

Analysis of Parallel Multicore Performance on Sobel Edge Detector

NOOR ELAIZA ABDUL KHALID, SITI ARPAH AHMAD, NOORHAYATI MOHAMED NOOR,

AHMAD FIRDAUS AHMAD FADZIL, MOHD NASIR TAIB

Faculty of Computer Science and Mathematics

Faculty of Electrical and Electronic Engineering

University Technology MARA

Shah Alam, Selangor

MALAYSIA

elaiza@tmsk.uitm.edu.my,arpah@tmsk.uitm.edu.my,noorhayati@tmsk.uitm.edu.my,ahmadfirdausfad

zil@gmail.com,dr.nasir@ieee.org

Abstract: - This paper presents the parallel multicore Sobel edge algorithm which parallelizes the traditional

sequential Sobel edge detection algorithm on a parallel multicore platform. The current advancement of

multicore architecture can be utilized by the parallel programming paradigm when focuses on the thread

operations. The CPUs/cores provide more processing resource to be used but often not fully utilized to its

utmost potential. In this paper, the performance of multicore architectures, combined with the parallel

communication software named Message Passing Interface (MPI), on the application of Sobel Edge detector

algorithm is implemented on various thread processing is performed and analyzed. The test is being done on ten

different images with each image tested in the varying size of 1Kx1K, 2Kx2K, and 3Kx3K pixels. The

significant performance increment is discovered due to the fact that the CPU is being fully utilized. This proves

that the current hardware is far more underutilized than one would expect.

Key-Words: - Parallel Programming, Sobel Edge Detection, Message Passing Interface (MPI), Multicore.

1 Introduction
Parallel programming or parallel computing is an

alternative towards the traditional serial computing

which instead of only allowing a single instruction

to be executed one at a time, it simultaneously

execute multiple instruction at once using multiple

computational resources [1]. High-end computing is

one area that sought tremendous amount of

processing powers which most computer system

having difficulties to accomplish. This is where

parallel programming plays it role. From solving

complex mathematical equations to assisting

scientist in research, parallel programming has

proven the world it’s worth [2].

The advancement of processor technology had

produces the multicore computer thus creates a

challeges to software engineering communities in

utlizing it. One of the way is by applying parallel

programming on the platform. Utlizing the multicore

by parallel programming is a challenge due to its

complex interacting facet of performance based on

memory consumption, processor utilization and

synchronization and communication costs [2].

Trade-off have to be made among these facets to

achieve the goal of better performance and

utilization. But in implementing better parallel

solution certain conceptual and programming

challenges have to be investigated further.

Image processing is one of the areas that sought

tremendous processing prowess. The image that

required to be processed is often very large but the

processing needs to be fast [3]. When such cases

happen, the most imminent solution is by adapting

for a new and advance hardware that is capable to

accommodate the processes, without realizing

whether or not the current hardware is fully utilized

to its utmost potential [4].

Bearing these issues in mind, the better solution

towards solving this problem is by fully utilizing

the current multicores hardware, to fulfill its utmost

potential and subsequently creating a system that is

able to accommodate the massive processing

requirement [5]. One way to exploit the multicore

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 313

mailto:elaiza@tmsk.uitm.edu.my,arpah@tmsk.uitm.edu.my,noorhayati@tmsk.uitm.edu.my,ahmadfirdausfadzil@gmail.com,dr.nasir@ieee.org
mailto:elaiza@tmsk.uitm.edu.my,arpah@tmsk.uitm.edu.my,noorhayati@tmsk.uitm.edu.my,ahmadfirdausfadzil@gmail.com,dr.nasir@ieee.org

architecture is by parallelization the operation of

multiple threads on different cores using parallel

communication software named MPI and examined

the performance.

This paper aims to analyze the performance of

multicore architecture on the application of Sobel

Edge detector implemented on various thread

processing via the parallel programming paradigm.

This paper had been organizes as follows. In section

2, the methodology is described in detail. Section 3

elaborates the results and analysis of the finding.

Finally section 4 is the conclusion.

2 Material and Method

2.1 Material
Ten images of size 3Kx3K pixels are used as the

initial images. These images are then resized using

imaging tools into smaller dimensions of 1Kx1K

and 2Kx2K pixels. The images are colored and

roughly are scenery, animals and part of car images.

The sizes of the imagers are modified to the

specified sizes using Adobe Photoshop software.

2.2 Sobel Edge detector
The edge detection algorithm named Sobel, that had

been used in this work is a well known and

established algorithm for detecting an edge in an

image [6]. The algorithm aims to identify points in

a digital image at which the image brightness

changes sharply or more formally has

discontinuities [6]. This algorithm has significant

parallelism since it operates at pixel by pixel level.

Edge detection is one of the central tasks of the

lower levels of image processing which exhibit the

need to program in parallel [7]. Sobel edge detector

is based on the mathematical equation as given

below:

 (1)

where x and y is the convolution kernels that is in a

form of 3x3 mask. Figure 1 illustrates the

convolution kernels that usually used for Sobel

operator [5].

 0° 90°

Figure 1: Convolution Kernel

Despite the simple appearance of the formula which

looks fairly simple to calculate, in terms of

programming it involves a huge number of

iterations within the program in to finish the

operation.

2.2 Parallel Architecture and Software

Design

Parallel manner is more complicated. There are two

ways of parallelization, data or task parallelism.

This work used data parallelism as a digital image

can be split into several parts to be processed by two

processor’s of duo and quad core.

2.1.2 Hardware and software
The multicore processors specification used in this

work are duo core and quad core and is described in

Table 1.

Table 1: Hardware Used
Component Description

of Processor

Cores
2 (Duo) 4 (Quad)

Processor
Intel® Core™

Duo E7500

Intel® Xeon®

E5420

RAM
3.46 GB DDR-2

RAM

3.46 GB DDR-2

RAM

The software required to perform the parallel

process are Windows XP, Microsoft visual studio,.

Net Framework. MPICH 2 parallel communication

software and CPU Monitoring software for

performance measure as shown in Figure 2.

Figure 2: Sofware Installation Flow

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 314

The parallel communication software used in this

project is called the message passing interface or

MPI. MPICH 2 is the software that enables message

passing in parallel system.

 The main role that the message passing

interface (MPI) plays in this project is to execute

programs in multiple threads, thus enabling all the

central processing unit (CPU) to utilize each and

every single core in order to accommodate the

multiple threads execution. In this paper, we used 2

threads, 4 threads, 6 threads, 8 threads and 10

threads.

2.1.2 Data Parallelization Process

There are two ways of parallelization, data or task

parallelism. Data parallelism looks to be the

simplest and feasible solution in this case, as a

digital image can be split into several parts to be

processed by different processor’s core. The

sequential versus parallel process design are

depicted in the figure 2.

Figure 3: Data parallelization Model

The data parallelism is achieved by splitting a

single image into 2,4,6,8 or 10 parts which

correspond to 2,4,6,8 and 10 threads used. Example

of image splitting into two part is depicted in Figure

4. After splitting the image, both parts of the image

will undergo Sobel edge detector algorithm. Then

each of the partition is executed in individual

threads on the different core. Figure 3 illustrates

how the split image looks after the Sobel edge

detection algorithm is applied and how the parts are

stitched back together upon the completion of the

operation

Splitting an Image

Sobel Image Edge Detector

Filter and Stitch Operation

Figure 4: Data splitting and stitching architecture

.

2.1.3 Performance Evaluation Method

The evaluation of the parallel execution

performance is measured with respect to speedup,

performance improvement and efficiency with

reference to the time taken for both sequential and

parallel processing [3].

Speedup measures how much a parallel

algorithm is faster than a corresponding

sequential algorithm. The speedup calculation is

based on Equation 1;

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 315

 (1)

The performance improvement depicts

measurements relative improvement that the parallel

system has over the sequential process. This

performance is measured based on Equation 2;

 (2)

Efficiency is used to estimate how well-utilized the

processors are in solving the problem, compared to

how much effort is wasted in communication and

synchronization. As for efficiency, the calculation is

based on Equation 3;

 (3)

3 Results and Discussion

The results discussion are divided into the

performance of sequential process and parallel

processes in multicore processor

3.2 Sequential processing Speed

Figure 2.1 shows the time taken to process the ten

images of 1Kx1K, 2Kx2K and 3Kx 3K .

Table 2: Sequential Result on Intel XEON E5420

and Intel CORE 2 Duo E7500

1Kx1K 2Kx2K 3Kx3K

 Quad

Core

Duo

Core

Quad

Core

Duo

Core

Quad

Core

Duo

Core

1 3.52 3.20 13.39 11.94 29.05 25.98

2 3.44 3.10 13.14 11.70 29.02 25.87

3 3.42 3.06 13.03 11.63 28.53 25.44

4 3.39 3.04 12.93 11.56 28.12 25.26

5 3.51 3.17 13.25 11.85 28.91 25.79

6 3.46 3.10 13.19 11.76 29.25 26.17

7 3.48 3.12 13.34 11.92 29.42 26.36

8 3.48 3.11 13.29 11.88 29.46 26.29

9 3.39 3.05 12.92 11.66 28.78 25.78

10 3.54 3.14 13.48 12.07 30.07 26.68

As expected the larger the image the higher the

processing time. It is found that the quad core

require more time to process Sobel edge detector

compared to the Duo core. This could be explained

by the overhead time needed to manage the duo

core is lesser than the Quad core.

3.1 Parallel Results

The Parallel results are discussed based on speedup,

performance improvements, efficiency and CPU

Utilization Factor Using the Algorithm in

performing the algorithm.

3.1.1 Speedup

The speedup results between the utilization of 2, 4,

6, 8 and 10 thread between Quad and Duo

CPU/core can be observed in Figure 6. There

speedup values for almost all the images processed

with duo core are close to two which indicates

reasonably good performance whereas the quad

core shows the speedup values of around 3.5 thus

showing slightly less efficient use of all the

processors. Two threads process work quite

efficiently with the Duo core which reduces slightly

with the increased in threads used. However as the

number of thread increases, the more efficient the

Quad core performance with the exception of ten

thread. Thus this indicates that two thread is best

used for Duo core and eight threads are suitable for

Quad core.

Figure 6: Histogram of Comparison for Speedup of

Different threads

3.1.2. Performance improvement Index

The performance improvement index discusses the

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 316

performance of multicore and multithreading

process. The histogram of the performance

improvement index of Duo and Quad core are

depicted in Figure 7. The performance significantly

improved for duo core from image with 1Kx1K to

2KX2K, however it does not indicate much

improvement between the 2Kx2K and 3Kx3K. It is

also found that there is an average of about 0.45 for

the duo cluster compared to the quad core process

which is mostly above 0.70 for images of 2Kx2k

and 3Kx3K. The performance of the Duo core

reduces for all case as the number of thread

increases however the performance increases

steadily with the exception of 10 threads for the

Quad core. This indicates the best performance for

Duo core is two threads and while eight thread is

best used for Quad core compared to the sequential

process.

Figure 7: Histogram of Comparison for

Performance of Different threads

3.1.3 Efficiency

 Efficency of utilization of the processors are shown

in Figure 8. The results shows higher efficency for

Duo core compared to the Quad core. The larger the

number of thread, the lower the efficiency. The

reduction is much more significant for the Duo

core. Efficiency is highest with the two thread for

both Duo and Quad core This is true for all the

image sizes. But the larger the image the higher the

efficiency.

Figure 8: Histogram of Comparison for Efficiency

of Different threads

This research is about utilizing used PC in

organization by demonstrating its usability in

parallel implementation of image processing

algorithm. Sobel edge detection algorithm had been

successfully implemented in sequential and parallel

manner. Basically both duo and quad have similar

trends for all the method of performance such as

speedup, performance improvement and the

efficiency. Generally the performance measurement

methods increases from 1Kx1K to 2Kx2K but

reduces at 3Kx3K images. However, the parallel

execution remains to outperform the sequential

execution as indicated by the positive measurement

for speedup and performance improvement but not

in terms of efficiency.

3..1.4 CPU Utilization Factor Using the

Algorithm

The main objective of this paper is to fully utilize

the CPU to its utmost potential. Therefore, CPU

utilization needs to be monitored via the task

manager to determine whether or not it met the

criteria intended. Table 3 describes the CPU

utilization factor when executing the sequential

algorithm on both CPUs respectively.

Table 3: Sequential CPU Utilization Percentage

Processor e CPU Utilization

Quad Core 15%

Duo Core 50%

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 317

As suggested by the result above, the CPU

utilization factor is nowhere near its full capabilities.

The first CPU wasted 85% of the CPU’s full

capabilities while the second CPU wasted around

50%. Table 4 describes the CPU utilization

percentage for each CPU.

Table 4: Parallel CPU Utilization Percentage

Processor CPU Utilization

2 trds 4 trds 6 thrs 8 trds

Quad Core 25% 50% 75% 100%

Duo Core 50% 100% 100% 100%

The CPU utilization factor in a way, compliment

the performance result earlier. The efficiency of the

first processor to execute 8 concurrent threads at the

same time is evidence as the CPU is only fully

utilized when executing at this thread setup.

The reason why the second processor failed to

emulate the first processor’s result is because it

already fully utilized the CPU when executing only

2 threads. More threads won’t make thing any faster

as the resource is already fully utilized.

Conclusion and recommendation

It is certainly evidence that parallel multicore Sobel

algorithm improves the performance of the

traditional sequential Sobel algorithm by fully

utilize the CPU to its utmost potential. Parallel

processing performs better than sequential

processing in terms of speed but with a trade off

with the performance and the efficiency of utilizing

the processors individually. However with the

increasing amount of data sizes to be process,

multicore provides a welcome alternative for fast

processing. This research provide a gateway to

identify suitable methods to process large data fast.

This initial research can invoke the use of multicore

in clustering environment. It also provides some

knowledge in balancing the utilization of single core

and multicore processors in heterogenous cluster

environment. This work is not limited to image

processing methods only

Acknowledgment

The authors acknowledge with gratitude to Research

Management Institute (RMI), UiTM and financial

support from E-Science Fund (06-01-01-SF0306)

from the Ministry of Science, Technology and

Innovation (MOSTI),Malaysia.

References:

[1] B. Barney, Introduction to Parallel

Computing. Retrieved from Lawrence

Livermore National Laboratory:

https://computing.llnl.gov/tutorials/parallel_c

omp/, 2010

[2] C .Lin and L.Snyder,”Principles of Parallel

programming”, Pearson International, 2009

[3] N. Haron, R. Ami, I. A.Aziz, L. T. Jung and

S. R.. Shukri, Parallelization of Edge

Detection Algorithm using MPI on Beowulf

Cluster. Innovations in Computing Sciences

and Software Engineering . 2010

[4] C. Szydlowski, Multithreaded Technology &

Multicore Processors. Dr. Dobb’s Journal,

May 2005.

[5] S.Akhter and J.Roberts, Multi-Core

Programming: Increasing Performance

through Software Multi-threading, 2006

[6] R.C. Gonzales and R.E Woods,” Digital

Image Processing”, Pearson Education

International, 2002.

[7] B.Allen, M.Wilkinson Parallel Programming,

Techniques and Applications Using

Networked Workstations and Parallel

Computers, Pearson,2005.

[8] Z.Guo,W.Xu and Z. Chai, Image Edge

Detection Based on FPGA. 2010 Ninth

International Symposium on Distributed

Computing and Applications to Business,

Engineering and Science . 2010

[9] R. L.Rosas, A. D.Luca and F. B. Santillan ().

SIMD Architecture for Image Segmentation

using Sobel Operators Implemented in FPGA

Technology. 2nd International Conference on

Electrical and Electronics Engineering

(ICEEE) and XI Conference on Electrical

Engineering (CIE 2005), 2005

[10] C.Szydlowski, Multithreaded Technology &

Multicore Processors. Dr. Dobb’s Journal,

May 2005 .

Recent Researches in Computer Science

ISBN: 978-1-61804-019-0 318

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

