-D stochastic signal ( )1 2
,x n n  has 

(PSD) Power Spectral Density 
xx
S , where  
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= ∫    i.e. the Fourier Transform of 

the autocorrelation of the input Signal. Then if our 2-D 

linear, shift invariant system has transfer function 
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is correct provided that no noise has been added in the 

output of our system. In this case, one can reconstruct the 

input signal  ( )1 2
,x n n  using the output signal by using a 

so called inverse filter with transfer function 
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In practice, we use ( ) ( )1 1 1 1 1

1 2 1 2, ,G z z H z z
− − − − −=  if 

( )1 2,
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H e e
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1 2, 0G z z
− − =  if 

( )1 2,
j j

H e e
ω ω ε≤  where ε  is a small positive number.  

In the case of additive noise in our system, we can 

reconstruct optimally the original signal by placing a filter 

in the output ( )1 2
,y n n of our system (Fig.1) with transfer 

function 
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is the complex conjugate of 
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while 

NN
S  is the PDF of the 

additive Noise ( )1 2
,N n n . Equation (2) gives the so-

called 2-D Wiener Filter, a special case of which is the 

inverse filter of (1) if 0
NN
S = . Although the inverse and 

the Wiener filter are well known their implementation 

seems to present some difficulties. Our methodology will 

be described in Section II, first for Inverse filters and 

second for Wiener Filters. Finally, there is a conclusion. 
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Fig.1. Additive noise 

 

 

 

 

II. DESIGN OF 2-D INVERSE AND 2-D WIENER FILTERS 

II.a  2-D Inverse Filter 

For the 2-D Inverse filter, we assume that  

( )1 1, 0
j j

H e e
ω ω ≠ , except some possible isolated points 

( ) ( ) ( )1 1 2 2
, , , ,... ,

m m
α β α β α β  of the 2-D complex plane 

for which ( )1 1, 0
j j

H e e
ω ω = . This is reasonable, otherwise 

it would be impossible to reconstruct the original 2-D 

signal, if we had a subset S  of 
1 2
,ω ω  

( ) ( ), ,π π π π⊂ − × − with ( )1 1, 0
j j

H e e
ω ω = and ( ) 0Sµ ≠ . 

The measure ( )Sµ here is the area of the subset S in the 

plane of 
1 2
,ω ω . 
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Now the inverse filter is given as follows: 
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II.b 2-D Wiener Filter 

 

For the 2-D Wiener Filter we have 
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We demand now 
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So, if we have frequencies ( ) ( ) ( )1 1 2 2
, , , ,... ,

m m
α β α β α β  

such that 
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place the appropriate 2-D (IIR) notch filters, in cascade, 

before our Wiener Filter, in order to reject these 

frequencies (avoiding possible problem for the 

denominator of (2)). 

One can see that if ( )1 1
,α β  is a solution of 

1 11 2
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2
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( ) ( ) ( )1 1 1 1 1 1
, , , , ,α β α β α β− − − −  will also be solutions due 

to the symmetry of ,
xx NN
S S . Actually, because we assume 

stationary stochastic signals and stationary noise, we have: 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2
, , , ,

xx xx xx xx
S S S Sω ω ω ω ω ω ω ω= − = − = − −

and 
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The author has proposed recently a methodology for the 

first and second order 2-D Notch Filters, [27], which can 

be used here. 

 

This kind of  2-D Notch filter can be designed, [27], as 

follows for the frequencies ( )1 1
,α β± ±  that vanish the 
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where ( ) ( )10 20 1 1
, ,ω ω α β=  

1
c

λ
λ
−

= , 0 1λ< < , but with 
1

2
λ ≠ , 

1 2
,T T  sampling 

periods and 0 1r<< <  . K is a scaling factor such that the 

maximum gain of the filter to be equal to 1.    

 

This 2-D Notch Filter can reject the frequencies 

( ) ( )10 20 1 1
, ,ω ω α β=  and ( ) ( )10 20 1 1

, ,ω ω α β= − − , but not 

( ) ( )10 20 1 1
, ,ω ω α β= − and ( ) ( )10 20 1 1

, ,ω ω α β= − . So, for 

the pair ( )1 1
,α β− , ( )1 1

,α β− another 2-D Notch filter must 

be used. 

Therefore it is necessary to put before the 2-D Wiener 

Filter,  
1

2m  appropriate notch filters where 1
4

m
m =  

Remark: For the inverse filters (case without noise), 

Notch filters do not need. 

 

 

Example of a 2-D Wiener Filter Design 

Suppose that 
1 11 2
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Then we will need only two 2-D Notch Filter, the first of 

them  that can be designed by replacing in (4), 

( )10 20, ( , )
2 4

π π
ω ω =  and the second one by replacing in 

(4), ( )10 20, ( , )
2 4

π π
ω ω = −  

Select c = 2, 0.9r = . Consider also without loss of 

generality 
1 2
,T T  = 1. Then for the first 2-D Notch filter, 

one has: 
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Then magnitude response of the first filter is depicted in 

Fig.2, while the Group Delays of the first filter 
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are depicted in Fig.3 and Fig.4 
 

 

 

 

                                                     Fig.2 

 

                                                     Fig.3 

 

                                                     Fig.4 

The design of the second 2-D Notch filter is quite 

similar and is omitted for the sake of brevity.  

 

 

III. CONCLUSION 

In this paper, we have examined the problem of the 

design of 2-D (Two-Dimensional) IIR Inverse and Wiener 

filters. For the 2-D Wiener Filter design appropriate 2-D 

IIR Notch filters must be placed in cascade before the 

Wiener Filter. 
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