
A Description of the Protein Structures by Evolutionary-Programmed
Turing Machine

LUKAS KOURIL, ROMAN JASEK, IVO MOTYL
Department of Informatics and Artificial Intelligence

Tomas Bata University in Zlin, Faculty of Applied Informatics
nam. T. G. Masaryka 5555, 760 01 Zlin

CZECH REPUBLIC
kouril@fai.utb.cz

Abstract: Proteins belong amongst one of the essential biological structures which influence processes
occurring in living organisms. The elementary characterization of proteins has a form of sequences containing
amino-acids which are elements of primary protein structures. This paper is concerned with the description of
primary protein structures by the evolutionary-programmed Turing machine. The description has an appearance
of rules which are used for the representation of the Turing machine’s program. It therefore means that it is
possible to use a Turing machine for the description of original proteins on the basis of amino-acid sequences
or the eventual reconstruction of the original protein if damage occurred.

Key-Words: Turing machine, Differential Evolution, evolutionary algorithm, artificial intelligence, protein
structures, optimization

1 Introduction
Proteins [1, 2, 3] form an important role in all
existing organisms which exist on Earth. This role is
crucial for processes which are present in organisms
because they are the prerequisites for living and the
preservation of life. Proteins control internal and
external processes of organisms, metabolism,
immune system, cell structures etc. Furthermore
they can also act as e.g. accelerants of biochemical
processes in the form of enzymes. In short, proteins
interfere with all life-based activities.
 This paper deals with primary protein structures
[1, 4] and their processing by Turing machines [7,
8]. Because Turing machines represent a form of
computer it is necessary to prepare a program which
provides any requested operations by them. It is
intended to use artificial intelligence to provide a
suitable program for the Turing machine. A
description for using artificial intelligence for
solving this task is the aim of this paper.

1.1 Essential theory of proteins
Proteins are biopolymers compounded from
sequences containing amino-acids [1, 5]. Amino-
acids, as parts of proteins, are molecules composed
of two functional groups [1, 3]. These are amine
group NH2 and carboxyl group COOH. Amino-
acids can be concatenated for the purpose of
originating proteins thanks to the two afore-
mentioned groups. Because amine group is a base

(with the ability to react with acids and neutralize
them) and carboxyl group is a second end of
molecule, it is possible for them to react together by
a condensation process to produce peptide C-N
bond [1, 6]. Joined molecules represent the
polypeptide chain [1] what is a primary protein
structure [1, 4]. As mentioned at the beginning of
this section, the paper is concerned with processing
of primary protein structures by an evolutionary-
programmed Turing machine.

2 Methods
The former parts [9-11] of our research were
concerned with the examination of assessing the
rules for programming the Turing machine and
proving proposed concepts for the evolutionary-
estimating rules for solving elementary tasks [9, 10]
by the Turing machine. The part of the research
which is being described deals with employing
artificial intelligence in the evolutionary-estimating
rules for the programming of the Turing machine for
solving real problem.
 The following provides an introduction to the
methods and their settings which are used in this
part of the research.

2.1 The Turing machine
The formal definition [7] of the Turing machine is
stated as 7-tuple:

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 278

),,,,,,(0 FBqQM δΓΣ= (1)

Parameters of 7-tuple (1) are following:

o Set of Turing machine’s inner states Q

o Set of input symbols { }B\Γ⊆Σ

o Set of data-tape symbols Γ

o The transition function δ

{ }RLQFQ ,\: ×Γ×→Γ×δ

o Initial state Qq ∈0

o Blank symbols Γ∈B
o Set of final states QF ⊆

In accordance with definition (1), the Turing
machine has four main components.

These parts are:
• The data tape

contains pre-defined symbols Γ and serves
as input and output medium.

• Internal stack
operates with inner states Q of the Turing
machines. Here is saved the current inner
state of the Turing machine.

• Operational head
provides a way of how the Turing machine
can interact with the data tape by
reading/writing symbols Γ from/to the data
tape and moving over the data tape.

• Transition function δ
controls the operational head.

As can be seen, the Turing machine works in
accordance with the transition functionδ . The
transition function can be defined as:

() ()DYpXq ,,, =δ (2)

with parameters:

o Current inner state q
o Currently loaded (read) symbol from the

data tape X
o New inner state p
o Symbol which is intended for writing to the

data tape Y
o Direction of operational head movement D

Equation (2) represents the behavior of the Turing
machine. It means that the Turing machine
subsequently reads the data tape symbols and passes
to the inner states following (2). The response of the
Turing machine is a recording of the new symbol to
the data tape, transition to the new inner state and

movement1 of the head. The recorded symbol, new
inner state and direction of the movement depend on
the rules of the Turing machine.
 The rules represent parameters of the transition
function (2). In accordance with the rules (and the
transition function), the Turing machine is
controlled. It can be said that the program of the
Turing machine is referred to a set of the rules.

Table 1 Example of sample rules

Argument of (2) Response of (2)
Current

state
Loaded
symbol

New
state

Record
symbol

Direction

q1 X1 p5 Y3 Dleft
q1 X2 p2 Y1 Dright
q1 X3 p1 Y1 Dright
q2 X1 p4 Y2 Dnone
q2 X2 p1 Y3 Dleft

Substitution of the rules listed above in the
transition function (2) will produce the following
equation system:

() ()
() ()
() ()
() ()
() ()left

none

right

right

left

DYpXq

DYpXq

DYpXq

DYpXq

DYpXq

,,,

,,,

,,,

,,,

,,,

3122

2412

1131

1221

3511

=
=

=

=

=

δ
δ
δ
δ
δ

 (3)

The first equation in (3) can be explained as: if the
Turing machine reads symbol X1 and occurs in the
state q1, its response is the recording of symbol Y3 to
the data tape, transition to the state p5 and head
movement to the left.
 On the basis of the Turing machines operations
(reading the symbol, moving of the head and
transition to the new state in accordance with the
current inner state and loaded symbol) and the first
two columns of Table 1, it is perceivable that the
arguments of the transition function (2) are
combinations of all inner states Q and data tape
symbols Γ (however it is possible to encounter
rules where some combinations are not represented).
In the case of transcription the rules in the form of
the equation system similar to (3), the number of the
equations is the product of Q and Γ .
 Protein processing by the Turing machine
provides 21 symbols of Γ (20 amino-acids and 1
blank symbol). Therefore it is necessary to provide
supplementary variability of the Turing machine by

1Moving to the left, to the right or stagnation

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 279

providing a sufficient amount of inner states (stated
experimentally). On these conditions, it is a very
complicated task to accurately design the rules of
the Turing machine. This is a key problem for
protein processing by the Turing machines.

2.2 Employing artificial intelligence
It was considered to use several methods based on
artificial intelligence. The former research [9-11] we
had worked on, utilized Differential Evolution [12-
14] and Self-Organizing Migrating Algorithm [13-
15]. These methods were mainly used for the
examination of evolutionary-estimating of the rules
for programming the Turing machine. The results
published in this paper are based on utilizing of the
Differential Evolution only. It was proved that the
process of estimating the rules depends especially
on the evaluative algorithm (Sect. 2.2.3), not on a
concrete evolutionary algorithm.
 The description of the Differential Evolution can
be found here [13, 14]. Nevertheless, it is necessary
to briefly mention the essential principles of
Differential Evolution for the purpose of the next
explanations.

2.1.1 Backgrounds of Differential Evolution
Evolutionary algorithms are inspired through natural
processes. They are based on “survivance” of best
adapted individuals in contrast to others. Individuals
in the meaning of Differential Evolution represent
parameters of one concrete solution. The ability to
“survive” can be regarded as optimization where the
best solution of the problem is looked for.
 Before starting the evolution it is necessary to
define a specimen which represents information in
the form of individuals thus parameters and a range
of their values. After that, a default generation is
built of individuals containing parameters randomly
set in accordance with the specimen. This first
generation is subsequently optimized.
 The principle of optimization is the evaluation of
all individuals occurring in the recent generation in
the sequence and the selection of them according to
the cost value which represents their evaluation.
This can be mathematically expressed [14] as:

()[]

() kjCRrandif

x

xxFx
x

j

G
jr

G
jr

G
jr

G
jrtest

ji

=∨≤

 −⋅+=

1,0*

,

*

,,,
,

213

 (4)

where

o DjNPi ,...,1,,...,1 == D - Dimension of
individual

o { }NPk ,...,1∈ k - Random index

o { }NPrrr ,...,1,, 321 ∈ Random selection of

three individuals
o irrr ≠≠≠ 321

o 1,0,1,0 ∈∈ FCR

() ()

 ≤

=+
G
i

G
it

test
t

test
rG

i
x

xfxfifx
x coscos1 (5)

Except for the current individual, three other
individuals are randomly selected. The differential
vector is originated by the subtraction of the first
two randomly-selected individuals. Then the
weighted differential vector is originated by
mutation. The mutation is a multiplication of a
mutation constant and the differential vector. As the
next step, the noise vector (6) is created by the
addition of a third randomly-selected individual and
a weighted differential vector. The last operation is
originating the test vector (4) by cross-over of the
noise vector and the current individual. The test
vector and the current individual are evaluated by
the cost function (5) which utilizes our designed
algorithm (Sect. 2.2.3). A better-evaluated
individual or vector passes to the next generation
where optimization repeats.
 Differential Evolution requires the following set
of parameters:

• Number of population(NP)
NP expresses how many individuals occur
in one generation

• Mutation constant (F)
The constant represents diversity rate.

• Cross-over value (CR)
CR influences originating the test vector.

• Generations (G)
Number of generations the optimization
process consist of.

Table 2 Parameters of Differential Evolution

Parameter Value
NP 100
G 100
F 0.9
CR 0.9

The parameters were set in accordance with the
observations. They are identical to former
researches. There are variations of Differential

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 280

Evolution which vary in the method of noise vector
equation. In this research, there was chosen
DE/rand/1/bin variation. The noise vector is
computed by equation (6).

()G
jr

G
jr

G
jr xxFxv ,,, 213

−⋅+= (6)

2.2.2 Encoding the rules of the Turing machine
The necessary question is how to encode rules for
the Turing machine to the form of individual. We
had tried many of approaches (some of them are
described here [9, 10, 11]). In connection with the
new evaluative algorithm (Sect. 2.2.3) a completely
different way of encoding the rules was used. The
individual has a form of vector containing two items
only.

There is rewritten (2) to the following form:

() ()mlkji DYpXq ,,, =δ (7)

where
o Qqi ∈ i = 1…Length of set Q

o Γ∈jX j = 1…Length of set Γ

o Qpk ∈ k = 1...Length of set Q

o Γ∈lY l = 1…Length of set Γ

o DDm ∈ m = 1…Length of set D

 { }rightnoneleftD ,,=

Then items of the vector are:
• l-index – an index of symbol which will be

written to the data tape by the Turing
machine.

• m-index – an index which expresses the
direction of the head movement.

It follows from the above that the rules which are
encoded by individuals represent the response of the
transition function with the exclusion of the inner
state.

2.2.3 Evaluative algorithm
An important part of this research is an approach to
evaluating individuals within the cost function. Our
newly-designed evaluative algorithm (described
here [11]) is utilized which enable per-partes
programming of the Turing machine. The algorithm
is written in F# language (as well as library2 which
implements the Differential Evolution).

2http://fsai.codeplex.com

During evaluation, individuals are decoded to the
form of rule and brought to the Turing machine.
Evaluation of individual is based on the behavior of
the Turing machine which is initialized by the new
rule. The evaluation consists of several conditions
related to the Turing machine. These conditions are:

• If the new position of the head is out of data
tape, the cost value (CV) = 4000.

• If the last three movements or symbols are
same, CV = 2000.

• If the requested symbol and the new symbol
produced by rule are not same, CV = 1000.

• If the head moves to the right CV = -3000.
If the head moves to the left, CV = -2000.
If the head stagnates, CV = -1000.

• If the symbol for writing is the blank
symbol B, CV = CV + 1000.

The Differential Evolution is set to optimization by
finding a global minimum thus negative CVs
represent better evaluations. In the fourth condition,
it is possible to set preferable directions of the head
movement.

2.3 Per-partes programming
As can be seen in Sect. 2.2.2, the individual of
Differential Evolution encode only one rule of the
Turing machine thus the composition of complete
set of rules is per-partes realized. The Differential
Evolution optimizes individuals in order to estimate
one rule which solves the behavior of the Turing
machine for the best processing of actual symbol. It
means that it is necessary to execute the
optimization process several times; the one rule for
processing of the current symbol is optimized once
in each run of the Differential Evolution.
Subsequently, the inner states of the Turing machine
are assigned to estimated rules. These inner states
are finally reduced, so that the whole set of rules is
compacted. The reduction consists of linking rules
(estimated responses of the Turing machine) so that
all possible combinations of arguments of the
transition function (2) are used for assigning the
estimated responses.

3 Evolutionary description of proteins
In this research we have tried to obtain the Turing
machines rules for processing of polypeptide
1MYM3 that represents structural determinants of

3http://www.pdb.org/pdb/explore/explore.do?structu
reId=1MYM

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 281

the stretching frequency of CO bound to myoglobin.
The polypeptide chain looks like the following:

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFK
SHPETLEKFDRVKHLKTEAEMKASEDLKKHGVTVL
TALGAILKKKGHHEAELKPLAQSHATKHKIPIKYL
EFISEAIIHVLHSRHPGNFGADAQGAMNKALELFR
KDIAAKYKELGYQG

3.1 Settings of the Turing machine
There are considerable questions as to how to set
parameters of the Turing machine. It is based on
formal definition (1). Because our approach to per-
partes programming adjusts inner states
automatically, it is not required to specify a set of
inner states Q, initial state q0 and sets of final states
F. Other parameters are:

• Set of input symbols (representing 20
amino-acids)

=Σ
YWVTSRQO

NMLKIHGFEDCA

,,,,,,,

,,,,,,,,,,,,

• Set of data tape symbols

=Γ
YWVTSRQON

MLKIHGFEDCA

,,,,,,,,

,,,,,,,,,,,,#

• Blank symbol #=B

• Default head position (located at first input
symbol)

Our goal is to reveal the rules which describe or
reconstruct 1MYM polypeptide from a random
sequence of amino-acids. The random sequence we
used is the following:

FMYFQDLLDSSRMPVSDEDTQKIVKFMPADFIHYH
MHCPPERCAMWRNMKKPFLISWDQTYCFKTIQMSP
TETDFPLEQKMKCRKDNENMVQINESRIPKHYNPD
INLCHARDASVMWNAMPYLVYPSTYNRKHFMSGGI
QVIHLSQYYWYHFQ

Turing machine whose initialization parameters are
mentioned above was afterward per-partes
programmed.

3.2 Results
The per-partes programming process of the Turing
machine was executed repeatedly. Several sets of
rules for programming the Turing machine were
successfully estimated. These rules differ to each
other in a way for processing amino-acids. It means
the processing is successful but the behavior of the
Turing machine is different during initialization by
using different rules (see where analyses of three

sets of obtained rules are presented). Further
difference is the amount of inner states. The average
number of inner states is about 45 states.
 As can be seen (Fig. 1), in the case of the first set
of rules, the Turing machine moves the head to the
left 67 times, to the right 223 times. The head
stagnates 14 times. The second set of rules provides
head movement in the left direction 60 times, to the
right 213 times and stagnation 14 times. The last
figured set of rules pursues moving the head in the
left direction 69 times, to the right 222 times and
stagnation 11 times.

Fig. 1 Number of head movements toward specified
directions

The following graphs represent progress of head
movement during processing amino-acids. The
processes are different although 1MYM polypeptide
description by the Turing machine is successful in
either case.

Fig. 2 Analysis of moves for 1st set of rules

Fig. 3 Analysis of moves for 2nd set of rules

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 282

Fig. 4 Analysis of moves for 3rd set of rules

4 Conclusion
In this research we used findings based on results of
previous researches for programming the Turing
machine for solving complex tasks in the field of
processing of polypeptide chains. We had chosen
1MYM polypeptide as a species of amino-acid
sequences. The goal was to reveal the rules which
allow the processing of random amino-acids in the
form of 1MYM polypeptide by the Turing machine.
As presented, this complex task was successfully
accomplished. It succeeded in obtaining several sets
of rules which differ in behavior to the Turing
machine during processing amino-acids. Analyses
of three sets were presented in this paper.
 In further research we will try to optimize actual
approaches to evolutionary programming of the
Turing machine in order to process proteins. Also
we will try to explore other approaches to solving
this problem.

Acknowledgements: This reseach is the part of the
project “Evolutionary Synthesis of Biomolecular
Structures”, no. IGA/42/FAI/10/D, supported by the
Internal Grant Agency of Tomas Bata University in
Zlin.

References:
[1] M. Zvelebil, J. O. Baum., Understanding

Bioinformatics, Garland Science, Taylor &
Francis Group, LLC, 2008. ISBN 0-8153-4024-
9.

[2] S. A. Doebler, The Dawn of the Protein Era,
BioScience, Vol. 50, No. 1, 2000, pp. 15-20.
American Institute of Biological Sciences.

[3] T. A. Holme, Proteins, In: J. J. Lagowski (ed)
Chemistry: Foundations and Applications, Vol.
4, 2004, pp. 34-38. Macmillan Reference USA.
ISBN 0-02-8659319.

[4] E. S. Roberts-Kirchhoff, Primary Structure, In:
J. J. Lagowski (ed) Chemistry: Foundations and
Applications, Vol. 4, 2004, pp. 32. Macmillan
Reference USA. ISBN 0-02-8659319.

[5] T. A. Holme, Amino Acid, In: J. J. Lagowski
(ed) Chemistry: Foundations and Applications,
Vol. 1, 2004, pp. 44-45. Macmillan Reference
USA. ISBN 0-02-8659319.

[6] A. Schwabacher, Peptide Bond, In: J. J.
Lagowski (ed) Chemistry: Foundations and
Applications, Vol. 3, 2004, pp. 227. Macmillan
Reference USA. ISBN 0-02-8659319.

[7] J. E. Hopcroft, R. Motwani, J. D. Ullman,
Introduction to Automata Theory, Languages
and Computation, 2nd s.l, Pearson Education,
2000. ISBN 0-201-44124-1.

[8] J. Peterka, Turing machine, In: Archiv clanku a
prednasek Jiriho Peterky.
http://www.earchiv.cz/a94/a432c120.php3.
Cited 5 Jun 2011

[9] L. Kouril, I. Zelinka, Evolutionary Synthesis of
Rules for Programming the Turing Machine,
Odborny vedecky casopis Trilobit, No. 2, 2010,
http://trilobit.fai.utb.cz/evolutionary-synthesis-
of-rules-for-programming-a-turing-machine.
ISSN 1804-1795.

[10] L. Kouril, I. Zelinka, Evolutionary-Estimated
Programming the Turing Machine by
Differential Evolution, 16th International
Conference on Soft Computing MENDEL 2010,
pp. 41-48. Brno, Czech Republic. ISBN 978-
80-214-4120-0.

[11] L. Kouril, I. Zelinka, An Evaluative Algorithm
for Per-Partes-Programming the Turing
Machine, 17th International Conference on Soft
Computing MENDEL 2011, pp. 30-37. Brno,
Czech Republic. ISBN 978-80-214-4302-0.

[12] J. Lampinen, I. Zelinka, Mechanical
Engineering Design Optimization by
Differential Evolution, In: New Ideas of
Optimization. 1st London, McGraw-Hill, 1999.
ISBN 007-709506-5.

[13] I. Zelinka, Umela intelligence v problemech
globalni optimalizace. Praha, BEN – technicka
literature, 2002. ISBN 80-7300-069-5.

[14] I. Zelinka, Z. Oplatkova, M. Seda, P. Osmera,
F. Vcelar, Evolucni vypocetni techniky –
principy a aplikace. Praha, BEN – technicka
literature, 2008. ISBN 80-7300-218-3.

[15] I. Zelinka, SOMA – Self-Organizing Migrating
Algorithm, In: G. Onwubolu (auth), B. V. Babu
(auth) New Optimization Techniques in
Engineering, Springer-Verlag, 2004. ISBN 3-
540-20167X.

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 283

