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Abstract: Proteins belong amongst one of the essential biological structures which influence processes 
occurring in living organisms. The elementary characterization of proteins has a form of sequences containing 
amino-acids which are elements of primary protein structures. This paper is concerned with the description of 
primary protein structures by the evolutionary-programmed Turing machine. The description has an appearance 
of rules which are used for the representation of the Turing machine’s program. It therefore means that it is 
possible to use a Turing machine for the description of original proteins on the basis of amino-acid sequences 
or the eventual reconstruction of the original protein if damage occurred. 
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1 Introduction 
Proteins [1, 2, 3] form an important role in all 
existing organisms which exist on Earth. This role is 
crucial for processes which are present in organisms 
because they are the prerequisites for living and the 
preservation of life. Proteins control internal and 
external processes of organisms, metabolism, 
immune system, cell structures etc. Furthermore 
they can also act as e.g. accelerants of biochemical 
processes in the form of enzymes. In short, proteins 
interfere with all life-based activities. 
     This paper deals with primary protein structures 
[1, 4] and their processing by Turing machines [7, 
8]. Because Turing machines represent a form of 
computer it is necessary to prepare a program which 
provides any requested operations by them. It is 
intended to use artificial intelligence to provide a 
suitable program for the Turing machine. A 
description for using artificial intelligence for 
solving this task is the aim of this paper. 
 
 
1.1 Essential theory of proteins 
Proteins are biopolymers compounded from 
sequences containing amino-acids [1, 5]. Amino-
acids, as parts of proteins, are molecules composed 
of two functional groups [1, 3]. These are amine 
group NH2 and carboxyl group COOH. Amino-
acids can be concatenated for the purpose of 
originating proteins thanks to the two afore-
mentioned groups. Because amine group is a base 

(with the ability to react with acids and neutralize 
them) and carboxyl group is a second end of 
molecule, it is possible for them to react together by 
a condensation process to produce peptide C-N 
bond [1, 6]. Joined molecules represent the 
polypeptide chain [1] what is a primary protein 
structure [1, 4]. As mentioned at the beginning of 
this section, the paper is concerned with processing 
of primary protein structures by an evolutionary-
programmed Turing machine. 
 
 

2 Methods 
The former parts [9-11] of our research were 
concerned with the examination of assessing the 
rules for programming the Turing machine and 
proving proposed concepts for the evolutionary-
estimating rules for solving elementary tasks [9, 10] 
by the Turing machine. The part of the research 
which is being described deals with employing 
artificial intelligence in the evolutionary-estimating 
rules for the programming of the Turing machine for 
solving real problem. 
     The following provides an introduction to the 
methods and their settings which are used in this 
part of the research. 
 
 
2.1 The Turing machine 
The formal definition [7] of the Turing machine is 
stated as 7-tuple: 
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),,,,,,( 0 FBqQM δΓΣ=                  (1) 

 
Parameters of 7-tuple (1) are following: 
 

o Set of Turing machine’s inner states Q  

o Set of input symbols { }B\Γ⊆Σ  

o Set of data-tape symbols Γ  

o The transition function δ  

{ }RLQFQ ,\: ×Γ×→Γ×δ  

o Initial state Qq ∈0  

o Blank symbols Γ∈B  
o Set of final states QF ⊆  

 

In accordance with definition (1), the Turing 
machine has four main components. 
 

These parts are: 
• The data tape 

contains pre-defined symbols Γ  and serves 
as input and output medium.  

• Internal stack 
operates with inner states Q  of the Turing 
machines. Here is saved the current inner 
state of the Turing machine. 

• Operational head 
provides a way of how the Turing machine 
can interact with the data tape by 
reading/writing symbols Γ  from/to the data 
tape and moving over the data tape. 

• Transition function δ  
controls the operational head. 

 
As can be seen, the Turing machine works in 
accordance with the transition functionδ . The 
transition function can be defined as: 
 

( ) ( )DYpXq ,,, =δ                          (2) 
 

with parameters: 
 

o Current inner state q  
o Currently loaded (read) symbol from the 

data tape X  
o New inner state p  
o Symbol which is intended for writing to the 

data tape Y  
o Direction of operational head movement D  

 
Equation (2) represents the behavior of the Turing 
machine. It means that the Turing machine 
subsequently reads the data tape symbols and passes 
to the inner states following (2). The response of the 
Turing machine is a recording of the new symbol to 
the data tape, transition to the new inner state and 

movement1 of the head. The recorded symbol, new 
inner state and direction of the movement depend on 
the rules of the Turing machine. 
     The rules represent parameters of the transition 
function (2). In accordance with the rules (and the 
transition function), the Turing machine is 
controlled. It can be said that the program of the 
Turing machine is referred to a set of the rules. 
 
Table 1  Example of sample rules 
 

Argument of (2) Response of (2) 
Current 

state 
Loaded 
symbol 

New 
state 

Record 
symbol 

Direction 

q1 X1 p5 Y3 Dleft 
q1 X2 p2 Y1 Dright 
q1 X3 p1 Y1 Dright 
q2 X1 p4 Y2 Dnone 
q2 X2 p1 Y3 Dleft 

 
Substitution of the rules listed above in the 
transition function (2) will produce the following 
equation system: 
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The first equation in (3) can be explained as: if the 
Turing machine reads symbol X1 and occurs in the 
state q1, its response is the recording of symbol Y3 to 
the data tape, transition to the state p5 and head 
movement to the left. 
     On the basis of the Turing machines operations 
(reading the symbol, moving of the head and 
transition to the new state in accordance with the 
current inner state and loaded symbol) and the first 
two columns of Table 1, it is perceivable that the 
arguments of the transition function (2) are 
combinations of all inner states Q  and data tape 
symbols Γ  (however it is possible to encounter 
rules where some combinations are not represented). 
In the case of transcription the rules in the form of 
the equation system similar to (3), the number of the 
equations is the product of Q  and Γ  . 
     Protein processing by the Turing machine 
provides 21 symbols of Γ  (20 amino-acids and 1 
blank symbol). Therefore it is necessary to provide 
supplementary variability of the Turing machine by 

                                                 
1Moving to the left, to the right or stagnation 
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providing a sufficient amount of inner states (stated 
experimentally). On these conditions, it is a very 
complicated task to accurately design the rules of 
the Turing machine. This is a key problem for 
protein processing by the Turing machines. 
 
 
2.2 Employing artificial intelligence 
It was considered to use several methods based on 
artificial intelligence. The former research [9-11] we 
had worked on, utilized Differential Evolution [12-
14] and Self-Organizing Migrating Algorithm [13-
15]. These methods were mainly used for the 
examination of evolutionary-estimating of the rules 
for programming the Turing machine. The results 
published in this paper are based on utilizing of the 
Differential Evolution only. It was proved that the 
process of estimating the rules depends especially 
on the evaluative algorithm (Sect. 2.2.3), not on a 
concrete evolutionary algorithm. 
     The description of the Differential Evolution can 
be found here [13, 14]. Nevertheless, it is necessary 
to briefly mention the essential principles of 
Differential Evolution for the purpose of the next 
explanations. 
 
 
2.1.1 Backgrounds of Differential Evolution 
Evolutionary algorithms are inspired through natural 
processes. They are based on “survivance” of best 
adapted individuals in contrast to others. Individuals 
in the meaning of Differential Evolution represent 
parameters of one concrete solution. The ability to 
“survive” can be regarded as optimization where the 
best solution of the problem is looked for. 
     Before starting the evolution it is necessary to 
define a specimen which represents information in 
the form of individuals thus parameters and a range 
of their values. After that, a default generation is 
built of individuals containing parameters randomly 
set in accordance with the specimen. This first 
generation is subsequently optimized. 
     The principle of optimization is the evaluation of 
all individuals occurring in the recent generation in 
the sequence and the selection of them according to 
the cost value which represents their evaluation. 
This can be mathematically expressed [14] as: 
 

( )[ ]

( ) kjCRrandif

x

xxFx
x

j

G
jr

G
jr

G
jr

G
jrtest

ji

=∨≤





 −⋅+=

1,0*

,

*

,,,
,

213

          (4) 

 

 

where 

o DjNPi ,...,1,,...,1 == D - Dimension of 
individual 

o { }NPk ,...,1∈  k  - Random index 

o { }NPrrr ,...,1,, 321 ∈  Random selection of 

three individuals 
o irrr ≠≠≠ 321  

o 1,0,1,0 ∈∈ FCR  
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Except for the current individual, three other 
individuals are randomly selected. The differential 
vector is originated by the subtraction of the first 
two randomly-selected individuals. Then the 
weighted differential vector is originated by 
mutation. The mutation is a multiplication of a 
mutation constant and the differential vector. As the 
next step, the noise vector (6) is created by the 
addition of a third randomly-selected individual and 
a weighted differential vector. The last operation is 
originating the test vector (4) by cross-over of the 
noise vector and the current individual. The test 
vector and the current individual are evaluated by 
the cost function (5) which utilizes our designed 
algorithm (Sect. 2.2.3). A better-evaluated 
individual or vector passes to the next generation 
where optimization repeats. 
     Differential Evolution requires the following set 
of parameters: 

• Number of population(NP) 
NP expresses how many individuals occur 
in one generation 

• Mutation constant (F) 
The constant represents diversity rate. 

• Cross-over value (CR) 
CR influences originating the test vector. 

• Generations (G) 
Number of generations the optimization 
process consist of. 
 

Table 2  Parameters of Differential Evolution 
 

Parameter Value 
NP 100 
G 100 
F 0.9 
CR 0.9 
 
The parameters were set in accordance with the 
observations. They are identical to former 
researches. There are variations of Differential 
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Evolution which vary in the method of noise vector 
equation. In this research, there was chosen 
DE/rand/1/bin variation. The noise vector is 
computed by equation (6). 
 

( )G
jr

G
jr

G
jr xxFxv ,,, 213

−⋅+=              (6) 

 
 

2.2.2  Encoding the rules of the Turing machine 
The necessary question is how to encode rules for 
the Turing machine to the form of individual. We 
had tried many of approaches (some of them are 
described here [9, 10, 11]). In connection with the 
new evaluative algorithm (Sect. 2.2.3) a completely 
different way of encoding the rules was used. The 
individual has a form of vector containing two items 
only. 
 
There is rewritten (2) to the following form: 
 
 

( ) ( )mlkji DYpXq ,,, =δ                    (7) 
 

where 
o Qqi ∈     i = 1…Length of set Q  

o Γ∈jX    j = 1…Length of set Γ  

o Qpk ∈    k = 1...Length of set Q  

o Γ∈lY      l = 1…Length of set Γ  

o DDm ∈  m = 1…Length of set D  

              { }rightnoneleftD ,,=  
 

Then items of the vector are: 
• l-index – an index of symbol which will be 

written to the data tape by the Turing 
machine. 

• m-index – an index which expresses the 
direction of the head movement. 

 
It follows from the above that the rules which are 
encoded by individuals represent the response of the 
transition function with the exclusion of the inner 
state. 
 
 
2.2.3 Evaluative algorithm 
An important part of this research is an approach to 
evaluating individuals within the cost function. Our 
newly-designed evaluative algorithm (described 
here [11]) is utilized which enable per-partes 
programming of the Turing machine. The algorithm 
is written in F# language (as well as library2 which 
implements the Differential Evolution). 
                                                 
2http://fsai.codeplex.com 

During evaluation, individuals are decoded to the 
form of rule and brought to the Turing machine. 
Evaluation of individual is based on the behavior of 
the Turing machine which is initialized by the new 
rule. The evaluation consists of several conditions 
related to the Turing machine. These conditions are: 

• If the new position of the head is out of data 
tape, the cost value (CV) = 4000. 

• If the last three movements or symbols are 
same, CV = 2000. 

• If the requested symbol and the new symbol 
produced by rule are not same, CV = 1000. 

• If the head moves to the right CV = -3000. 
If the head moves to the left, CV = -2000. 
If the head stagnates, CV = -1000. 

• If the symbol for writing is the blank 
symbol B, CV = CV + 1000. 

 
The Differential Evolution is set to optimization by 
finding a global minimum thus negative CVs 
represent better evaluations. In the fourth condition, 
it is possible to set preferable directions of the head 
movement. 
 
 
2.3 Per-partes programming 
As can be seen in Sect. 2.2.2, the individual of 
Differential Evolution encode only one rule of the 
Turing machine thus the composition of complete 
set of rules is per-partes realized. The Differential 
Evolution optimizes individuals in order to estimate 
one rule which solves the behavior of the Turing 
machine for the best processing of actual symbol. It 
means that it is necessary to execute the 
optimization process several times; the one rule for 
processing of the current symbol is optimized once 
in each run of the Differential Evolution. 
Subsequently, the inner states of the Turing machine 
are assigned to estimated rules. These inner states 
are finally reduced, so that the whole set of rules is 
compacted. The reduction consists of linking rules 
(estimated responses of the Turing machine) so that 
all possible combinations of arguments of the 
transition function (2) are used for assigning the 
estimated responses. 
 
 
3 Evolutionary description of proteins 
In this research we have tried to obtain the Turing 
machines rules for processing of polypeptide 
1MYM3 that represents structural determinants of 
                                                 
3http://www.pdb.org/pdb/explore/explore.do?structu
reId=1MYM 

Recent Advances in Signal Processing, Computational Geometry and Systems Theory

ISBN: 978-1-61804-027-5 281



the stretching frequency of CO bound to myoglobin. 
The polypeptide chain looks like the following: 
 

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFK
SHPETLEKFDRVKHLKTEAEMKASEDLKKHGVTVL 
TALGAILKKKGHHEAELKPLAQSHATKHKIPIKYL
EFISEAIIHVLHSRHPGNFGADAQGAMNKALELFR 
KDIAAKYKELGYQG 
 
 
3.1 Settings of the Turing machine 
There are considerable questions as to how to set 
parameters of the Turing machine. It is based on 
formal definition (1). Because our approach to per-
partes programming adjusts inner states 
automatically, it is not required to specify a set of 
inner states Q, initial state q0 and sets of final states 
F. Other parameters are: 

• Set of input symbols (representing 20 
amino-acids) 
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• Set of data tape symbols 
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• Blank symbol #=B  

• Default head position (located at first input 
symbol) 

 
Our goal is to reveal the rules which describe or 
reconstruct 1MYM polypeptide from a random 
sequence of amino-acids. The random sequence we 
used is the following: 
 

FMYFQDLLDSSRMPVSDEDTQKIVKFMPADFIHYH
MHCPPERCAMWRNMKKPFLISWDQTYCFKTIQMSP 
TETDFPLEQKMKCRKDNENMVQINESRIPKHYNPD
INLCHARDASVMWNAMPYLVYPSTYNRKHFMSGGI 
QVIHLSQYYWYHFQ 
 

Turing machine whose initialization parameters are 
mentioned above was afterward per-partes 
programmed. 
 
 
3.2 Results 
The per-partes programming process of the Turing 
machine was executed repeatedly. Several sets of 
rules for programming the Turing machine were 
successfully estimated. These rules differ to each 
other in a way for processing amino-acids. It means 
the processing is successful but the behavior of the 
Turing machine is different during initialization by 
using different rules (see where analyses of three 

sets of obtained rules are presented). Further 
difference is the amount of inner states. The average 
number of inner states is about 45 states. 
     As can be seen (Fig. 1), in the case of the first set 
of rules, the Turing machine moves the head to the 
left 67 times, to the right 223 times. The head 
stagnates 14 times. The second set of rules provides 
head movement in the left direction 60 times, to the 
right 213 times and stagnation 14 times. The last 
figured set of rules pursues moving the head in the 
left direction 69 times, to the right 222 times and 
stagnation 11 times. 
 

 
Fig. 1  Number of head movements toward specified 
directions  
 
The following graphs represent progress of head 
movement during processing amino-acids. The 
processes are different although 1MYM polypeptide 
description by the Turing machine is successful in 
either case. 

 
Fig. 2  Analysis of moves for 1st set of rules 

 

 
Fig. 3  Analysis of moves for 2nd set of rules 
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Fig. 4  Analysis of moves for 3rd set of rules 

 

 
4 Conclusion 
In this research we used findings based on results of 
previous researches for programming the Turing 
machine for solving complex tasks in the field of 
processing of polypeptide chains. We had chosen 
1MYM polypeptide as a species of amino-acid 
sequences. The goal was to reveal the rules which 
allow the processing of random amino-acids in the 
form of 1MYM polypeptide by the Turing machine. 
As presented, this complex task was successfully 
accomplished. It succeeded in obtaining several sets 
of rules which differ in behavior to the Turing 
machine during processing amino-acids. Analyses 
of three sets were presented in this paper. 
     In further research we will try to optimize actual 
approaches to evolutionary programming of the 
Turing machine in order to process proteins. Also 
we will try to explore other approaches to solving 
this problem. 
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