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Abstract: - Incremental algorithms may save computational time to solve different network flow problems. Let us 
consider a network in which we already established a minimum cost flow. We describe and solve the problem of 
establishing a minimum cost flow in this network after inserting a new arc and after deleting an existent arc. We focus 
on these problems because they arise in practice. 
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1   Introduction 
Network flow problems are a group of network 
optimization problems with widespread and diverse 
applications. The literature on network flow problems is 
extensive. Over the past 60 years researchers have made 
continuous improvements to algorithms for solving 
several classes of problems. From the late 1940s 
through the 1950s, researchers designed many of the 
fundamental algorithms for network flow, including 
methods for maximum flow and minimum cost flow 
problems. In the next decades, there are many research 
contributions concerning improving the computational 
complexity of network flow algorithms by using 
enhanced data structures, techniques of scaling the 
problem data etc.  
     The minimum cost flow problem, as well as one of 
its special cases which is the maximum flow problem, is 
one of the most fundamental problems in network flow 
theory and it was studied extensively. The importance 
of the minimum cost flow problem is also due to the 
fact that it arises in almost all industries, including 
agriculture, communications, defense, education, 
energy, health care, medicine, manufacturing, retailing 
and transportation. Indeed, minimum cost flow problem 
are pervasive in practice. 

 
 

2   Minimum Cost Flow Problem 
Let G = (N, A) be a directed graph, defined by a set N of 
n nodes and a set A of m arcs. Each arc (i, j)∈A has a 
capacity c(i, j) and a cost b(i, j). We associate with each 
node i∈N a number v(i) which indicates its supply or 
demand depending on whether v(i) > 0 or v(i) < 0. In 
the directed network G = (N, A, c, b, v), the minimum 

cost flow problem is to determine the flow f(i, j) on 
each arc (i, j)∈A which 
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A flow f satisfying the conditions (2) and (3) is 
referred to as a feasible flow. 

Let C denote the largest magnitude of any 
supply/demand or finite arc capacity, that is 
 

C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,        
c(i, j)<∞}) 

 
and let B denote the largest magnitude of any arc cost, 
that is 

 
B = max{b(i, j) | (i, j)∈A}. 

 
 
2.1 Solving Minimum Cost Flow Problem 

For solving a minimum cost flow problem, several 
algorithms were developed from the primal-dual 
algorithm proposed by Ford and Fulkerson in 1962 to 
the polynomial-time cycle-canceling algorithms 
described by Sokkalingam, Ahuja and Orlin in 2001. 
Most of these algorithms work on the residual network. 
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So, before describing them, we have to introduce some 
notions and some assumptions. 

The residual network G(f) = (N, A(f)) 
corresponding to a flow f is defined as follows. We 
replace each arc (i, j)∈A by two arcs (i, j) and (j, i). The 
arc (i, j) has the cost b(i, j) and the residual capacity   
r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the cost b(j, i) 
= -b(i, j) and the residual capacity r(j, i) = f(i, j). The 
residual network consists only of arcs with positive 
residual capacity. 
    We shall assume that the minimum cost flow 
problem satisfies the following assumptions: 
 
Assumption 1. The network is directed. 
     This assumption can be made without any loss of 
generality. In [1] it is shown that we can always fulfil 
this assumption by transforming any undirected 
network into a directed network. 
 
Assumption 2. All data (cost, supply/demand and 
capacity) are integral. 
     This assumption is not really restrictive in practice 
because computers work with rational numbers which 
we can convert into integer numbers by multiplying 
them by a suitably large number. 
 
Assumption 3. The network contains no directed 
negative cost cycle of infinite capacity. 
     If the network contains any such cycles, there are 
flows with arbitrarily small costs. 
 
Assumption 4. All arc costs are nonnegative. 
     This assumption imposes no loss of generality since 
the arc reversal transformation described in [1] converts 
a minimum cost flow problem with negative arc costs to 
one with nonnegative arc costs. This transformation can 
be done if the network contains no directed negative 
cost cycle of infinite capacity. 
 
Assumption 5. The supplies/demands at the nodes 
satisfy the condition 0)( =∑

∈Ni

iv and the minimum cost 

flow problem has a feasible solution. 
 
Assumption 6. The network contains an uncapacitated 
directed path (i.e. each arc in the path has infinite 
capacity) between every pair of nodes. 
     We impose this condition by adding artificial arcs (1, 
i) and (i, 1) for each i∈N and assigning a large cost and 
infinite capacity to each of these arcs. No such arc 
would appear in a minimum cost solution unless the 
problem contains no feasible solution without artificial 
arcs. 
 

     We associate a real number π(i) with each node i∈N. 
We refer to π(i) as the potential of node i. These node 
potentials are generalizations of the concept of distance 
labels. 
     For a given set of node potentials π, we define the 
reduced cost of an arc (i, j) as 

 
b

π (i, j) = b(i, j) – π(i) + π(j). 
 

     The reduced costs are applicable to the residual 
network as well as to the original network. 

 
Theorem 1. ([1]) (a) For any directed path P from node 
h to node k we have 
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(b) For any directed cycle W we have 
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Theorem 2. (Negative Cycle Optimality Conditions) 
([1]) A feasible solution f is an optimal solution of the 
minimum cost flow problem if and only if there is no 
negative cycle in the residual network G(f). 
 
Theorem 3. (Reduced Costs Optimality Conditions) 
([1]) A feasible solution f is an optimal solution of the 
minimum cost flow problem if and only if some set of 
node potentials π satisfy the following reduced cost 
optimality conditions: 

 
b

π(i, j) ≥ 0  for every arc (i, j) in the residual 
network G(f). 

 
Theorem 4.(Complementary Slackness Optimality 

Conditions) ([1]) A feasible solution f is an optimal 
solution of the minimum cost flow problem if and only 
if for some set of node potentials π, the reduced cost 
and flow values satisfy the following complementary 
slackness optimality conditions for every arc (i, j)∈A: 

 
If bπ(i, j) > 0, then f(i, j) = 0        (4) 
If 0 < f(i, j) < c(i, j), then bπ(i, j) =0        (5) 
If bπ(i, j) < 0, then f(i, j) = c(i, j)       (6) 
 

     A pseudoflow is a function f : A →R+  satisfying the 
only conditions (3). 
     For any pseudoflow f, we define the imbalance of 
node i as 

 
e(i) = v(i) + f(N, i) - f(i, N), for all i∈N. 
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     If e(i) > 0 for some node i, we refer to e(i) as the 
excess of node i; if e(i) < 0, we refer to -e(i) as the 
deficit of node i. If e(i) = 0 for some node i, we refer to 
node i as the balanced.  
     The residual network corresponding to a pseudoflow 
is defined in the same way that we define the residual 
network for a flow. 
     The optimality conditions can be extended for 
pseudoflows. A pseudoflow f* is optimal if there are 
some set of node potentials π such that the following 
reduced cost optimality conditions are satisfied: 

 
b

π(i, j) ≥ 0  for every arc (i, j) in the residual 
network G(f*). 

 
     We refer to a flow or a pseudoflow f as ε-optimal for 
some ε > 0 if for some node potentials π, the pair (f, π) 
satisfies the following ε-optimality conditions: 

 
If bπ(i, j) > ε, then f(i, j) = 0        (7) 
If - ε ≤ bπ(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j)   (8) 
If bπ(i, j) < -ε, then f(i, j) = c(i, j)       (9) 
 

     These conditions are relaxations of the (exact) 
complementary slackness optimality conditions (4) - (6) 
and they reduce to complementary slackness optimality 
conditions when ε = 0. 
    The algorithms for determining a minimum cost flow 
rely upon the optimality conditions stated by Theorems 
2, 3 and 4.  
    The basic algorithms for minimum cost flow can be 
divided into two classes: those that maintain feasible 
solutions and strive toward optimality and those that 
maintain infeasible solutions that satisfy optimality 
conditions and strive toward feasibility. Algorithms 
from the first class are: the cycle-canceling algorithm 
and the out-of-kilter algorithm. The cycle-canceling 
algorithm maintains a feasible flow at every iteration, 
augments flow along negative cycle in the residual 
network and terminates when there is no more negative 
cycle in the residual network, which means (from 
Theorem 2) that the flow is a minimum cost flow. The 
out-of-kilter algorithm maintains a feasible flow at 
every iteration and augments flow along shortest path in 
order to satisfy the optimality conditions. Algorithms 
from the second class are: the successive shortest path 
algorithm and primal-dual algorithm. The successive 
shortest path algorithm maintains a pseudoflow that 
satisfies the optimality conditions and augments flow 
along shortest path from excess nodes to deficit nodes in 
the residual network in order to convert the pseudoflow 
into an optimal flow. The primal-dual algorithm also 
maintains a pseudoflow that satisfies the optimality 

conditions and solves maximum flow problems in order 
to convert the pseudoflow into an optimal flow.  
     Starting from the basic algorithms for minimum cost 
flow, several polynomial-time algorithms were 
developed. Most of them were obtained by using the 
scaling technique. By capacity scaling, by cost scaling 
or by capacity and cost scaling, the following 
polynomial-time algorithms were developed: capacity 
scaling algorithm, cost scaling algorithm, double scaling 
algorithm, repeated capacity scaling algorithm and 
enhanced capacity scaling algorithm. 
     Another approach for obtaining polynomial-time 
algorithms is to select carefully the negative cycles in 
the cycle-canceling algorithm. 
 

3  Incremental Algorithms for the 

Minimum Cost Flow Problem  
In this section we describe incremental algorithms 
which update the solution of a minimum cost flow 
problem after inserting a new arc and after deleting an 
arc.  
 
3.1 Inserting a new arc 
Let G=(N, A, c, b, v) be a network in which we already 
determined a minimum cost flow f*. Let us insert a new 
arc (k, l) with capacity c(k, l) and cost b(k, l) into the 
network G, obtaining in this way the network G’= (N, 
A’, c’, b’, v), where: 
 A’ = A ∪ {(k, l)}  
 c’(i, j)= c(i, j), ∀(i j)∈A’ 

 b’(i, j)= b(i, j), ∀(i j)∈A’ 

  

     The new network G’ can contain a minimum cost 
flow f*’ with a smaller cost than f* – the minimum cost 
flow in G.  
      In the network G’ obtained by inserting a new arc 
(k, l) in G, it is possible that the optimality conditions 
are not fullfilled with respect to f

*
 which was a 

minimum cost flow in G. It is possible that the residual 
network G’(f*) contains a negative cycle, which means 
that the Negative cycle optimal conditions (from 
Theorem 2) are not satisfied. The incremental algorithm 
for determining a minimum cost flow in a network after 
inserting a new arc is based on these optimality 
conditions: 
 
Incremental Add Algorithm; 
Begin 

let  f  be a minimum cost flow in the network G; 
determine the new network G’ obtained from G by 

inserting a new arc (k, l); 
while the residual network G’(f) contains a 

negative cycle do begin 
 determine a negative cycle C in G’(f);  
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compute r(C) = min{r(i, j) | (i, j) ∈C}; 
send r(C) units of flow along the cycle C; 
update the residual network G’(f); 

end 
end. 

 
Theorem 5 The incremental add algorithm computes 

correctly a minimum cost flow in the network G’, 
obtained from G by inserting a new arc(k, l). 
 
Proof. The algorithm terminates when the residual 
network G’(f) does not contain any negative cycles. By 
Theorem 2, it follows that the flow f is a minimum cost 
flow. 
 
Theorem 6 The incremental add algorithm runs in 

O(nmc(k, l)) time. 
 
Proof. Because f , the flow with which the algorithm 
starts, is a minimum cost flow in the network G, it 
follows that the new network G’ obtained from G by 
inserting a new arc (k, l) could contain only negative 
cycles that contain the arc (k, l). At each iteration of the 
while loop, such a cycle C is determined in O(nm) time. 
Sending r(C) units of flow along the cycle C means 
reducing its residual capacity by r(C). Accordingly to 
Assumption 2, all data are integer. It follows that r(C) is 
also an integer number. Consequently, r(C) ≥ 1. Thus, 
after at most c(k, l) iterations, the network will contain 
no negative cycle. This implies that in O(nmc(k, l)) time  
the algorithm determines a minimum cost flow. 
 
 
3.2 Deleting an existent arc 
Let G=(N, A, c, b, v) be a network in which we already 
determined a minimum cost flow f*. Let (k, l) be an 
arbitrary arc of G. The arc (k, l) will be removed from 
the network G, obtaining in this way the network G’= 
(N, A’, c’, b’, v), where: 
 A’ = A \ {(k, l)}  
 c’(i, j)= c(i, j), ∀(i j)∈A’ 

 b’(i, j)= b(i, j), ∀(i j)∈A’ 

  

     Let f* be the minimum cost flow in G and let f*’ be 
the minimum cost flow in the network G’ obtained from 
G through deletion of the arc (k, l). The cost of the flow 
f
*
’ might by greater than the cost of f*. 

      In the network G’ obtained by deleting the arc (k, l) 
from G, it is possible that the optimality conditions are 
not fullfilled with respect to f* which was a minimum 
cost flow in G. More precisly, if in G the flow on the 
arc (k, l) was strictly positive, then in G’ f

* will no 
longer satisfy the mass balance constraints (2) for both 
of the nodes k and l. This means that, in G’, f* is not a 
flow, but a pseudoflow. We will transform this 

pseudoflow into a minimum cost flow, by sending flow 
from the node k to the node l in the network G’ using 
the following algorithm. 
 
Incremental Delete Algorithm; 
Begin 

let  f  be a minimum cost flow in the network G; 
compute a set of optimal node potentials π with 

respect to the minimum cost flow f; 
e(k) = f(k, l); 
e(l) = -f(k, l); 
determine the new network G’ obtained from G by 

deleting the arc (k, l); 
determine the residual network G’(f); 
while e(k) > 0 do begin 
 determine shortest path distances d from k to all 

other nodes in the residual network G’(f) with respect 
to the reduced costs;  

 let P be a shortest path from k to l; 
 π = π – d; 

r(P) = min(e(k), min{r(i, j) | (i, j) ∈P}); 
send r(P) units of flow along the path P; 
update the residual network G’(f) and the 

reduced costs; 
end 

end. 
 
Theorem 7 The incremental delete algorithm computes 

correctly a minimum cost flow in the network G’. 
obtained from G by deleting the arc(k, l). 
 
Proof. The algorithm terminates when e(k) = 0, which 
means that k is a balanced node. Because all nodes 
excepting k and l are balanced at the beginning of the 
algorithm and remain balanced during the algorithm, it 
follows that at the end of the algotrithm also l is a 
balanced node. This implies that f is a flow. By 
Theorem 3, it follows that the flow f is a minimum cost 
flow. 
 
Theorem 8 The incremental add algorithm runs in   

O(S(n, m)+f(k, l)S’(n, m)) time, where S(n, m) is the 
time needed to solve a shortest path problem with 

possible negative arc lengths and S’(n, m) is the time 

needed to solve a shortest path problem with 

nonnegative arc lengths. 
 
Proof. For determining a set of optimal potentials, a 
shortest path algorithm is applied in the residual 
network G(f).  This network contains no negative cycle 
because f is a minimum cost flow in the network G, 
which must satisfy the negative cycle optimality 
conditions from Thorem 2.  But it is not mandatory that 
all lengths in the residual network G(f) to be 
nonnegative. Thus, the time complexity for determining 

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 215



a set of optimal potentials is S(n, m). 
Because f is a flow, all the nodes in G are balanced. 

After deleting the arc (k, l), if the flow on this arc was 
strictly positive, we have an excess of f(k, l) units at 
node k and a deficit of f(k, l) units at node l.  
     At each iteration of the while loop, we solve a 
shortest path problem from node k to all the other nodes 
in the residual network G’(f) with respect to the reduced 
costs, which are nonnegative. Sending r(P) units of 
flow along the shortest path P from k to l means 
reducing the excess of k by r(P). Accordingly to 
Assumption 2, all data are integer. It follows that r(P) is 
also an integer number. Consequently, r(P) ≥ 1. Thus, 
after at most f(k, l) iterations, the excess of the node k 
will be reduced to 0, which implies that the deficits of 
the node l will be also 0 and all the nodes will be 
balanced. Equivalently, f will be a flow. Moreover, it 
will be a minimum cost flow. Consequently, the while 
loop will take O(f(k, l)S’(n, m)) time and the algorithm 
will run in  O(S(n, m)+f(k, l)S’(n, m)) time. 
 
 
 

4   Conclusion 
     In this paper, we studied a problem that arises in 
practice in several applications. We consider that we 
need to modify a network in which a minimum cost 
flow is already determined. A modification of the 
network means that a new arc is added or an exiting arc 
is removed. After such a modification of the network, 
we need to reestablish a minimum cost flow. For 
solving these problems, incremental algorithms are used 
because they save computational time.    
 

 

References: 

[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows. 
Theory, algorithms and applications, Prentice Hall, 
Inc., Englewood Cliffs, NJ, 1993. 

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, 

Algorithms and Applications, Springer-Verlag, 
London, 2001. 

[3] L. Ciupală, About Minimum Cost Flow Problem in 
Networks with Node Capacities, Proceedings of the 
13th WSEAS International Conference on 

Computers, 2009, pp. 67-70 
[4] L. Ciupală, A scaling out-of-kilter algorithm for 

minimum cost flow, Control and Cybernetics 
Vol.34, No.4, 2005, pp. 1169-1174. 

[5] P.T. Sokkalingam, R. Ahuja and J.Orlin, New 
Poynomial-Time Cycle-Canceling Algorithms for 
Minimum Cost Flows, 
http://web.mit.edu/jorlin/www/papers.html, 2001 

[6] K.D. Wayne, A polynomial Combinatorial 

Algorithm for Generalized Minimum Cost Flow, 
Math. Oper. Res., 445-459, 2002. 

 

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 216




