
Incremental Algorithms for the Minimum Cost Flow Problem

LAURA CIUPALĂ
Department of Computer Science
University Transilvania of Braşov

Iuliu Maniu Street 50, Braşov
ROMANIA

laura_ciupala@yahoo.com

Abstract: - Incremental algorithms may save computational time to solve different network flow problems. Let us
consider a network in which we already established a minimum cost flow. We describe and solve the problem of
establishing a minimum cost flow in this network after inserting a new arc and after deleting an existent arc. We focus
on these problems because they arise in practice.

Key-Words: - Network flow; Network algorithms; Minimum cost flow problem; Incremental computation.

1 Introduction
Network flow problems are a group of network
optimization problems with widespread and diverse
applications. The literature on network flow problems is
extensive. Over the past 60 years researchers have made
continuous improvements to algorithms for solving
several classes of problems. From the late 1940s
through the 1950s, researchers designed many of the
fundamental algorithms for network flow, including
methods for maximum flow and minimum cost flow
problems. In the next decades, there are many research
contributions concerning improving the computational
complexity of network flow algorithms by using
enhanced data structures, techniques of scaling the
problem data etc.
 The minimum cost flow problem, as well as one of
its special cases which is the maximum flow problem, is
one of the most fundamental problems in network flow
theory and it was studied extensively. The importance
of the minimum cost flow problem is also due to the
fact that it arises in almost all industries, including
agriculture, communications, defense, education,
energy, health care, medicine, manufacturing, retailing
and transportation. Indeed, minimum cost flow problem
are pervasive in practice.

2 Minimum Cost Flow Problem
Let G = (N, A) be a directed graph, defined by a set N of
n nodes and a set A of m arcs. Each arc (i, j)∈A has a
capacity c(i, j) and a cost b(i, j). We associate with each
node i∈N a number v(i) which indicates its supply or
demand depending on whether v(i) > 0 or v(i) < 0. In
the directed network G = (N, A, c, b, v), the minimum

cost flow problem is to determine the flow f(i, j) on
each arc (i, j)∈A which

minimize ∑

∈Aji

jifjib
),(

),(),((1)

subject to

∑∑
∈∈

∈∀=−
AijjAjij

Niivijfjif
),(|),(|

),(),(),((2)

Ajijicjif ∈∀≤≤),(),,(),(0 . (3)

where 0)(=∑
∈Ni

iv .

A flow f satisfying the conditions (2) and (3) is
referred to as a feasible flow.

Let C denote the largest magnitude of any
supply/demand or finite arc capacity, that is

C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,
c(i, j)<∞})

and let B denote the largest magnitude of any arc cost,
that is

B = max{b(i, j) | (i, j)∈A}.

2.1 Solving Minimum Cost Flow Problem

For solving a minimum cost flow problem, several
algorithms were developed from the primal-dual
algorithm proposed by Ford and Fulkerson in 1962 to
the polynomial-time cycle-canceling algorithms
described by Sokkalingam, Ahuja and Orlin in 2001.
Most of these algorithms work on the residual network.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 212

So, before describing them, we have to introduce some
notions and some assumptions.

The residual network G(f) = (N, A(f))
corresponding to a flow f is defined as follows. We
replace each arc (i, j)∈A by two arcs (i, j) and (j, i). The
arc (i, j) has the cost b(i, j) and the residual capacity
r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the cost b(j, i)
= -b(i, j) and the residual capacity r(j, i) = f(i, j). The
residual network consists only of arcs with positive
residual capacity.
 We shall assume that the minimum cost flow
problem satisfies the following assumptions:

Assumption 1. The network is directed.
 This assumption can be made without any loss of
generality. In [1] it is shown that we can always fulfil
this assumption by transforming any undirected
network into a directed network.

Assumption 2. All data (cost, supply/demand and
capacity) are integral.
 This assumption is not really restrictive in practice
because computers work with rational numbers which
we can convert into integer numbers by multiplying
them by a suitably large number.

Assumption 3. The network contains no directed
negative cost cycle of infinite capacity.
 If the network contains any such cycles, there are
flows with arbitrarily small costs.

Assumption 4. All arc costs are nonnegative.
 This assumption imposes no loss of generality since
the arc reversal transformation described in [1] converts
a minimum cost flow problem with negative arc costs to
one with nonnegative arc costs. This transformation can
be done if the network contains no directed negative
cost cycle of infinite capacity.

Assumption 5. The supplies/demands at the nodes
satisfy the condition 0)(=∑

∈Ni

iv and the minimum cost

flow problem has a feasible solution.

Assumption 6. The network contains an uncapacitated
directed path (i.e. each arc in the path has infinite
capacity) between every pair of nodes.
 We impose this condition by adding artificial arcs (1,
i) and (i, 1) for each i∈N and assigning a large cost and
infinite capacity to each of these arcs. No such arc
would appear in a minimum cost solution unless the
problem contains no feasible solution without artificial
arcs.

 We associate a real number π(i) with each node i∈N.
We refer to π(i) as the potential of node i. These node
potentials are generalizations of the concept of distance
labels.
 For a given set of node potentials π, we define the
reduced cost of an arc (i, j) as

b

π (i, j) = b(i, j) – π(i) + π(j).

 The reduced costs are applicable to the residual
network as well as to the original network.

Theorem 1. ([1]) (a) For any directed path P from node
h to node k we have

∑∑
∈∈

=
PjiPji

jibjib
),(),(

),(),(π – π(h) + π(k)

(b) For any directed cycle W we have

∑∑
∈∈

=
WjiWji

jibjib
),(),(

).,(),(π

Theorem 2. (Negative Cycle Optimality Conditions)
([1]) A feasible solution f is an optimal solution of the
minimum cost flow problem if and only if there is no
negative cycle in the residual network G(f).

Theorem 3. (Reduced Costs Optimality Conditions)
([1]) A feasible solution f is an optimal solution of the
minimum cost flow problem if and only if some set of
node potentials π satisfy the following reduced cost
optimality conditions:

b

π(i, j) ≥ 0 for every arc (i, j) in the residual
network G(f).

Theorem 4.(Complementary Slackness Optimality

Conditions) ([1]) A feasible solution f is an optimal
solution of the minimum cost flow problem if and only
if for some set of node potentials π, the reduced cost
and flow values satisfy the following complementary
slackness optimality conditions for every arc (i, j)∈A:

If bπ(i, j) > 0, then f(i, j) = 0 (4)
If 0 < f(i, j) < c(i, j), then bπ(i, j) =0 (5)
If bπ(i, j) < 0, then f(i, j) = c(i, j) (6)

 A pseudoflow is a function f : A →R+ satisfying the
only conditions (3).
 For any pseudoflow f, we define the imbalance of
node i as

e(i) = v(i) + f(N, i) - f(i, N), for all i∈N.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 213

 If e(i) > 0 for some node i, we refer to e(i) as the
excess of node i; if e(i) < 0, we refer to -e(i) as the
deficit of node i. If e(i) = 0 for some node i, we refer to
node i as the balanced.
 The residual network corresponding to a pseudoflow
is defined in the same way that we define the residual
network for a flow.
 The optimality conditions can be extended for
pseudoflows. A pseudoflow f* is optimal if there are
some set of node potentials π such that the following
reduced cost optimality conditions are satisfied:

b

π(i, j) ≥ 0 for every arc (i, j) in the residual
network G(f*).

 We refer to a flow or a pseudoflow f as ε-optimal for
some ε > 0 if for some node potentials π, the pair (f, π)
satisfies the following ε-optimality conditions:

If bπ(i, j) > ε, then f(i, j) = 0 (7)
If - ε ≤ bπ(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j) (8)
If bπ(i, j) < -ε, then f(i, j) = c(i, j) (9)

 These conditions are relaxations of the (exact)
complementary slackness optimality conditions (4) - (6)
and they reduce to complementary slackness optimality
conditions when ε = 0.
 The algorithms for determining a minimum cost flow
rely upon the optimality conditions stated by Theorems
2, 3 and 4.
 The basic algorithms for minimum cost flow can be
divided into two classes: those that maintain feasible
solutions and strive toward optimality and those that
maintain infeasible solutions that satisfy optimality
conditions and strive toward feasibility. Algorithms
from the first class are: the cycle-canceling algorithm
and the out-of-kilter algorithm. The cycle-canceling
algorithm maintains a feasible flow at every iteration,
augments flow along negative cycle in the residual
network and terminates when there is no more negative
cycle in the residual network, which means (from
Theorem 2) that the flow is a minimum cost flow. The
out-of-kilter algorithm maintains a feasible flow at
every iteration and augments flow along shortest path in
order to satisfy the optimality conditions. Algorithms
from the second class are: the successive shortest path
algorithm and primal-dual algorithm. The successive
shortest path algorithm maintains a pseudoflow that
satisfies the optimality conditions and augments flow
along shortest path from excess nodes to deficit nodes in
the residual network in order to convert the pseudoflow
into an optimal flow. The primal-dual algorithm also
maintains a pseudoflow that satisfies the optimality

conditions and solves maximum flow problems in order
to convert the pseudoflow into an optimal flow.
 Starting from the basic algorithms for minimum cost
flow, several polynomial-time algorithms were
developed. Most of them were obtained by using the
scaling technique. By capacity scaling, by cost scaling
or by capacity and cost scaling, the following
polynomial-time algorithms were developed: capacity
scaling algorithm, cost scaling algorithm, double scaling
algorithm, repeated capacity scaling algorithm and
enhanced capacity scaling algorithm.
 Another approach for obtaining polynomial-time
algorithms is to select carefully the negative cycles in
the cycle-canceling algorithm.

3 Incremental Algorithms for the

Minimum Cost Flow Problem
In this section we describe incremental algorithms
which update the solution of a minimum cost flow
problem after inserting a new arc and after deleting an
arc.

3.1 Inserting a new arc
Let G=(N, A, c, b, v) be a network in which we already
determined a minimum cost flow f*. Let us insert a new
arc (k, l) with capacity c(k, l) and cost b(k, l) into the
network G, obtaining in this way the network G’= (N,
A’, c’, b’, v), where:
 A’ = A ∪ {(k, l)}
 c’(i, j)= c(i, j), ∀(i j)∈A’

 b’(i, j)= b(i, j), ∀(i j)∈A’

 The new network G’ can contain a minimum cost
flow f*’ with a smaller cost than f* – the minimum cost
flow in G.
 In the network G’ obtained by inserting a new arc
(k, l) in G, it is possible that the optimality conditions
are not fullfilled with respect to f

*
 which was a

minimum cost flow in G. It is possible that the residual
network G’(f*) contains a negative cycle, which means
that the Negative cycle optimal conditions (from
Theorem 2) are not satisfied. The incremental algorithm
for determining a minimum cost flow in a network after
inserting a new arc is based on these optimality
conditions:

Incremental Add Algorithm;
Begin

let f be a minimum cost flow in the network G;
determine the new network G’ obtained from G by

inserting a new arc (k, l);
while the residual network G’(f) contains a

negative cycle do begin
 determine a negative cycle C in G’(f);

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 214

compute r(C) = min{r(i, j) | (i, j) ∈C};
send r(C) units of flow along the cycle C;
update the residual network G’(f);

end
end.

Theorem 5 The incremental add algorithm computes

correctly a minimum cost flow in the network G’,
obtained from G by inserting a new arc(k, l).

Proof. The algorithm terminates when the residual
network G’(f) does not contain any negative cycles. By
Theorem 2, it follows that the flow f is a minimum cost
flow.

Theorem 6 The incremental add algorithm runs in

O(nmc(k, l)) time.

Proof. Because f , the flow with which the algorithm
starts, is a minimum cost flow in the network G, it
follows that the new network G’ obtained from G by
inserting a new arc (k, l) could contain only negative
cycles that contain the arc (k, l). At each iteration of the
while loop, such a cycle C is determined in O(nm) time.
Sending r(C) units of flow along the cycle C means
reducing its residual capacity by r(C). Accordingly to
Assumption 2, all data are integer. It follows that r(C) is
also an integer number. Consequently, r(C) ≥ 1. Thus,
after at most c(k, l) iterations, the network will contain
no negative cycle. This implies that in O(nmc(k, l)) time
the algorithm determines a minimum cost flow.

3.2 Deleting an existent arc
Let G=(N, A, c, b, v) be a network in which we already
determined a minimum cost flow f*. Let (k, l) be an
arbitrary arc of G. The arc (k, l) will be removed from
the network G, obtaining in this way the network G’=
(N, A’, c’, b’, v), where:
 A’ = A \ {(k, l)}
 c’(i, j)= c(i, j), ∀(i j)∈A’

 b’(i, j)= b(i, j), ∀(i j)∈A’

 Let f* be the minimum cost flow in G and let f*’ be
the minimum cost flow in the network G’ obtained from
G through deletion of the arc (k, l). The cost of the flow
f
*
’ might by greater than the cost of f*.

 In the network G’ obtained by deleting the arc (k, l)
from G, it is possible that the optimality conditions are
not fullfilled with respect to f* which was a minimum
cost flow in G. More precisly, if in G the flow on the
arc (k, l) was strictly positive, then in G’ f

* will no
longer satisfy the mass balance constraints (2) for both
of the nodes k and l. This means that, in G’, f* is not a
flow, but a pseudoflow. We will transform this

pseudoflow into a minimum cost flow, by sending flow
from the node k to the node l in the network G’ using
the following algorithm.

Incremental Delete Algorithm;
Begin

let f be a minimum cost flow in the network G;
compute a set of optimal node potentials π with

respect to the minimum cost flow f;
e(k) = f(k, l);
e(l) = -f(k, l);
determine the new network G’ obtained from G by

deleting the arc (k, l);
determine the residual network G’(f);
while e(k) > 0 do begin
 determine shortest path distances d from k to all

other nodes in the residual network G’(f) with respect
to the reduced costs;

 let P be a shortest path from k to l;
 π = π – d;

r(P) = min(e(k), min{r(i, j) | (i, j) ∈P});
send r(P) units of flow along the path P;
update the residual network G’(f) and the

reduced costs;
end

end.

Theorem 7 The incremental delete algorithm computes

correctly a minimum cost flow in the network G’.
obtained from G by deleting the arc(k, l).

Proof. The algorithm terminates when e(k) = 0, which
means that k is a balanced node. Because all nodes
excepting k and l are balanced at the beginning of the
algorithm and remain balanced during the algorithm, it
follows that at the end of the algotrithm also l is a
balanced node. This implies that f is a flow. By
Theorem 3, it follows that the flow f is a minimum cost
flow.

Theorem 8 The incremental add algorithm runs in

O(S(n, m)+f(k, l)S’(n, m)) time, where S(n, m) is the
time needed to solve a shortest path problem with

possible negative arc lengths and S’(n, m) is the time

needed to solve a shortest path problem with

nonnegative arc lengths.

Proof. For determining a set of optimal potentials, a
shortest path algorithm is applied in the residual
network G(f). This network contains no negative cycle
because f is a minimum cost flow in the network G,
which must satisfy the negative cycle optimality
conditions from Thorem 2. But it is not mandatory that
all lengths in the residual network G(f) to be
nonnegative. Thus, the time complexity for determining

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 215

a set of optimal potentials is S(n, m).
Because f is a flow, all the nodes in G are balanced.

After deleting the arc (k, l), if the flow on this arc was
strictly positive, we have an excess of f(k, l) units at
node k and a deficit of f(k, l) units at node l.
 At each iteration of the while loop, we solve a
shortest path problem from node k to all the other nodes
in the residual network G’(f) with respect to the reduced
costs, which are nonnegative. Sending r(P) units of
flow along the shortest path P from k to l means
reducing the excess of k by r(P). Accordingly to
Assumption 2, all data are integer. It follows that r(P) is
also an integer number. Consequently, r(P) ≥ 1. Thus,
after at most f(k, l) iterations, the excess of the node k
will be reduced to 0, which implies that the deficits of
the node l will be also 0 and all the nodes will be
balanced. Equivalently, f will be a flow. Moreover, it
will be a minimum cost flow. Consequently, the while
loop will take O(f(k, l)S’(n, m)) time and the algorithm
will run in O(S(n, m)+f(k, l)S’(n, m)) time.

4 Conclusion
 In this paper, we studied a problem that arises in
practice in several applications. We consider that we
need to modify a network in which a minimum cost
flow is already determined. A modification of the
network means that a new arc is added or an exiting arc
is removed. After such a modification of the network,
we need to reestablish a minimum cost flow. For
solving these problems, incremental algorithms are used
because they save computational time.

References:

[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows.
Theory, algorithms and applications, Prentice Hall,
Inc., Englewood Cliffs, NJ, 1993.

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory,

Algorithms and Applications, Springer-Verlag,
London, 2001.

[3] L. Ciupală, About Minimum Cost Flow Problem in
Networks with Node Capacities, Proceedings of the
13th WSEAS International Conference on

Computers, 2009, pp. 67-70
[4] L. Ciupală, A scaling out-of-kilter algorithm for

minimum cost flow, Control and Cybernetics
Vol.34, No.4, 2005, pp. 1169-1174.

[5] P.T. Sokkalingam, R. Ahuja and J.Orlin, New
Poynomial-Time Cycle-Canceling Algorithms for
Minimum Cost Flows,
http://web.mit.edu/jorlin/www/papers.html, 2001

[6] K.D. Wayne, A polynomial Combinatorial

Algorithm for Generalized Minimum Cost Flow,
Math. Oper. Res., 445-459, 2002.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 216

