
Kamailio Syntax Generator and Configuration File Parser

MIROSLAV VOZNAK 1, LUKAS MACURA 2

1 VSB-Technical University of Ostrava
Department of Telecommunications

17. listopadu 15, 708 33 Ostrava
CZECH REPUBLIC

miroslav.voznak@vsb.cz

2 Silesian University of Opava
Faculty Of Bussines Administration

Univerzitni nam. 1934/3, 733 40 Karvina
CZECH REPUBLIC
macura@opf.slu.cz

Abstract: - This papers deals with simplification of Kamailo and OpenSIPS configuration. We developed a tool
that is able to generate complex Kamailio syntax. Kamailio is very powerful and flexible SIP server but its
config is difficult to understand and our tool brings option to simplify significantly the config file creation
process. Its important feature is the fact that the tool is independent on used modules because blocks in global
template are selected only if a particular given option is used. Our tool generates a Kamailio config file that is
customized for a particular scenario from a generic main routing script. The tool was verified in practice and
we expect our result to be tested by the community using and developing Kamailio. Theoretically, with small
modifications, this tool could generate configs for Asterisk and other SIP servers.

Key-Words: - SIP server, Kamailio, OpenSIPS, Syntax, Script generator.

1 Introduction
Security is of paramount importance for today’s
Internet. We try to find a solution enabling to secure
our applications and services. Security is also the
hot topic for IP telephony. These days, many
hackers and tools are sniffing over the Internet and
looking for potential loopholes. This is the reason
why we need to implement SIP proxies to hide
internal VoIP infrastructure and servers. The SIP
Express Router project is a well-known example of
SIP proxy implementation and has already been
forked into several independent projects, such as
openSER, openSIPS and Kamailio. The last
mentioned project is the youngest; we decided to
enhance its settings because we expect it to expand
widely in the academic environment. This article
describes a tool enabling to configure Kamailio. We
developed a generic tool that can be adopted as a
suitable solution for Kamailio SIP proxy
implementation. Kamailio is very powerful and
flexible but its config is difficult to understand.
Even more, one small change in the behavior can
evoke many changes in the configuration. We tried

to make the process easier for other users by
providing them our script and we consider this tool
to be very useful.

To enhance security, we need to hide our VoIP
infrastructure behind a SIP proxy. It means we have
to implement a SIP proxy on the top of our SIP
network and split internal and external traffic [1],
[2]. External communication with our network is
routed through the SIP proxy. There are more
solutions how to built a SIP proxy but if we intend
to implement an open-source solution, we need to
use a high-performance SIP proxy based on the SIP
Express Router project (SER) [3], [4]. SER was
developed by the Fraunhofer Institute for Open
Communication Systems in Berlin in 2002 and later
it was acquired by US-based Tekelec. The original
SER had been forked into several projects, the most
recent of which is Kamailio. This project was
established in 2008 when the former openSER
project was renamed Kamailio. Kamailio and SIP
Express Router teamed up to build the SIP Router
project and recently, Kamailio was awarded the Best

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 308

Open Source Networking Software 2009. The latest
major version v3 was released in 2010.

 We consider Kamailio the best open-source
solution for SIP proxy implementation and we
expect it to expand in the academic environment [5].
Our script generator is able to prepare a Kamailio
config template in accordance with user requests.
This customized configuration is produced by a
PHP script with Smarty engine.

2 Kamailio
Kamailio (former OpenSER) is an Open Source SIP
Server released under GPL, able to handle
thousands of call setups per second [6]. Kamailio
supports the following transport protocols: TCP,
UDP and secure TLS [7].

Fig. 1. Kamailio architecture.

This project offers many features such as SIMPLE
instant messaging and presence, ENUM, least cost
routing, load balancing, routing fail-over,
accounting, authentication and authorization against
MySQL, Postgres, Oracle, Radius, LDAP,
XMLRPC control interface and SNMP monitoring.
It can be used to build large VoIP platforms or to

scale up SIP-to-PSTN gateways, PBX systems or
media servers such FreeSWITCH, SIP Express
Media Server or Asterisk.
 Kamailio can play a role of proxy, registrar or
redirect server, or any combination thereof [8], [9].
Kamailio has a modular architecture, depicted on
figure 1. There are two main components: the core
providing the low-level functionalities, and the
modules ensuring additional functionalities. The
core includes a memory manager, config parser and
intepreter, SIP parser, transport layer memory and
locking manager, database API and management
interface API. The module interface provides access
to Kamilio modules.
 The config file is in fact a script and we need to
finetune many parameters to achieve a proper
interpretation and interaction with other required
technologies such as TLS, MySQL, LDAP or
ENUM [10]. The config file consists of many code
lines and many SIP dialogues have to be written
directly in it. It is really difficult to create some
“generic" config as the code needs to be modifiable
by everyone to allow enabling or disabling
individual features. The figure below describes the
simple part of a config example, a simple
modification of one module or feature can cause
many changes in the code. For example, in our code,
there is a function “is_uri_host_local()” which is a
part of one module. This function can be used many
times. But we wanted to make our config modules
and technology independent.

route[RESTDIALOG] {
 if (loose_route()) {
 if (is_method("BYE")) {
 setflag(1); setflag(3);
 }
 if ($tU =~ +420) {
 } else if ($tU =~ +421) {
 t_relay(sip:gw1:5060);
 } else if ($tU =~ +1) {
 t_relay(sip:gw2:5060);
 } else if ($tU =~ +47) {
 t_relay(sip:gw3:5060);
 }
 route(RELAY);
 exit;
}

Fig. 2. Part of original configuration.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 309

3 Used Technology
A Kamailio config file can become a nightmare for
many potential users. This is why we focused our
work on creating a tool which generates the
Kamailio config file based on input parameters. The
generated config should be editable so that certain
parameters could be modified after its creation.
Many users have been waiting for a similar tool and
many institutions do not use Kamailio because of
the complexity of its configuration file.

3.1 Features
When we designed our tool we found the following
features as important:

• Scalable. From smallest SIP proxy up to big
one with external databases.

• Secure. As much as possible, including
sanitize, ratelimit, header checks etc.

• Modular. Modules should have basic
dependencies, e.g. LDAP authentication
depends on general LDAP support.

• Unlimited. All needed options should not be
limited by a number of records.

The config file should support at least the
following modules: LDAP, ENUM, Authentication
(directly from kam3cfg or external databases),
Location, NAT and RTP proxy.

3.2 Programming Language
We had to choose the right technology
(programming language and libraries) for our tool.
We adopted PHP and Smarty because of their
support and portability. Even though there are other
powerful languages we wanted to use some
templating system and Smarty seemed to be ideal.
Many administrators know PHP, it is a well-known
language and in combination with Smarty we get a
really powerful tool. Smarty is a template engine for
PHP. More specifically, it facilitates a manageable
way to separate application logic and content from
its presentation. Smarty provides built-in and
custom functions to be used in your templates.
These functions are like the API of Smarty
templates. Even though smarty looks like a
templating system for HTML pages, it is powerful
for other config and text files too. Smarty supports
variables, loops, user functions and much more.
Figure 3 represents the same part of config as figure
2 but prepared using Smarty and PHP. Variables are
filled in PHP and the rest of work is performed by
Smarty. The code is clear and flexible.

route[RESTDIALOG] {
 if (loose_route()) {
 if (is_method("BYE")) {
 setflag(1); setflag(3);
 }
<foreach from=$local_prefixes item=prefix>
 if ($tU =~ <$prefix.prefix>) {
 t_relay(<$prefix.gw>);
 } else {
<foreachelse>
 if (0) {
</foreach>

Fig. 3. Part of configuration with Smarty.

4 Results
We developed a tool generating Kamailio config
templates based on kam3cfg script and supporting
SIP proxy functions and local call routing. This tool
is able to receive arguments also from files and to
create config in accordance with requests. Its
important feature is the fact that the tool is
independent on used modules because blocks in
global template are selected only if a particular
given option is used. Our tool generates a Kamailio
config file that is customized for a particular
scenario from a generic main routing script. For
debug purposes, we have created macro xlog which
will log all messages with the same prefix and
suffix. Anybody can change suffix and prefix to fit
his needs. In common situation, this would be very
complex because there can be many xlog lines in a
script. Even some macros are modified
automatically based on modules used. The tool has
many parameters and explaining all of them is
beyond the scope of this document.

./kam3cfg.php \
 --local-ips 192.168.1.0/24^192.168.3.0/24 \
 --local-domains local.edu^sip.local.edu \
 --local-prefixes '123/556/sip:gw:5060' \
 --force-rtp \
 --listen \
 udp:192.168.1.1:5060^tls:192.168.1.1:5061

Fig. 4. Simple SBC forcing as RTP proxy.

Only a small number of cases can be seen in figures
4, 5 and 6. Some parameters can have multiple
values. Unfortunately, Console_Getopt module
cannot read the same multiple parameters, so we use
delimiter ", *" to split it into multiple values.
Moreover, all multiple values can be loaded from a

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 310

file provided it starts with "@". If you want to see
all parameters, run “./kam3cfg.php –help”.

./kam3cfg.php \
 --local-domains @domains.txt \
 --local-prefixes @prefixes.txt \
 --with-nat \
 --listen udp:192.168.1.1:5060

Fig. 5. Simple SBC with NAT traversal.

./kam3cfg.php \
 --local-domains local.edu^sip.local.edu \
 --with-enum \
 --enum-suffixes e164.localnet.edu^e164.arpa. \
 --listen udp:192.168.1.1:5060

Fig. 6. Simple SBC with ENUM routing.

Xlog suffix and prefix are configurable. Almost
any virtual variable of Kamailio can be used. All
prefixes will be taken from prefixes.txt and all
domains will be read from domains.txt. The file
format is one value per line. This is very useful if
we have many prefixes and domains. It is important
to set local domains, mostly there is only one
domain but a multidomain config can be created
too. Local prefix, in figure 4, can be served directly
by Kamailio or served by an external gateway. We
optimize some functions in case a request comes
from local addresses therefore we set local IPs. This
is used for „force-rtp“ option too. This means that
when we set „force-rtp“ to 1, all requests from
„local-ips“ are proxied by the RTP proxy. Our
Kamailio, in figure 4, is listening on specified UDP
port 5060 and TLS port 5061. Where ENUM
support is enabled, all non-local requests are
checked against ENUM database. Even more, local
routing policy can be forced to local ENUM prefix.
We limit requests by source IP and requests by
methods because there are too many scenarios
which we cannot predict; we use three predefined
modes for ratelimit: small, medium and large site.
Our script can use an external LDAP database for
authentication, AVP load and local aliases. During
each call, a LDAP server is asked to retrieve data.

The big advantage of our script is that it can
automatically insert debug messages into the
generated script. There are four levels of debug (0-
4). We standardized the log format in all messages
so that it is easy to find all lines belonging to a
single call. A log line can be customized by „xlog-
suffix“ and „xlog-prefix“. In a standard kamailio

config, this would be more complicated because the
log line needs to be changed completely in many
places in the script file.

More complex scenarios use external databases,
such a situation is depicted on figure 7 where local
domains „local.edu“ and „sip.local.edu“ are used.
NAT support and LDAP server are enabled. The
destination URI is checked against LDAP, therefore
an extension should exist in LDAP (achieved by
ldapaliases-uri filter).. This option is useful in a
multiPBX environment where the central config is
at a LDAP server. Even more, we can map LDAP
attributes to avps (ldap-attrmap).

./kam3cfg.php \
 --local-domains local.edu^sip.local.edu \
 --with-nat \
 --with-ldap \
 --with-ldapaliases \
 --ldapauth-uri
\'ldap://ldap/o=su?cn,pwd?sub?(|(cn=$au)(numb
er=$fU))' \
 --ldapaliases-uri
\'ldap://ldap/o=su?cn,number?sub?(number=$f
U)' \
 --ldap-attrmap
\'cn=s:username^pwd=s:password^name=s:disp
layname' \
 --enum-suffixes
\e164.localnet.edu^e164.arpa^nrenum.net^e164
.org \
 --listen
udp:192.168.1.1:5060^tls:192.168.1.1:5061 \
 --with-tls \
 --tls-key '/etc/kamailio/key.pem' \
 --tls-certificate '/etc/kamailio/cert.pem'

Fig. 7. More complex example.

5 Conclusion
We achieved to implement most of features
required. Nevertheless, there is still potential to
improve our work, especially in a global template
file. Our tool was tested in practice at the Silesian
university, and we expect other members of the
CESNET association to use it. We discovered that
there is a limit in Kamailio script parsing. If a script
is longer and more complex, Kamailio fails and
returns "out of memory" message. This situation
happens with scenarios where we had in use 10.000

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 311

gateways loaded from a file. We suppose that such a
value is not achieved in a real setup and there is a
possibility to solve it using routing from an external
database. We will be enhancing this feature in future
versions. Our tool is available on Internet [11] and
the best way to download it is to follow SVN
instructions on the page. We expect our tool to be
tested by the community using and developing
Kamailio and we would appreciate any feedback to
further improve our work and enable releasing next
version. We intend to create a web-based frontend
for the tool and enable everyone using the config
generator online. We will be working on it but we
need to receive feedback on the current version.
Theoretically, with small modifications, this tool
could generate configs for Asterisk.

Acknowledgement
This work has been supported by the Ministry of
Education of the Czech Republic within the project
LM2010005.

References:
[1] M. Voznak and F. Rezac, Threats to voice over

IP communications systems, WSEAS
Transactions on Computers, Volume 9, Issue
11, November 2010, Pages 1348-1358.

[2] D. Sisalem, J. Floroiu, J. Kuthan, U. Abend and
H. Schulzrinne, SIP Security, Wiley, 350p.,
2009.

[3] A. Pelinescu, J. Janak and J. Kuthan, SIP
Express Router (SER) , In IEEE NETWORK,
vol. 17, issue 4, p.9, 2003.

[4] F. Goncalves, Building Telephony Systems with
OpenSIPS 1.6, Packt Publishing, 274p., 2010.

[5] R. Chochelinski and I. Baronak, Private
Telecommunication Network Based on NGN,
In 32nd International Conference on
Telecommunications and Signal Processing,
2009, Dunakiliti, HUNGARY, pp. 162-167

[6] M. Voznak and J. Rozhon, SIP Infrastructure
Performance Testing, In 9th International
Conference on Telecommunications an
Informatics, Catania, Italy, 2010, pp. 153-158.

[7] M. Voznak,Speech bandwith requirements in
IPsec and TLS environment, In 13th WSEAS
International Conference on Computers, 2009
Rhodes, GREECE, 2009, pp. 217-220.

[8] J. Bates, C. Gallon, M. Bocci, S. Walker and T.
Taylor, Converged Multimedia Networks,
Wiley, 364 p., 2006.

[9] I. Pravda and J. Vodrazka, Voice quality
planning for NGN including mobile networks,
12th International Conference on Personal
Wireless Communications (PWC 2007), 2007,
Prague.

[10] P. Falstrom and M. Mealling, The E.164 to
Uniform Resource Identifiers (URI) Dynamic
Delegation Discovery System (DDDS)
Application (ENUM), IETF, Request for
Comments: 2915, April 2004

[11] L. Macura, Kam3cfg, 2010, Available online
URL http://open.phonyx.eu/wiki/kam3cfg.

[12] D. Komosny and I. Herman, Voice/data
integration in municipal transport management,
WSEAS Transactions and Communications,
Volume 4, Issue 1, January 2005, Pages 20-23.

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 312

