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Abstract: - Classes are the basic units in object-oriented programs, and therefore, their quality has impact on 

the overall quality of the software. Class cohesion is a key quality factor, and it refers to the degree of 

relatedness of class attributes and methods. Software developers use class cohesion measure to assess the 

quality of their products and to guide the restructuring of poorly designed classes. Several class cohesion 

metrics are proposed in the literature, and the impact of considering the special methods (i.e., constructors, 

destructors, and access methods) in cohesion calculation is not empirically studied for most of them. In this 

paper, we address this issue for one of the most popular class cohesion metrics, referenced as Lack of 

Cohesion (LCOM). Our empirical study involves applying the metric with and without considering special 

methods on classes of two open source Java applications and statistically analyzing the results. The empirical 

study results show that the ability of LCOM in indicating class quality slightly improves when excluding 

special methods from the LCOM computation. 
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1 Introduction 
A popular goal of software engineering is to 

develop the techniques and the tools needed to 

develop high-quality applications that are more 

stable and maintainable. In order to assess and 

improve the quality of an application during the 

development process, developers and managers use 

several metrics. These metrics estimate the quality 

of different software attributes, such as cohesion, 

coupling, and complexity.  

The cohesion of a module refers to the 

relatedness of the module components. A module 

that has high cohesion performs one basic function 

and cannot be split into separate modules easily. 

Highly cohesive modules are more understandable, 

modifiable, and maintainable [1].  

Since the last decade, object-oriented 

programming languages, such as C++ and Java, 

have become widely used in both the software 

industry and research fields. In an object-oriented 

paradigm, classes are the basic modules. The 

members of a class are its attributes and methods. 

Therefore, class cohesion refers to the relatedness of 

the class members.  

Researchers have introduced several metrics to 

indicate class cohesion during high or low level 

design phases. Lack of Cohesion (LCOM) [3] is 

proposed by Chidamber and Kemerer, and it counts 

the number of method pairs that do not directly 

share attributes. Higher LCOM value indicates low 

cohesion and vice versa. LCOM is widely applied 

and theoretically and empirically compared to other 

metrics (e.g., [1, 2, 3, 12, 13, 14, 21]). In these 

empirical studies, the goodness of the metric in 

indicating cohesion is indirectly measured by 

statistically analyzing the relation between the 

cohesion values and the values of external software 

attributes such as the fault proneness of the class 

(i.e., the extent to which a class is prone to faults). 

Most of the reported empirical results show that 

LCOM is relatively weakly capable in predicting 

faulty classes. As a result, LCOM is suggested not to 

be a good cohesion indicator. Originally, LCOM do 

not differentiate between the different types of 

methods. Some researchers (e.g., [3]) theoretically 

analyzed the impact of including/excluding special 

methods in LCOM measurement. However, none of 

the researchers studied this issue empirically.  In this 

paper, we consider three different versions of each 

class: (1) a version including all special methods, (2) 

a version excluding access methods (i.e., setter and 

getter methods), and (3) a version excluding all 

types of special methods. We perform an empirical 

study to investigate which version is the best when 

LCOM is applied to indicate class quality. The 

empirical study is applied on classes of two open 
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source Java systems that have available fault data 

repositories. The empirical study results show that 

excluding all types of special methods, in the 

computation of LCOM, slightly improves its 

goodness in predicting faulty class. This indirectly, 

indicates that excluding special methods improves 

LCOM’s goodness in indicating class cohesion.         

This paper is organized as follows. Section 2 

provides an overview of the class cohesion metrics 

proposed in literature. Section 3 reports the 

empirical study setting, and Section 4 overviews and 

discusses the empirical study results. Finally, 

Section 5 concludes and discusses future work. 

 

2 Related Work 
Researchers have proposed several class cohesion 

metrics in the literature. These metrics can be 

applicable based on high-level design (HLD) or low-

level design (LLD) information. HLD class cohesion 

metrics rely on information related to class and 

method interfaces. The more numerous LLD class 

cohesion metrics require an analysis of the algorithms 

used in the class methods (or the code itself if 

available) or access to highly precise method 

postconditions. Class cohesion metrics are based on 

the use or sharing of class attributes. For example, the 

LCOM metric counts the number of method pairs that 

do not share instance variables [15]. Chidamber and 

Kemerer [16] propose another version of the LCOM 

metric, which calculates the difference between the 

number of method pairs that do and do not share 

instance variables. Li and Henry [17] use an 

undirected graph that represents each method as a 

node and the sharing of at least one instance variable 

as an edge. They define lack-of-cohesion in methods 

as the number of connected components in the graph. 

The graph is extended in [18] by adding an edge 

between a pair of methods if one of them invokes the 

other. Hitz and Montazeri [18] introduce a 

connectivity metric to apply when the graph has one 

component. In addition, Henderson-Sellers [19] 

proposes a lack-of-cohesion in methods metric that 

considers the number of methods referencing each 

attribute.  

Bieman and Kang [4] describe two class cohesion 

metrics, Tight Class Cohesion (TCC) and Loose 

Class Cohesion (LCC), to measure the relative 

number of directly connected pairs of methods and 

the relative number of directly or indirectly connected 

pairs of methods, respectively. TCC considers two 

methods to be connected if they share the use of at 

least one attribute. A method uses an attribute if the 

attribute appears in the method’s body or the method 

invokes another method, directly or indirectly, that 

has the attribute in its body. LCC considers two 

methods to be connected if they share the use of at 

least one attribute directly or transitively. Badri [5] 

introduces two class cohesion metrics, Degree of 

Cohesion-Direct (DCD) and Degree of Cohesion-

Indirect (DCI), that are similar to TCC and LCC, 

respectively, but differ by considering two methods 

connected also when both of them directly or 

transitively invoke the same method. Briand et al. [3] 

propose a cohesion metric (called Coh) that computes 

cohesion as the ratio of the number of distinct 

attributes accessed in methods of a class. Fernandez 

and Pena [6] propose a class cohesion metric, called 

Sensitive Class Cohesion Metric (SCOM), that 

considers the cardinality of the intersection between 

each pair of methods. In the metric presented by 

Bonja and Kidanmariam [7], the degree of similarity 

between methods is used as a basis to measure class 

cohesion. The similarity between a pair of methods is 

defined as the ratio of the number of shared attributes 

to the number of distinct attributes referenced by both 

methods. Cohesion is defined as the ratio of the 

summation of the similarities between all pairs of 

methods to the total number of possible pairs of 

methods. The metric is called Class Cohesion (CC). 

Al Dallal and Briand [1] propose a metric based on 

measuring the degree of similarity between each pair 

of methods in terms of the number of shared 

attributes.   

Cohesion Among Methods in a Class (CAMC), 

Normalized Hamming Distance (NHD), Scaled NHD 

(SNHD), Distance Design-based Direct Class 

Cohesion (D3C2), and Similarity-based Class 

Cohesion (SCC) are examples of HLD metrics. 

CAMC [8], NHD, and SNHD [9] use the types of the 

method parameters to predict the interactions between 

the methods and attributes. D3C2 [10] uses the 

relation between the types of the parameters and the 

types of the attributes to predict the interactions 

between the methods and attributes. SCC [13] 

extends D3C2 by considering more types of 

interactions including the interactions caused by 

method invocations modelled in UML diagrams. 

Related work in the area of software cohesion can be 

found in [2, 11, 12, 14, 20, 21, 29]. 

 

3 Empirical Study Setting 
We chose two Java open source software systems 

from two different domains: Art of Illusion v.2.5 

[22] and JabRef v.2.3 beta 2 [23]. Art of Illusion 

consists of 481 classes and about 88 thousand lines 

of code (KLOC), and is a 3D modeling, rendering, 

and animation studio system. JabRef consists of 569 

classes and about 48 KLOC, and is a graphical 
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application for managing bibliographical databases. 

We chose these two open source systems randomly 

from http://sourceforge.net.The restrictions taken 

into account in choosing these systems were that 

they (1) are implemented using Java, (2) are 

relatively large in terms of the number of classes, (3) 

are from different domains, and (4) have available 

source code and fault repositories. 

We considered three versions of each class: (1) a 

version that includes all types of special methods, 

(2) a version that excludes access methods and 

includes all other types of methods, and (3) a version 

that excludes all types of special methods. 

Consequently, the third version has the least number 

of methods. We excluded all classes that their third 

version has less than two methods because LCOM 

value is not defined for such classes. This implies 

excluding 177 classes from the first system and 310 

classes from the second system. We applied the 

LCOM to the rest of the classes including the three 

considered versions. We developed our own Java 

tool to automate the cohesion measurement process 

for Java classes using LCOM. The resulting values 

for the three versions are referenced here as LCOM1, 

LCOM2, and LCOM3, respectively. The tool 

analyzed the Java source code, extracted the 

information required to build the models that 

represent the cohesive interactions, and calculated 

the cohesion values for the three LCOM versions. 

Tables 1 and 2 show descriptive statistics for each 

cohesion measure including the minimum, 25% 

quartile, mean, median, 75% quartile, maximum 

value, and standard deviation. Note that the 

following analyses do not take into account class 

inheritance. The impact of inheritance on the study 

results is left as a subject for further research.  

 

Table 1: Descriptive statistics for the cohesion 

measures applied on classes of Art of Illusion 

system  

 

 

 

 

 

 

 

 

 

 

   

 

The descriptive statistics results show that 

excluding special methods reduces LCOM values. 

This is because excluding special methods decreases 

the number of pairs of methods that do not share 

common attributes, and consequently decreases 

LCOM values. 

 

Table 2: Descriptive statistics for the cohesion 

measures applied on classes of JabRef system  

 

 

 

 

 

 

 

 

 

 

   

 

4 Empirical Study Results 

To study the relationship between the values of the 

collected metrics and the extent to which a class is 

prone to faults, we applied logistic regression [24], a 

standard and mature statistical method based on 

maximum likelihood estimation. This method is 

widely applied to predict fault-prone classes (e.g., [3, 

25, 26, 27]). In logistic regression, explanatory or 

independent variables are used to explain and predict 

dependent variables. A dependent variable can only 

take discrete values and is binary in the context where 

we predict fault-prone classes. The logistic regression 

model is univariate if it features only one explanatory 

variable and multivariate when including several 

explanatory variables. In this case study, the 

dependent variable indicates the presence of one or 

more faults in a class, and the explanatory variables 

are the cohesion metrics. Univariate regression is 

applied to study the fault prediction of each metric 

separately, whereas multivariate regression is applied 

to study the fault prediction of different combinations 

of metrics to determine the best model. In this paper, 

we focus on comparing the results for the metrics in 

terms of their individual fault prediction power, and 

therefore, we consider only univariate regression.  

We collected fault data for the classes in the 

considered software systems from publicly available 

fault repositories. The developers of the considered 

systems used an on-line Version Control System 

(VCS) to keep track of the changes performed on the 

source code of the system. The changes, called 

revisions, are due to either detected faults or required 

feature improvements. Each revision is associated 

with a report including the revision description and a 

list of classes involved in this change. Two research 

assistants, one with a B.Sc. in computer science and 

Statistic LCOM1 LCOM2 LCOM3 

Min 0 0 0 

Max 92 58 49 

25% 0 0 0 

Med 5 1 0 

Mean 11.3 5.0 3.1 

75% 17 5 2 

Std. Dev. 15.8 9.4 7.4 

 

Statistic LCOM1 LCOM2 LCOM3 

Min 0 0 0 

Max 98 91 86 

25% 2 0 0 

Med 11 4 2 

Mean 21.4 10.6 7.9 

75% 36 14 11 

Std. Dev. 25.1 15.0 12.3 
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six years of experience in software development 

activities and another with a B.Sc. and Master both in 

computer science; each alone, manually traced the 

description of each revision and identified the ones 

performed due to detected faults. Author of this paper 

compared the manual results and rechecked the 

results in which the two assistants differ to choose the 

correct one. Finally, we used the lists of classes 

involved in changes due to detected faults to count 

the number of faults in which each class is involved. 

We classified each class as being fault-free or as 

having at least one fault. Ideally, class cohesion 

should be measured before each fault occurrence and 

correction, and used to predict this particular fault 

occurrence. However, not only this would mean 

measuring cohesion for dozens of versions (between 

each fault correction) for each system, but we would 

not be able to study the statistical relationships of a 

set of faults with a set of consistent cohesion 

measurements for many classes. Our cohesion 

measurement is based on the latest version of the 

source code, after fault corrections, and is therefore 

an approximation. This is however quite common in 

similar research endeavors (e.g., [3,25,26,27])  and is 

necessary to enable statistical analysis. 

The results of the univariate regression study are 

reported in Tables 3 and 4. Estimated regression 

coefficients are reported. The larger the absolute 

value of the coefficient is, the stronger the impact 

(positive or negative, according to the sign of the 

coefficient) of the metric on the probability of a fault 

being detected in a class. The considered metrics 

have different standard deviations as shown in Tables 

1 and 2. Therefore, to help compare the coefficients, 

we standardized the explanatory variables by 

subtracting the mean and dividing by the standard 

deviation and, as a result, they all have an equal 

variance of 1 and the coefficients reported in Tables 3 

and 4 are also standardized. These coefficients 

represent the variation in standard deviations in the 

dependent variable when there is a change of one 

standard deviation in their corresponding independent 

variable. The p-value is the probability of the 

coefficient being different from zero by chance, and 

is also an indicator of the accuracy of the coefficient 

estimate. We use a typical significance threshold 

(α=0.05) to determine whether a metric is a 

statistically significant fault predictor. 

To evaluate the performance of a prediction model 

regardless of any particular threshold, we used the 

receiver operating characteristic (ROC) curve [28]. In 

a fault prediction context, the ROC curve is a 

graphical plot of the ratio of classes correctly 

classified as faulty versus the ratio of classes 

incorrectly classified as faulty at different thresholds. 

The area under the ROC curve shows the ability of 

the model to correctly rank classes as faulty or non-

faulty. A 100% ROC area represents a perfect model 

that correctly classifies all classes. The larger the 

ROC area, the better the model in terms of classifying 

classes. The results for all the coefficients and for all 

considered metrics are reported in Tables 3 and 4. 

 

Table 3: Univariate logistic regression results for 

classes of Art of Illusion system 

 

 

 

 

 

 

Table 4: Univariate logistic regression results for 

classes of JabRef system 

 

 

 

 

 

 

The results in Tables 3 and 4 lead to the following 

conclusions: 

1. All versions of LCOM (i.e., with and without 

considering special methods) are statistically 

significant at α=0.05 (i.e., their coefficients are 

significantly different from 0). 

2. As expected, the estimated regression coefficients 

for the three versions of the inverse cohesion 

measure LCOM are positive. This indicates an 

increase in the predicted probability of fault 

detection as the lack of cohesion of the class 

increases. 

3. In both systems, the results of the standard 

coefficient and the area under the ROC curve are 

slightly improved when excluding access 

methods. In addition, they are further slightly 

improved when excluding all types of special 

methods. 

 

As a result, the empirical results above show that 

the versions of LCOM that exclude special methods 

predict faulty classes more accurately than the 

original LCOM that accounts for all types of special 

methods. These results indirectly indicate that the 

ability of LCOM in indicating class cohesion 

improves when excluding special methods.   

 

5 Conclusions and Future Work  
This paper investigates versions of LCOM, a 

widely referenced class cohesion metric. The 

Metric LCOM1 LCOM2 LCOM3 

Std. Coeff. 0.50 0.56 0.57 

p-value <0.0001 <0.0001 <0.0001 

ROC area 65.4% 66.6% 68.1% 

 

Metric LCOM1 LCOM2 LCOM3 

Std. Coeff. 0.98 1.26 1.38 

p-value 0.001 0.002 0.013 

ROC area 69.7% 69.8% 71.6% 
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versions of LCOM consider the inclusion and 

exclusion of special methods from LCOM 

computation. The original and other versions of the 

metric are empirically compared by applying them 

on classes of two open source systems. The results 

show that the versions of the metric, when excluding 

special; methods, predict faulty classes, and thus 

indicate cohesion, better than the original version of 

the metric. 

In the future, we plan to extend the empirical study 

by including classes from other systems of different 

programming languages. In addition, we plan to 

carefully study the impact of including/excluding 

special methods on the cohesion values of other 

cohesion metrics. Finally, we intend to empirically 

study the impact of considering other factors when 

applying cohesion metrics such as inheritance. 

 

Acknowledgment 

The author would like to acknowledge the support of 

this work by Kuwait University Research Grant 

WI03/07. 

  

References 

[1] J. Al Dallal and L. Briand, A precise method-

method interaction-based cohesion metric for object-

oriented classes, ACM Transactions on Software 

Engineering and Methodology (TOSEM), in press, 

2010. 

[2] J. Al Dallal, Mathematical validation of object-

oriented class cohesion metrics, International Journal 

of Computers, 2010, Vol. 4, No. 2, pp. 45-52. 

[3] L. C. Briand, J. Daly, and J. Wuest, A unified 

framework for cohesion measurement in object-

oriented systems, Empirical Software Engineering - 

An International Journal, Vol. 3, No. 1, 1998, pp. 65-

117.  

[4] J. M. Bieman and B. Kang, Cohesion and reuse 

in an object-oriented system, Proceedings of the 1995 

Symposium on Software reusability, Seattle, 

Washington, United States, pp. 259-262, 1995.  

[5] L. Badri and M. Badri, A Proposal of a new 

class cohesion criterion: an empirical study, Journal 

of Object Technology, Vol. 3, No. 4, 2004.. 

[6] L. Fernández, and R. Peña, A sensitive metric of 

class cohesion, International Journal of Information 

Theories and Applications, Vol. 13, No. 1, 2006, pp. 

82-91.  

[7] C. Bonja and E. Kidanmariam, Metrics for class 

cohesion and similarity between methods, 

Proceedings of the 44th Annual ACM Southeast 

Regional Conference, Melbourne, Florida, 2006, pp. 

91-95. 

[8] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A 

class cohesion metric for object-oriented designs, 

Journal of Object-Oriented Program, Vol. 11, No. 8, 

pp. 47-52. 1999. 

[9] S. Counsell , S. Swift , and J. Crampton, The 

interpretation and utility of three cohesion metrics for 

object-oriented design, ACM Transactions on 

Software Engineering and Methodology (TOSEM), 

Vol. 15, No. 2, 2006, pp.123-149. 

[10] J. Al Dallal, A design-based cohesion metric for 

object-oriented classes, International Journal of 

Computer Science and Engineering, 2007, Vol. 1, 

No. 3, pp. 195-200. 

[11] J. Al Dallal, Software similarity-based 

functional cohesion metric, IET Software, 2009, Vol. 

3, No. 1, pp. 46-57. 

[12] J. Al Dallal, Theoretical validation of object-

oriented lack-of-cohesion metrics, proceedings of the 

8
th
 WSEAS International Conference on Software 

Engineering, Parallel and Distributed Systems 

(SEPADS 2009), Cambridge, UK, February 2009.  

[13] J. Al Dallal and L. Briand, An object-oriented 

high-level design-based class cohesion metric, 

Information and Software Technology, 2010, Vol. 52, 

No. 12, pp. 1346-1361. 

[14] J. Al Dallal, Measuring the discriminative power 

of object-oriented class cohesion metrics, IEEE 

Transactions on Software Engineering, In press, 

2010.  

[15] S.R. Chidamber and C.F. Kemerer, Towards a 

Metrics Suite for Object-Oriented Design, Object-

Oriented Programming Systems, Languages and 

Applications (OOPSLA), Special Issue of SIGPLAN 

Notices, Vol. 26, No. 10, 1991, pp. 197-211. 

[16] S.R. Chidamber and C.F. Kemerer, A Metrics 

suite for object Oriented Design, IEEE Transactions 

on Software Engineering, Vol. 20, No. 6, 1994, pp. 

476-493.  

[17] W. Li and S.M. Henry, Maintenance metrics for 

the object oriented paradigm. In Proceedings of 1st 

International Software Metrics Symposium, 

Baltimore, MD, 1993, pp. 52-60. 

[18] M. Hitz and B. Montazeri, Measuring coupling 

and cohesion in object oriented systems, Proceedings 

of the International Symposium on Applied Corporate 

Computing, 1995, pp. 25-27. 

[19] B. Henderson-Sellers, Software Metrics, 

Prentice Hall, Hemel Hempstaed, U.K., 1996. 

[20] J. Al Dallal, Efficient program slicing 

algorithms for measuring functional cohesion and 

parallelism, International Journal of Information 

Technology, Vol. 4, No. 2, 2007, pp. 93-100. 

[21] J. Al Dallal, Fault prediction and the 

discriminative powers of connectivity-based object-

oriented class cohesion metrics, submitted for 

publication in IEEE Transactions on Software 

Engineering, 2010. 

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 128



[22] Illusion, http://sourceforge.net/projects/aoi/, July 

2010. 

[23] JabRef, http://sourceforge.net/projects/jabref/, 

July 2010. 

[24] D. Hosmer and S. Lemeshow, Applied Logistic 

Regression, Wiley Interscience, 2000, 2nd edition. 

[25] L. C. Briand, J. Wüst, and H. Lounis, Replicated 

Case Studies for Investigating Quality Factors in 

Object-Oriented Designs, Empirical Software 

Engineering, 6(1), 2001, pp. 11-58. 

[26] T. Gyimothy, R. Ferenc, and I. Siket, Empirical 

validation of object-oriented metrics on open source 

software for fault prediction, IEEE Transactions on 

Software Engineering, 3(10), 2005, pp. 897-910. 

[27] A. Marcus, D. Poshyvanyk, and R. Ferenc, 

Using the conceptual cohesion of classes for fault 

prediction in object-oriented systems, IEEE 

Transactions on Software Engineering, 34(2), 2008, 

pp. 287-300. 

[28] J. A. Hanley and B. J. McNeil, The meaning and 

use of the area under a receiver operating 

characteristic (ROC) curve, Radiology, 143(1), 1982, 

pp. 29-36. 

[29] J. Al Dallal, Improving the applicability of 

object-oriented class cohesion metrics, Information 

and Software Technology, 2011, in press. 

 

 

 

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 129




