Some Congruences of Fibonacci and Lucas numbers
and Properties of Fibonacci Functions

ALINA BĂRBULESCU and DIANA SAVIN
Faculty of Mathematics and Computer Science
Ovidius University
124, Mamaia Blvd., 900527, Constanta
ROMANIA
alinadumitriu@yahoo.com, savin.diana@univ-ovidius.ro
www.math-modeling.ro

Abstract: In this paper we prove some congruences of Fibonacci and Lucas numbers. We also prove that the Box
dimension of the Fibonacci functions defined on [0, 1] is less than 1.

Keywords: Fibonacci numbers, Lucas Numbers, Fibonacci functions, quadratic residues.

MSC 2000: 11D25, 11B39

1 Introduction
Let \((F_n)_{n \geq 0} \),

\[
F_0 = 0, \quad F_1 = 1, \quad F_{n+2} = F_{n+1} + F_n, \quad n \geq 0,
\]

be the Fibonacci sequence and \((L_n)_{n \geq 0} \)

\[
L_0 = 2, \quad L_1 = 1, \quad L_{n+2} = L_{n+1} + L_n, \quad n \geq 0,
\]

be the Lucas sequence.

It is known that

\[
F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right],
\]

\[
L_n = \left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n.
\]

Let

\[
f(x) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^x - \left(\frac{1 - \sqrt{5}}{2} \right)^x \cos(\pi x) \right), \quad x \in \mathbb{R}
\]

be the Fibonacci function.

Let \(p \) be a prime odd integer. The following result

about the Fibonacci and Lucas numbers is known:

Theorem 1.1 (Legendre, Lagrange). Let \(p \) be a prime odd integer. Then the Fibonacci number, \(F_p \), has the property:

\[
F_p \equiv \left(\frac{p}{5} \right) (\text{mod } p)
\]

and the Lucas number, \(L_p \), satisfies:

\[
L_p \equiv 1 (\text{mod } p).
\]
We remember the following theorems that will be used to prove the results in the next chapter:

Fermat’s little theorem. If \(p \) is a prime number, then for any integer \(a \), \(a^p - a \) is evenly divisible by \(p \).

Remark. A variant of the theorem is the following: If \(p \) is a prime and \(a \) is an integer coprime to \(p \), then \(a^{p-1} \equiv 1 \pmod{p} \).

Euler’s criterion. Let \(p \) be an odd prime integer and \(a \) an integer number coprime with \(p \). Then
\[
\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p}.
\]

The quadratic reciprocity law. Let \(p \) and \(q \) be two distinct odd prime integers. Then
\[
\left(\frac{p}{q} \right) \cdot \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
\]

In this paper we find some congruences satisfied by the Fibonacci numbers \(F_{2p} \) and Lucas numbers \(L_{2p} \), where \(p \) is a prime odd integer.

In our proof we use techniques of combinatorics or elementary number theory.

Let \(F \) be a nonempty and bounded subset of \(\mathbb{R}^2 \), \(N_\delta(F) \) the least number of sets whose union covers \(F \) with and diameters that do not exceed a given \(\delta > 0 \). Then, the upper bound Box dimension of \(F \) is defined by:
\[
\dim_F = \limsup_{\delta \to 0} \frac{\log N_\delta(F)}{- \log \delta}.
\]

Let \(f : I \to \mathbb{R} \) be a function defined on the interval \(I \) and \([t_1, t_2] \) be a subinterval of \(I \). We denote by:
\[
R_f(t_1, t_2) = \sup_{t_1 \leq u \leq t_2} |f(t) - f(u)|,
\]
and by \(\Gamma(f) \) the graph of \(f \).

Lemma 1.1. Let \(f \) be a continuous function on \([0, 1] \), \(0 < \delta < 1 \), and \(m \) be the least integer greater than or equal to \(1/\delta \). If \(N_\delta \) is the number of the squares of the \(\delta \)-mesh that intersect \(\Gamma(f) \). Then:
\[
\delta^{-1} \sum_{j=0}^{m-1} R_f[j\delta, (j+1)\delta] \leq N_\delta \leq 2m + \delta^{-1} \sum_{j=0}^{m-1} R_f[j\delta, (j+1)\delta].
\]

2 Congruences of Fibonacci and Lucas numbers

Lemma 2.1 Let \(n \) be a positive integer, \(n \geq 2 \) and \(p \) a prime odd integer. Then \(p \) divides \(\binom{np}{p} - n \).

Proof.
The proof is simple, using the congruence
\[
\left(\frac{pa}{pb} \right) \equiv \left(\frac{a}{b} \right) \pmod{p},
\]
where \(a \) and \(b \) are positive integers, \(b \leq a \) and \(p \) is a prime integer or using induction after \(n \in \mathbb{N}^* \) and the identity
\[
\sum_{k=0}^{m} \binom{n}{k} \binom{t}{m-k} = \binom{n+t}{m}.
\]

Lemma 2.2 Let \(p \) be a prime odd integer. Then \(p \) divides \(\binom{2p}{k} \), for \(1 \leq k \leq 2p - 1 \), \(k \neq p \).

Proof.
\[
\binom{2p}{k} = \frac{(2p)!}{k!(2p-k)!} = \frac{1 \cdot 2 \cdot \ldots \cdot p \cdot \ldots \cdot (2p)}{k!(2p-k)!}.
\]
If \(1 \leq k \leq p - 1 \), it results that \(p \) doesn’t divide \(k \) and \(p + 1 \leq 2p - k \leq 2p - 1 \).

This implies that:
\[
p|(2p - k)! \text{ and } p^2 \text{ doesn’t divide }(2p - k)!
\]
Thus:
\[
\binom{2p}{k}.
\]

If \(p + 1 \leq k \leq 2p - 1 \), it results that
\[
p^k! \text{ and } p^2 \text{ doesn’t divide } k!.
\]
We have \(1 \leq 2p - k \leq p - 1 \), so \(p \) doesn’t divide \((2p - k)! \).
Therefore, \(p \left(\left\lfloor \frac{2p}{k} \right\rfloor \right) \).

Proposition 2.3 Let \(p \) be a prime odd integer. Then the Lucas number \(L_{2p} \equiv 3 \pmod{p} \).

Proof.

\[
L_{2p} = \left(\frac{1 + \sqrt{5}}{2} \right)^{2p} + \left(\frac{1 - \sqrt{5}}{2} \right)^{2p} = \frac{1}{2^{2p-1}} \sum_{k=0}^{2p} \binom{2p}{k} \cdot \frac{k}{5^2}.
\]

Using Lemma 2.2, we obtain that

\[
L_{2p} \equiv \frac{1}{2^{2p-1}} \cdot (1 + 5^p) \pmod{p} \iff L_{2p} \equiv \frac{2}{4^p} \cdot (1 + 5^p) \pmod{p}.
\]

Applying Fermat’s small theorem we obtain:

\[L_{2p} \equiv 3 \pmod{p}. \]

Corollary 2.5 Let \(p \) be a prime odd integer. Then:

\[p \left(\left\lfloor \frac{2p}{k} \right\rfloor \right) \pmod{p}. \]

Proof. It is know that between Fibonacci and Lucas numbers there is the following connection:

\[L_n = F_{n+1} + F_{n-1}. \]

So,

\[L_{2p} = F_{2p+1} + F_{2p-1}. \]

Applying Proposition 2.3, Proposition 2.4 and the properties of Fibonacci and Lucas numbers, we obtain:

\[F_{2p} = \left(\frac{5}{p} \right) \pmod{p}. \]

Applying the quadratic reciprocity law, we have:

\[\left(\frac{p}{5} \right) \cdot \left(\frac{5}{p} \right) = (-1)^{p-1} = 1 \iff \left(\frac{5}{p} \right) = \left(\frac{p}{5} \right). \]

It results that

\[F_{2p} = \left(\frac{5}{p} \right) \pmod{p}. \]

Using the properties of Legendre’ symbol it results:

\[p \left(\left\lfloor \frac{2p}{k} \right\rfloor \right) \pmod{p}. \]
3 On the box dimension of Fibonacci functions defined on \([0, 1]\)

We study the upper bound of the Fibonacci function \(f(x)\) defined on \([0, 1]\).

In order to simplify the calculation we denote by
\(a = \frac{1 + \sqrt{5}}{2}\). If \(0 < \delta < 1\), then:

\[
m - 1 < \frac{1}{\delta} < m = \left\lfloor \frac{1}{\delta} \right\rfloor + 1 \leq \frac{1}{\delta} + 1.
\]

\[
|f((j+1)\delta) - f(j\delta)| = \left| \frac{1}{\delta} \left(a^{(j+1)\delta} - a^{j\delta} \cos(\pi(j+1)\delta) - a^{j\delta} + \frac{1}{a^{j\delta}} \cos(\pi j \delta) \right) \right|
\]
\[
= \left| \frac{1}{\delta} \left(a^{j\delta} (a^{\delta} - 1) - \frac{1}{a^{j\delta}} \left(\cos(\pi(j+1)\delta) - \cos(\pi j \delta) \right) \right) \right|.
\]

Since

\[
0 < \delta < 1, \ a > 0 \Rightarrow 1 < a^{\delta} < a \Rightarrow \left\{ \begin{array}{l}
 a^{\delta} - 1 > 0 \\
 \frac{1}{a^{\delta}} < 1
\end{array} \right.
\]

and

\[
|\cos x - \cos y| \leq |x - y|, (\forall) x, y \in \mathbb{R},
\]

then

\[
|f((j+1)\delta) - f(j\delta)| \leq \left| \frac{1}{\delta} \left(a^{j\delta} (a^{\delta} - 1) - \frac{1}{a^{j\delta}} \cos(\pi(j+1)\delta) - \cos(\pi j \delta) \right) \right|
\]
\[
\leq \left| \frac{1}{\delta} \left(a^{j\delta} (a^{\delta} - 1) - \frac{1}{a^{j\delta}} \cos(\pi(j+1)\delta) - \cos(\pi j \delta) \right) \right|
\]
\[
= \left| \frac{1}{\delta} \left(a^{j\delta} (a^{\delta} - 1) - \frac{1}{a^{j\delta}} |\cos(\pi(j+1)\delta) - \cos(\pi j \delta)| \right) \right|
\]
\[
\leq \left| \frac{1}{\delta} \left(a^{j\delta} (a^{\delta} - 1) + \frac{1}{a^{j\delta}} \pi \delta \right) \right|.
\]

Applying Lemma 1.1 we obtain:

\[
N_\delta \leq 2m + \frac{1}{\delta \sqrt{5}} \sum_{j=0}^{m-1} R_j \left[j\delta, (j+1)\delta \right] \Leftrightarrow
\]
\[
N_\delta \leq 2m + \frac{1}{\delta \sqrt{5}} \sum_{j=0}^{m-1} a^{j\delta} (a^{\delta} - 1) + \frac{\pi \delta}{a^{j\delta}} \Leftrightarrow
\]
\[
N_\delta \leq 2m + \frac{1}{\delta \sqrt{5}} \sum_{j=0}^{m-1} a^{j\delta} (a^{\delta} - 1) + \frac{\pi \delta}{a^{j\delta}} \Leftrightarrow
\]
So, the following assertion we have been proved:

Theorem 3.1. The upper Box dimension of the graph of the Fibonacci function defined on [0, 1] is less or equal with 1.

References

[5] Zhi-Wei Sun, Some sophisticated congruences involving Fibonacci numbers (http://math.nju.edu.cn/_zwsun)