
Genetic Optimization for Transportation Problem

DIANA BETINA MIRSU

1
 GABRIELA PROSTEAN

1
 RADU MIRSU

2

Faculty of Management in Production and Transportation
1

Faculty of Electronics and Telecomunications
2

Politehnica University of Timisoara

Timisoara, str. Remus, nr.14

ROMANIA

betinaiovan@yahoo.com gabriela.prostean@mpt.upt.ro radu.mirsu@etc.upt.ro

Abstract: - This paper presents a problem of transportation planning that is able to achieve higher performance

by means of genetic optimization [2]. The paper introduces a model for simulating and evaluating the costs of a

transportation system. It also describes a new way to use genetic optimization for a problem that requires

adaptive chromosome length [1].

Key-Words: - Genetic optimization, transportation, management, adaptive chromosome length

1 Introduction
The paper presents a problem of transportation

planning. It is similar in nature to the classical

traveling salesman problem with new elements that

add specific costs frequently found in industry.

Section 2 introduces a simulation model that allows

evaluating the costs of a specific transportation

route. This model can serve as fitness function for

the genetic optimization solver. Section 3 presents

how the chromosomes are coded, how cross-over

and mutation is performed and why an adaptive

chromosome length is needed for this application.

Section 4 presents the results of the optimization.

2 The Simulation Model
The model is developed in MATLAB and simulates

the distribution of goods between several factories.

The factories are served by one truck which has to

transport products between them. The factories are

distributed in a two dimensional space so distances

between them can be computed. The coordinates of

each factory can either be selected by the user or be

randomly generated by the computer. Given a set of

products NkPk ...1, = , each factory must convert

an input product ki PP ∈ into an output product

jiPP kj ≠∈ , at each simulation time step. The

truck must transport products between factories.

Distances are converted into integers so at each

simulation time step the truck covers one distance

unit. Figure 1 illustrates the simulation flow an

individual factory for one simulation time step.

If the truck is in the factory it is searched for the

demanded product iP . Note that each factory accepts

only one type of product. If product iP is found it is

transferred (truck unload) from the truck into the

factory input product stock inputS . If the product iP

is not found in the truck the input stock remains

unchanged. Next, the entire factory output product

stock outputS is transferred into the truck (truck

load). For this application the capacity of the truck

is not limited. At the same time with the truck

load/unload activity there is also factory production

activity. Production occurs only if the input product

stock is not empty. It is done by transferring an item

from inputS to outputS . This equivalent to converting

one item of product iP into one item of product jP .

Last, the costs are computed. Each factory has two

types of costs: storage cost and production halt cost.

The storage cost sC is proportional to the output

product stock outputS . This means that any factory

would rather not store its output products jP and

will produce high cost if rarely visited by a truck.

The production halt cost PHC is computed with

formula (1), where HSL is the halt safety level and

kC is a scaling constant. This cost comes from the

idea that any situation when the production halts due

to input stock insufficiency should be penalized.












∗







−= 0,1max K

input

PH C
HSL

S
C

 (1)

Normally, this cost should not depend on the stock

level because production halts only when stock is

Recent Researches in System Science

ISBN: 978-1-61804-023-7 459

zero. However, it is often useful to also penalize any

situation that potentially leads to a production halt.

If the input stock level inputS is above the halt safety

level HSL the cost C is zero. If stock level is below

HSL, the cost linearly increases with gradient
HSL

Ck .

If production halts, the maximum penalty is given

(kPH CC =).

Figure 1. Factory Model Simulation Flow

Figure 2 illustrates the simulation flow for a truck

model during one simulation time step. If the truck

is inside a factory it waits for the factory to perform

the load/unload functions as presented in figure 1.

Next, the truck starts toward the next destination as

instructed by the genetic optimization solver. The

distance to the next destination is also computed at

this point.

If the truck is not inside a factory (is traveling) it

decrements the remaining distance and computes the

traveling costs. Travel costs TC are constant per

unit of distance. Note that figures 1 and 2 present

the steps performed during a single simulation time

step. The variables that are updated during these

steps (factory stocks, truck stock, distances to travel,

and costs) are global simulation state variables that

store their values from one simulation time step to

the next. An overall cost is computed as an

accumulation of all costs during the simulation. This

cost will serve as performance criteria to the genetic

optimization solver.

Figure 2. Truck Model Simulation Flow

3 Applying Genetic Optimization
Section 2 introduced a MATLAB routine that

implements the model of a transportation problem.

Because the routine estimates the general cost of a

proposed route it can be used as fitness function for

a genetic optimization tool. The results presented in

this paper are obtained by using the MATLAB

genetic optimization toolbox.

3.1. Chromosome Encoding
Each chromosome is represented by a string of

positive integers representing a specific truck route.

Each integer in the string ranges from 1 to N, where

N is the number of factories. Figure 3 presents an

example where the truck route is: factory 3, factory

1, factory 5 and so on.

Figure 3. Chromosome Encoding

The MATLAB genetic optimization solver only

accepts chromosomes of types ‘double’ and ‘bit-

strings’. For these two data types all functions that

are necessary to perform the optimization are

provided by the toolbox. An additional type

‘custom’ is also accepted by the solver. This type

allows using any encoding for the chromosomes.

However, when the ‘custom’ data-type is selected,

the user has to provide the following external

functions: “create initial population”, “create

crossover” and “create mutation”. These three

functions, and also the fitness function have to be

STOP

START

Truck in

Factory?

Wait for factory

to load/unload

Read next

destination from

Genetic Solver

Compute distance

to next destination

Decrement distance

to next destination

Compute travel

costs

Unload

Truck

Load

Truck

Truck in

Factory?

Product

Match?

Produce

Unit

Input

Stock is

zero?

Compute

Costs

START

STOP

Yes

Yes

Yes

No

No

No

3 1 5 2 6 4

Recent Researches in System Science

ISBN: 978-1-61804-023-7 460

compatible with the new ‘custom’ data-type. For

this paper, because the chromosome contains

positive integers from a bounded interval and not

doubles or bits, the ‘custom’ data-type is selected.

- The “create initial population” function

generates a cell array P that contains several

vectors, each one corresponding to a single

individual of the population. If for example N=10

factories and the chromosome length L = 30 one

individual will be a vector of 30 elements containing

a concatenation of three random permutations of

numbers 1 to 10. This is equivalent of the truck

passing three times via each factory. The first

element in the vector (the first factory) can be

imposed by the program allowing the user to have a

pre-determined start point for the truck route. This is

useful because it allows several optimizations to be

performed serially, with each one starting where the

previous one left off.

- The “create cross over” function operates on a

single parent and creates a single child. The cross-

over copies the chromosome of the parent to the

child but reverses the order of the string between

two indexes that are randomly generated. Figure 4

illustrates a cross-over operation.

Figure 4. Cross-over operation

- The “create mutation” function also generates

one child from one parent. It does this by inter-

changing two entries of the parent chromosome. The

entries are chosen randomly. Figure 5 illustrates a

mutation operation.

3.2. Consistency Problem. Uniform Simulation

Time versus Uniform Chromosome Length.

The simulating routine presented in section 2 states

that a truck will cover one unit of distance for every

simulation time-step. This means that for two

distinct individuals (same chromosome length) the

simulation time will vary [1] since two different

routes do not have the same overall length.

If the problem would only take into account

truck costs it would be reduced to the traveling

salesman problem. In that case, different simulation

durations, thus different route lengths would not be

a problem since finding the shorter route is the only

performance criteria.

Figure 5. Mutation Operation.

In our case, because production halt costs are

taken into account, the shorter routes are not always

better since they might poorly satisfy the product

match between factories (causing significant halt

costs). Therefore, a longer route that suits well the

factory’s demands is likely to be better.

Unfortunately, comparing the halt cost of a route

that takes more time with the halt cost of a route that

takes less time is not fair leading to an in-

consistency problem. In order for the comparison to

be relevant the halt cost needs to have accumulated

over the same amount of time and so the simulation

durations for two routes have to be the same. This

raises an issue because having equal simulation

durations means unequal chromosome lengths.

In order to fix this problem the fitness function

(section 2) was modified such that it always keep a

record of the smallest simulation duration

corresponding to the current population. When

evaluating a new route, the simulator dynamically

compares the current simulation time with the

smallest simulation duration recorded until then. If

that time is reached the simulation ends without

reaching all the destinations of the route. This is

equivalent to having a non-uniform chromosome

length but without explicitly specifying it to the

genetic solver (the rest of the chromosome is still

there but is not used). This concept is illustrated in

figure 6. All routes have six destinations. The

destinations that lie in wider rectangles are those

that the truck needs more time to reach. It can be

noticed that all scores are evaluated after the same

amount of time, assuring that halt costs are fairly

compared.

Now it is interesting to see if this modification

has not lead to the same problem when comparing

the truck costs. Since scores are evaluated after the

same amount of time truck costs will be the same

for all routes. Has this destroyed the merit of

shorter routes? The advantage of having a shorter

route is hidden in the fact that more destinations are

visited in the same amount of time. If these

7 1 8 2 6 4 3 5 10 9

8 2 6 4

4 6 2 8

7 1 8 2 6 4 3 5 10 9 4 6 2 8

 Random indexes

7 1 5 2 6 4 3 8 10 9

7 1 8 2 6 4 3 5 10 9

8 5

 Random indexes

Recent Researches in System Science

ISBN: 978-1-61804-023-7 461

destinations match the factory’s product demand it

will represent a significant advantage.

Figure 6. Adjusting the chromosome length

4 Results
The genetic optimization uses the following

parameters: population size = 100 individuals, elite

children = 2 individuals, cross-over children = 80%

of population (except the elite children), mutation

children = 20% of population, maximum number of

generations = 100. Figure 6 illustrates the evolution

of the overall cost obtained by the best individual in

the population (best route for each generation). The

trace does not illustrate the absolute value of the

cost. It presents a relative cost computed as the ratio

of the general cost and the simulation duration. As

the population evolves, the simulation duration

adapts (it is always equal to the smallest simulation

duration of the current population set). Because the

simulation duration changes the absolute value of

the general cost does not reflect the improvement of

the algorithm (mostly because the simulation

duration tends to increase as short routes are rarely

better than long routes). In turn, we use a relative

cost that reflects the average performance per unit of

simulated time.

Normally, a genetic algorithm that uses at least

one elite child should have a monotonous cost

function over the generations. This is because

passing elite children from one generation to the

next guarantees that the best performance of the

next generation will be at least just as good as the

previous one. It can be noticed that this is not the

case for the trace in figure 7. This is the effect of

having a chromosome of changing size. For

example, one individual is considered to be elite

because it has the best cost. However, most often,

the chromosome of the individual does not

participate with all its vector entries to the

simulation (as explained in section 3).

Figure 7. Cost Improvement by Genetic

Optimization

If the simulation duration increases for the next

generation more of the chromosomes entries might

become active. If these new entries are not fortunate

choices the individual can have a higher cost per

unit of simulation time compared to the previous

generation even though the individual is the same.

Even so, it can be seen that the cost has a clear

tendency to decrease and does so significantly over

the 100 generations.

5 Conclusions and Future Work
This paper presents a new approach to

implementing a genetic optimization on a

transportation problem. Our current research aims

towards modeling and optimizing a company from a

management perspective. This model can be used as

a sub-model of the transportation department and it

can be integrated into the company model in order

to perform a global optimization.

Acknowledgement: This work was partially

supported by the strategic grant POSDRU

107/1.5/S/77265, inside POSDRU Romania 2007-

2013 co-financed by the European Social Fund –

Investing in People.

References:

[1] Chang Wook Ahn, Ramakrishna, R.S, A

genetic algorithm for shortest path routing

problem and the sizing of populations, IEEE

Transactions on Evolutionary Computation,

Vol.6, No.6, 2002, pp. 566-579.

[2] J. E. Beasley, P. C. Chu, A genetic algorithm

for the set covering problem, European Journal

of Operational Research, Vol.94, No.2, 1996,

pp. 392-404.

6 4 1 5 3 2

3 1 5 2 6 4

2 3 1 5 6 4

5 4 1 6 2 3

Time
Scores

evaluated

here

Individuals

1

2

3

4

Recent Researches in System Science

ISBN: 978-1-61804-023-7 462

