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Abstract: - This paper presents a problem of transportation planning that is able to achieve higher performance 

by means of genetic optimization [2]. The paper introduces a model for simulating and evaluating the costs of a 

transportation system. It also describes a new way to use genetic optimization for a problem that requires 

adaptive chromosome length [1].  
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1 Introduction 
The paper presents a problem of transportation 

planning. It is similar in nature to the classical 

traveling salesman problem with new elements that 

add specific costs frequently found in industry. 

Section 2 introduces a simulation model that allows 

evaluating the costs of a specific transportation 

route. This model can serve as fitness function for 

the genetic optimization solver.  Section 3 presents 

how the chromosomes are coded, how cross-over 

and mutation is performed and why an adaptive 

chromosome length is needed for this application. 

Section 4 presents the results of the optimization.  

 

2 The Simulation Model 
The model is developed in MATLAB and simulates 

the distribution of goods between several factories. 

The factories are served by one truck which has to 

transport products between them. The factories are 

distributed in a two dimensional space so distances 

between them can be computed. The coordinates of 

each factory can either be selected by the user or be 

randomly generated by the computer. Given a set of 

products NkPk ...1, = , each factory must convert 

an input product ki PP ∈  into an output product 

jiPP kj ≠∈ ,  at each simulation time step. The 

truck must transport products between factories. 

Distances are converted into integers so at each 

simulation time step the truck covers one distance 

unit. Figure 1 illustrates the simulation flow an 

individual factory for one simulation time step. 

If the truck is in the factory it is searched for the 

demanded product iP . Note that each factory accepts 

only one type of product. If product iP  is found it is 

transferred (truck unload) from the truck into the 

factory input product stock inputS . If the product iP   

is not found in the truck the input stock remains 

unchanged. Next, the entire factory output product 

stock outputS  is transferred into the truck (truck 

load). For this application the capacity of the truck 

is not limited. At the same time with the truck 

load/unload activity there is also factory production 

activity. Production occurs only if the input product 

stock is not empty. It is done by transferring an item 

from inputS  to outputS  . This equivalent to converting 

one item of product iP  into one item of product jP . 

Last, the costs are computed. Each factory has two 

types of costs: storage cost and production halt cost. 

The storage cost sC  is proportional to the output 

product stock outputS . This means that any factory 

would rather not store its output products jP  and 

will produce high cost if rarely visited by a truck. 

The production halt cost PHC  is computed with 

formula (1), where HSL is the halt safety level and 

kC  is a scaling constant. This cost comes from the 

idea that any situation when the production halts due 

to input stock insufficiency should be penalized. 
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Normally, this cost should not depend on the stock 

level because production halts only when stock is 
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zero. However, it is often useful to also penalize any 

situation that potentially leads to a production halt. 

If the input stock level inputS  is above the halt safety 

level HSL the cost C is zero. If stock level is below 

HSL, the cost linearly increases with gradient
HSL

Ck . 

If production halts, the maximum penalty is given 

( kPH CC = ). 

 

Figure 1. Factory Model Simulation Flow 

 
Figure 2 illustrates the simulation flow for a truck 

model during one simulation time step. If the truck 

is inside a factory it waits for the factory to perform 

the load/unload functions as presented in figure 1. 

Next, the truck starts toward the next destination as 

instructed by the genetic optimization solver. The 

distance to the next destination is also computed at 

this point.  

If the truck is not inside a factory (is traveling) it 

decrements the remaining distance and computes the 

traveling costs. Travel costs TC  are constant per 

unit of distance. Note that figures 1 and 2 present 

the steps performed during a single simulation time 

step. The variables that are updated during these 

steps (factory stocks, truck stock, distances to travel, 

and costs) are global simulation state variables that 

store their values from one simulation time step to 

the next. An overall cost is computed as an 

accumulation of all costs during the simulation. This 

cost will serve as performance criteria to the genetic 

optimization solver. 

 

 

Figure 2. Truck Model Simulation Flow 

 

3 Applying Genetic Optimization 
Section 2 introduced a MATLAB routine that 

implements the model of a transportation problem. 

Because the routine estimates the general cost of a 

proposed route it can be used as fitness function for 

a genetic optimization tool. The results presented in 

this paper are obtained by using the MATLAB 

genetic optimization toolbox.  

 

3.1. Chromosome Encoding 
Each chromosome is represented by a string of 

positive integers representing a specific truck route. 

Each integer in the string ranges from 1 to N, where 

N is the number of factories.  Figure 3 presents an 

example where the truck route is:  factory 3, factory 

1, factory 5 and so on. 

 

 

   

Figure 3. Chromosome Encoding 

 

The MATLAB genetic optimization solver only 

accepts chromosomes of types ‘double’ and ‘bit-

strings’.  For these two data types all functions that 

are necessary to perform the optimization are 

provided by the toolbox. An additional type 

‘custom’ is also accepted by the solver. This type 

allows using any encoding for the chromosomes. 

However, when the ‘custom’ data-type is selected, 

the user has to provide the following external 

functions: “create initial population”, “create 

crossover” and “create mutation”. These three 

functions, and also the fitness function have to be 
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compatible with the new ‘custom’ data-type. For 

this paper, because the chromosome contains 

positive integers from a bounded interval and not 

doubles or bits, the ‘custom’ data-type is selected. 

- The “create initial population” function 

generates a cell array P that contains several 

vectors, each one corresponding to a single 

individual of the population. If for example N=10 

factories and the chromosome length L = 30 one 

individual will be a vector of 30 elements containing 

a concatenation of three random permutations of 

numbers 1 to 10. This is equivalent of the truck 

passing three times via each factory. The first 

element in the vector (the first factory) can be 

imposed by the program allowing the user to have a 

pre-determined start point for the truck route. This is 

useful because it allows several optimizations to be 

performed serially, with each one starting where the 

previous one left off.  

- The “create cross over” function operates on a 

single parent and creates a single child. The cross-

over copies the chromosome of the parent to the 

child but reverses the order of the string between 

two indexes that are randomly generated. Figure 4 

illustrates a cross-over operation.  

 
Figure 4. Cross-over operation  

 

- The “create mutation” function also generates 

one child from one parent. It does this by inter-

changing two entries of the parent chromosome. The 

entries are chosen randomly. Figure 5 illustrates a 

mutation operation.   

 

3.2. Consistency Problem. Uniform Simulation 

Time versus Uniform Chromosome Length. 

The simulating routine presented in section 2 states 

that a truck will cover one unit of distance for every 

simulation time-step. This means that for two 

distinct individuals (same chromosome length) the 

simulation time will vary [1] since two different 

routes do not have the same overall length. 

If the problem would only take into account 

truck costs it would be reduced to the traveling 

salesman problem. In that case, different simulation 

durations, thus different route lengths would not be 

a problem since finding the shorter route is the only 

performance criteria. 

 

 
Figure 5. Mutation Operation. 

 

In our case, because production halt costs are 

taken into account, the shorter routes are not always 

better since they might poorly satisfy the product 

match between factories (causing significant halt 

costs).  Therefore, a longer route that suits well the 

factory’s demands is likely to be better. 

Unfortunately, comparing the halt cost of a route 

that takes more time with the halt cost of a route that 

takes less time is not fair leading to an in-

consistency problem. In order for the comparison to 

be relevant the halt cost needs to have accumulated 

over the same amount of time and so the simulation 

durations for two routes have to be the same. This 

raises an issue because having equal simulation 

durations means unequal chromosome lengths.   

In order to fix this problem the fitness function 

(section 2) was modified such that it always keep a 

record of the smallest simulation duration 

corresponding to the current population. When 

evaluating a new route, the simulator dynamically 

compares the current simulation time with the 

smallest simulation duration recorded until then. If 

that time is reached the simulation ends without 

reaching all the destinations of the route. This is 

equivalent to having a non-uniform chromosome 

length but without explicitly specifying it to the 

genetic solver (the rest of the chromosome is still 

there but is not used).  This concept is illustrated in 

figure 6. All routes have six destinations. The 

destinations that lie in wider rectangles are those 

that the truck needs more time to reach. It can be 

noticed that all scores are evaluated after the same 

amount of time, assuring that halt costs are fairly 

compared.  

Now it is interesting to see if this modification 

has not lead to the same problem when comparing 

the truck costs. Since scores are evaluated after the 

same amount of time truck costs will be the same 

for all routes.  Has this destroyed the merit of 

shorter routes? The advantage of having a shorter 

route is hidden in the fact that more destinations are 

visited in the same amount of time. If these 
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destinations match the factory’s product demand it 

will represent a significant advantage.    

 

 
Figure 6. Adjusting the chromosome length 

 

4 Results 
The genetic optimization uses the following 

parameters: population size = 100 individuals, elite 

children = 2 individuals, cross-over children = 80% 

of population (except the elite children), mutation 

children = 20% of population, maximum number of 

generations = 100. Figure 6 illustrates the evolution 

of the overall cost obtained by the best individual in 

the population (best route for each generation). The 

trace does not illustrate the absolute value of the 

cost. It presents a relative cost computed as the ratio 

of the general cost and the simulation duration. As 

the population evolves, the simulation duration 

adapts (it is always equal to the smallest simulation 

duration of the current population set). Because the 

simulation duration changes the absolute value of 

the general cost does not reflect the improvement of 

the algorithm (mostly because the simulation 

duration tends to increase as short routes are rarely 

better than long routes). In turn, we use a relative 

cost that reflects the average performance per unit of 

simulated time. 

Normally, a genetic algorithm that uses at least 

one elite child should have a monotonous cost 

function over the generations. This is because 

passing elite children from one generation to the 

next guarantees that the best performance of the 

next generation will be at least just as good as the 

previous one. It can be noticed that this is not the 

case for the trace in figure 7. This is the effect of 

having a chromosome of changing size. For 

example, one individual is considered to be elite 

because it has the best cost. However, most often, 

the chromosome of the individual does not 

participate with all its vector entries to the 

simulation (as explained in section 3). 

 
Figure 7. Cost Improvement by Genetic 

Optimization 

 

If the simulation duration increases for the next 

generation more of the chromosomes entries might 

become active. If these new entries are not fortunate 

choices the individual can have a higher cost per 

unit of simulation time compared to the previous 

generation even though the individual is the same. 

Even so, it can be seen that the cost has a clear 

tendency to decrease and does so significantly over 

the 100 generations. 

 

5 Conclusions and Future Work 
This paper presents a new approach to 

implementing a genetic optimization on a 

transportation problem. Our current research aims 

towards modeling and optimizing a company from a 

management perspective. This model can be used as 

a sub-model of the transportation department and it 

can be integrated into the company model in order 

to perform a global optimization. 
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