
Improving Object-Oriented Lack-of-Cohesion Metric by Excluding

Special Methods

JEHAD AL DALLAL

Department of Information Science

Kuwait University

P.O. Box 5969, Safat 13060

KUWAIT

j.aldallal@ku.edu.kw

Abstract: - Classes are the basic units in object-oriented programs, and therefore, their quality has impact on

the overall quality of the software. Class cohesion is a key quality factor, and it refers to the degree of

relatedness of class attributes and methods. Software developers use class cohesion measure to assess the

quality of their products and to guide the restructuring of poorly designed classes. Several class cohesion

metrics are proposed in the literature, and the impact of considering the special methods (i.e., constructors,

destructors, and access methods) in cohesion calculation is not empirically studied for most of them. In this

paper, we address this issue for one of the most popular class cohesion metrics, referenced as Lack of

Cohesion (LCOM). Our empirical study involves applying the metric with and without considering special

methods on classes of two open source Java applications and statistically analyzing the results. The empirical

study results show that the ability of LCOM in indicating class quality slightly improves when excluding

special methods from the LCOM computation.

Key-Words: - object-oriented class, software quality, class cohesion metric, class cohesion, special methods.

1 Introduction
A popular goal of software engineering is to

develop the techniques and the tools needed to

develop high-quality applications that are more

stable and maintainable. In order to assess and

improve the quality of an application during the

development process, developers and managers use

several metrics. These metrics estimate the quality

of different software attributes, such as cohesion,

coupling, and complexity.

The cohesion of a module refers to the

relatedness of the module components. A module

that has high cohesion performs one basic function

and cannot be split into separate modules easily.

Highly cohesive modules are more understandable,

modifiable, and maintainable [1].

Since the last decade, object-oriented

programming languages, such as C++ and Java,

have become widely used in both the software

industry and research fields. In an object-oriented

paradigm, classes are the basic modules. The

members of a class are its attributes and methods.

Therefore, class cohesion refers to the relatedness of

the class members.

Researchers have introduced several metrics to

indicate class cohesion during high or low level

design phases. Lack of Cohesion (LCOM) [3] is

proposed by Chidamber and Kemerer, and it counts

the number of method pairs that do not directly

share attributes. Higher LCOM value indicates low

cohesion and vice versa. LCOM is widely applied

and theoretically and empirically compared to other

metrics (e.g., [1, 2, 3, 12, 13, 14, 21]). In these

empirical studies, the goodness of the metric in

indicating cohesion is indirectly measured by

statistically analyzing the relation between the

cohesion values and the values of external software

attributes such as the fault proneness of the class

(i.e., the extent to which a class is prone to faults).

Most of the reported empirical results show that

LCOM is relatively weakly capable in predicting

faulty classes. As a result, LCOM is suggested not to

be a good cohesion indicator. Originally, LCOM do

not differentiate between the different types of

methods. Some researchers (e.g., [3]) theoretically

analyzed the impact of including/excluding special

methods in LCOM measurement. However, none of

the researchers studied this issue empirically. In this

paper, we consider three different versions of each

class: (1) a version including all special methods, (2)

a version excluding access methods (i.e., setter and

getter methods), and (3) a version excluding all

types of special methods. We perform an empirical

study to investigate which version is the best when

LCOM is applied to indicate class quality. The

empirical study is applied on classes of two open

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 124

source Java systems that have available fault data

repositories. The empirical study results show that

excluding all types of special methods, in the

computation of LCOM, slightly improves its

goodness in predicting faulty class. This indirectly,

indicates that excluding special methods improves

LCOM’s goodness in indicating class cohesion.

This paper is organized as follows. Section 2

provides an overview of the class cohesion metrics

proposed in literature. Section 3 reports the

empirical study setting, and Section 4 overviews and

discusses the empirical study results. Finally,

Section 5 concludes and discusses future work.

2 Related Work
Researchers have proposed several class cohesion

metrics in the literature. These metrics can be

applicable based on high-level design (HLD) or low-

level design (LLD) information. HLD class cohesion

metrics rely on information related to class and

method interfaces. The more numerous LLD class

cohesion metrics require an analysis of the algorithms

used in the class methods (or the code itself if

available) or access to highly precise method

postconditions. Class cohesion metrics are based on

the use or sharing of class attributes. For example, the

LCOM metric counts the number of method pairs that

do not share instance variables [15]. Chidamber and

Kemerer [16] propose another version of the LCOM

metric, which calculates the difference between the

number of method pairs that do and do not share

instance variables. Li and Henry [17] use an

undirected graph that represents each method as a

node and the sharing of at least one instance variable

as an edge. They define lack-of-cohesion in methods

as the number of connected components in the graph.

The graph is extended in [18] by adding an edge

between a pair of methods if one of them invokes the

other. Hitz and Montazeri [18] introduce a

connectivity metric to apply when the graph has one

component. In addition, Henderson-Sellers [19]

proposes a lack-of-cohesion in methods metric that

considers the number of methods referencing each

attribute.

Bieman and Kang [4] describe two class cohesion

metrics, Tight Class Cohesion (TCC) and Loose

Class Cohesion (LCC), to measure the relative

number of directly connected pairs of methods and

the relative number of directly or indirectly connected

pairs of methods, respectively. TCC considers two

methods to be connected if they share the use of at

least one attribute. A method uses an attribute if the

attribute appears in the method’s body or the method

invokes another method, directly or indirectly, that

has the attribute in its body. LCC considers two

methods to be connected if they share the use of at

least one attribute directly or transitively. Badri [5]

introduces two class cohesion metrics, Degree of

Cohesion-Direct (DCD) and Degree of Cohesion-

Indirect (DCI), that are similar to TCC and LCC,

respectively, but differ by considering two methods

connected also when both of them directly or

transitively invoke the same method. Briand et al. [3]

propose a cohesion metric (called Coh) that computes

cohesion as the ratio of the number of distinct

attributes accessed in methods of a class. Fernandez

and Pena [6] propose a class cohesion metric, called

Sensitive Class Cohesion Metric (SCOM), that

considers the cardinality of the intersection between

each pair of methods. In the metric presented by

Bonja and Kidanmariam [7], the degree of similarity

between methods is used as a basis to measure class

cohesion. The similarity between a pair of methods is

defined as the ratio of the number of shared attributes

to the number of distinct attributes referenced by both

methods. Cohesion is defined as the ratio of the

summation of the similarities between all pairs of

methods to the total number of possible pairs of

methods. The metric is called Class Cohesion (CC).

Al Dallal and Briand [1] propose a metric based on

measuring the degree of similarity between each pair

of methods in terms of the number of shared

attributes.

Cohesion Among Methods in a Class (CAMC),

Normalized Hamming Distance (NHD), Scaled NHD

(SNHD), Distance Design-based Direct Class

Cohesion (D3C2), and Similarity-based Class

Cohesion (SCC) are examples of HLD metrics.

CAMC [8], NHD, and SNHD [9] use the types of the

method parameters to predict the interactions between

the methods and attributes. D3C2 [10] uses the

relation between the types of the parameters and the

types of the attributes to predict the interactions

between the methods and attributes. SCC [13]

extends D3C2 by considering more types of

interactions including the interactions caused by

method invocations modelled in UML diagrams.

Related work in the area of software cohesion can be

found in [2, 11, 12, 14, 20, 21, 29].

3 Empirical Study Setting
We chose two Java open source software systems

from two different domains: Art of Illusion v.2.5

[22] and JabRef v.2.3 beta 2 [23]. Art of Illusion

consists of 481 classes and about 88 thousand lines

of code (KLOC), and is a 3D modeling, rendering,

and animation studio system. JabRef consists of 569

classes and about 48 KLOC, and is a graphical

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 125

application for managing bibliographical databases.

We chose these two open source systems randomly

from http://sourceforge.net.The restrictions taken

into account in choosing these systems were that

they (1) are implemented using Java, (2) are

relatively large in terms of the number of classes, (3)

are from different domains, and (4) have available

source code and fault repositories.

We considered three versions of each class: (1) a

version that includes all types of special methods,

(2) a version that excludes access methods and

includes all other types of methods, and (3) a version

that excludes all types of special methods.

Consequently, the third version has the least number

of methods. We excluded all classes that their third

version has less than two methods because LCOM

value is not defined for such classes. This implies

excluding 177 classes from the first system and 310

classes from the second system. We applied the

LCOM to the rest of the classes including the three

considered versions. We developed our own Java

tool to automate the cohesion measurement process

for Java classes using LCOM. The resulting values

for the three versions are referenced here as LCOM1,

LCOM2, and LCOM3, respectively. The tool

analyzed the Java source code, extracted the

information required to build the models that

represent the cohesive interactions, and calculated

the cohesion values for the three LCOM versions.

Tables 1 and 2 show descriptive statistics for each

cohesion measure including the minimum, 25%

quartile, mean, median, 75% quartile, maximum

value, and standard deviation. Note that the

following analyses do not take into account class

inheritance. The impact of inheritance on the study

results is left as a subject for further research.

Table 1: Descriptive statistics for the cohesion

measures applied on classes of Art of Illusion

system

The descriptive statistics results show that

excluding special methods reduces LCOM values.

This is because excluding special methods decreases

the number of pairs of methods that do not share

common attributes, and consequently decreases

LCOM values.

Table 2: Descriptive statistics for the cohesion

measures applied on classes of JabRef system

4 Empirical Study Results

To study the relationship between the values of the

collected metrics and the extent to which a class is

prone to faults, we applied logistic regression [24], a

standard and mature statistical method based on

maximum likelihood estimation. This method is

widely applied to predict fault-prone classes (e.g., [3,

25, 26, 27]). In logistic regression, explanatory or

independent variables are used to explain and predict

dependent variables. A dependent variable can only

take discrete values and is binary in the context where

we predict fault-prone classes. The logistic regression

model is univariate if it features only one explanatory

variable and multivariate when including several

explanatory variables. In this case study, the

dependent variable indicates the presence of one or

more faults in a class, and the explanatory variables

are the cohesion metrics. Univariate regression is

applied to study the fault prediction of each metric

separately, whereas multivariate regression is applied

to study the fault prediction of different combinations

of metrics to determine the best model. In this paper,

we focus on comparing the results for the metrics in

terms of their individual fault prediction power, and

therefore, we consider only univariate regression.

We collected fault data for the classes in the

considered software systems from publicly available

fault repositories. The developers of the considered

systems used an on-line Version Control System

(VCS) to keep track of the changes performed on the

source code of the system. The changes, called

revisions, are due to either detected faults or required

feature improvements. Each revision is associated

with a report including the revision description and a

list of classes involved in this change. Two research

assistants, one with a B.Sc. in computer science and

Statistic LCOM1 LCOM2 LCOM3

Min 0 0 0

Max 92 58 49

25% 0 0 0

Med 5 1 0

Mean 11.3 5.0 3.1

75% 17 5 2

Std. Dev. 15.8 9.4 7.4

Statistic LCOM1 LCOM2 LCOM3

Min 0 0 0

Max 98 91 86

25% 2 0 0

Med 11 4 2

Mean 21.4 10.6 7.9

75% 36 14 11

Std. Dev. 25.1 15.0 12.3

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 126

six years of experience in software development

activities and another with a B.Sc. and Master both in

computer science; each alone, manually traced the

description of each revision and identified the ones

performed due to detected faults. Author of this paper

compared the manual results and rechecked the

results in which the two assistants differ to choose the

correct one. Finally, we used the lists of classes

involved in changes due to detected faults to count

the number of faults in which each class is involved.

We classified each class as being fault-free or as

having at least one fault. Ideally, class cohesion

should be measured before each fault occurrence and

correction, and used to predict this particular fault

occurrence. However, not only this would mean

measuring cohesion for dozens of versions (between

each fault correction) for each system, but we would

not be able to study the statistical relationships of a

set of faults with a set of consistent cohesion

measurements for many classes. Our cohesion

measurement is based on the latest version of the

source code, after fault corrections, and is therefore

an approximation. This is however quite common in

similar research endeavors (e.g., [3,25,26,27]) and is

necessary to enable statistical analysis.

The results of the univariate regression study are

reported in Tables 3 and 4. Estimated regression

coefficients are reported. The larger the absolute

value of the coefficient is, the stronger the impact

(positive or negative, according to the sign of the

coefficient) of the metric on the probability of a fault

being detected in a class. The considered metrics

have different standard deviations as shown in Tables

1 and 2. Therefore, to help compare the coefficients,

we standardized the explanatory variables by

subtracting the mean and dividing by the standard

deviation and, as a result, they all have an equal

variance of 1 and the coefficients reported in Tables 3

and 4 are also standardized. These coefficients

represent the variation in standard deviations in the

dependent variable when there is a change of one

standard deviation in their corresponding independent

variable. The p-value is the probability of the

coefficient being different from zero by chance, and

is also an indicator of the accuracy of the coefficient

estimate. We use a typical significance threshold

(α=0.05) to determine whether a metric is a

statistically significant fault predictor.

To evaluate the performance of a prediction model

regardless of any particular threshold, we used the

receiver operating characteristic (ROC) curve [28]. In

a fault prediction context, the ROC curve is a

graphical plot of the ratio of classes correctly

classified as faulty versus the ratio of classes

incorrectly classified as faulty at different thresholds.

The area under the ROC curve shows the ability of

the model to correctly rank classes as faulty or non-

faulty. A 100% ROC area represents a perfect model

that correctly classifies all classes. The larger the

ROC area, the better the model in terms of classifying

classes. The results for all the coefficients and for all

considered metrics are reported in Tables 3 and 4.

Table 3: Univariate logistic regression results for

classes of Art of Illusion system

Table 4: Univariate logistic regression results for

classes of JabRef system

The results in Tables 3 and 4 lead to the following

conclusions:

1. All versions of LCOM (i.e., with and without

considering special methods) are statistically

significant at α=0.05 (i.e., their coefficients are

significantly different from 0).

2. As expected, the estimated regression coefficients

for the three versions of the inverse cohesion

measure LCOM are positive. This indicates an

increase in the predicted probability of fault

detection as the lack of cohesion of the class

increases.

3. In both systems, the results of the standard

coefficient and the area under the ROC curve are

slightly improved when excluding access

methods. In addition, they are further slightly

improved when excluding all types of special

methods.

As a result, the empirical results above show that

the versions of LCOM that exclude special methods

predict faulty classes more accurately than the

original LCOM that accounts for all types of special

methods. These results indirectly indicate that the

ability of LCOM in indicating class cohesion

improves when excluding special methods.

5 Conclusions and Future Work
This paper investigates versions of LCOM, a

widely referenced class cohesion metric. The

Metric LCOM1 LCOM2 LCOM3

Std. Coeff. 0.50 0.56 0.57

p-value <0.0001 <0.0001 <0.0001

ROC area 65.4% 66.6% 68.1%

Metric LCOM1 LCOM2 LCOM3

Std. Coeff. 0.98 1.26 1.38

p-value 0.001 0.002 0.013

ROC area 69.7% 69.8% 71.6%

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 127

versions of LCOM consider the inclusion and

exclusion of special methods from LCOM

computation. The original and other versions of the

metric are empirically compared by applying them

on classes of two open source systems. The results

show that the versions of the metric, when excluding

special; methods, predict faulty classes, and thus

indicate cohesion, better than the original version of

the metric.

In the future, we plan to extend the empirical study

by including classes from other systems of different

programming languages. In addition, we plan to

carefully study the impact of including/excluding

special methods on the cohesion values of other

cohesion metrics. Finally, we intend to empirically

study the impact of considering other factors when

applying cohesion metrics such as inheritance.

Acknowledgment

The author would like to acknowledge the support of

this work by Kuwait University Research Grant

WI03/07.

References

[1] J. Al Dallal and L. Briand, A precise method-

method interaction-based cohesion metric for object-

oriented classes, ACM Transactions on Software

Engineering and Methodology (TOSEM), in press,

2010.

[2] J. Al Dallal, Mathematical validation of object-

oriented class cohesion metrics, International Journal

of Computers, 2010, Vol. 4, No. 2, pp. 45-52.

[3] L. C. Briand, J. Daly, and J. Wuest, A unified

framework for cohesion measurement in object-

oriented systems, Empirical Software Engineering -

An International Journal, Vol. 3, No. 1, 1998, pp. 65-

117.

[4] J. M. Bieman and B. Kang, Cohesion and reuse

in an object-oriented system, Proceedings of the 1995

Symposium on Software reusability, Seattle,

Washington, United States, pp. 259-262, 1995.

[5] L. Badri and M. Badri, A Proposal of a new

class cohesion criterion: an empirical study, Journal

of Object Technology, Vol. 3, No. 4, 2004..

[6] L. Fernández, and R. Peña, A sensitive metric of

class cohesion, International Journal of Information

Theories and Applications, Vol. 13, No. 1, 2006, pp.

82-91.

[7] C. Bonja and E. Kidanmariam, Metrics for class

cohesion and similarity between methods,

Proceedings of the 44th Annual ACM Southeast

Regional Conference, Melbourne, Florida, 2006, pp.

91-95.

[8] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A

class cohesion metric for object-oriented designs,

Journal of Object-Oriented Program, Vol. 11, No. 8,

pp. 47-52. 1999.

[9] S. Counsell , S. Swift , and J. Crampton, The

interpretation and utility of three cohesion metrics for

object-oriented design, ACM Transactions on

Software Engineering and Methodology (TOSEM),

Vol. 15, No. 2, 2006, pp.123-149.

[10] J. Al Dallal, A design-based cohesion metric for

object-oriented classes, International Journal of

Computer Science and Engineering, 2007, Vol. 1,

No. 3, pp. 195-200.

[11] J. Al Dallal, Software similarity-based

functional cohesion metric, IET Software, 2009, Vol.

3, No. 1, pp. 46-57.

[12] J. Al Dallal, Theoretical validation of object-

oriented lack-of-cohesion metrics, proceedings of the

8
th
 WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems

(SEPADS 2009), Cambridge, UK, February 2009.

[13] J. Al Dallal and L. Briand, An object-oriented

high-level design-based class cohesion metric,

Information and Software Technology, 2010, Vol. 52,

No. 12, pp. 1346-1361.

[14] J. Al Dallal, Measuring the discriminative power

of object-oriented class cohesion metrics, IEEE

Transactions on Software Engineering, In press,

2010.

[15] S.R. Chidamber and C.F. Kemerer, Towards a

Metrics Suite for Object-Oriented Design, Object-

Oriented Programming Systems, Languages and

Applications (OOPSLA), Special Issue of SIGPLAN

Notices, Vol. 26, No. 10, 1991, pp. 197-211.

[16] S.R. Chidamber and C.F. Kemerer, A Metrics

suite for object Oriented Design, IEEE Transactions

on Software Engineering, Vol. 20, No. 6, 1994, pp.

476-493.

[17] W. Li and S.M. Henry, Maintenance metrics for

the object oriented paradigm. In Proceedings of 1st

International Software Metrics Symposium,

Baltimore, MD, 1993, pp. 52-60.

[18] M. Hitz and B. Montazeri, Measuring coupling

and cohesion in object oriented systems, Proceedings

of the International Symposium on Applied Corporate

Computing, 1995, pp. 25-27.

[19] B. Henderson-Sellers, Software Metrics,

Prentice Hall, Hemel Hempstaed, U.K., 1996.

[20] J. Al Dallal, Efficient program slicing

algorithms for measuring functional cohesion and

parallelism, International Journal of Information

Technology, Vol. 4, No. 2, 2007, pp. 93-100.

[21] J. Al Dallal, Fault prediction and the

discriminative powers of connectivity-based object-

oriented class cohesion metrics, submitted for

publication in IEEE Transactions on Software

Engineering, 2010.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 128

[22] Illusion, http://sourceforge.net/projects/aoi/, July

2010.

[23] JabRef, http://sourceforge.net/projects/jabref/,

July 2010.

[24] D. Hosmer and S. Lemeshow, Applied Logistic

Regression, Wiley Interscience, 2000, 2nd edition.

[25] L. C. Briand, J. Wüst, and H. Lounis, Replicated

Case Studies for Investigating Quality Factors in

Object-Oriented Designs, Empirical Software

Engineering, 6(1), 2001, pp. 11-58.

[26] T. Gyimothy, R. Ferenc, and I. Siket, Empirical

validation of object-oriented metrics on open source

software for fault prediction, IEEE Transactions on

Software Engineering, 3(10), 2005, pp. 897-910.

[27] A. Marcus, D. Poshyvanyk, and R. Ferenc,

Using the conceptual cohesion of classes for fault

prediction in object-oriented systems, IEEE

Transactions on Software Engineering, 34(2), 2008,

pp. 287-300.

[28] J. A. Hanley and B. J. McNeil, The meaning and

use of the area under a receiver operating

characteristic (ROC) curve, Radiology, 143(1), 1982,

pp. 29-36.

[29] J. Al Dallal, Improving the applicability of

object-oriented class cohesion metrics, Information

and Software Technology, 2011, in press.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 129

