The Identification of Aircraft Sensor Fault Size via Fuzzy Logic

EMRE KIYAK
Department of Avionics
Anadolu University
School of Civil Aviation, 26470, Eskisehir
TURKEY
ekiyak@anadolu.edu.tr

FIKRET CALISKAN
Department of Control Engineering
Istanbul Technical University
Faculty of Electrical and Electronic Engineering, Maslak, 34469, Istanbul
TURKEY
caliskan@elk.itu.edu.tr

Abstract: - Considering the possibility of unexpected situations, the authorities feel the necessity of keeping certain sub systems or components of aircraft under continuous scrutiny. Accordingly, sensors in flight control systems are considered as one of the crucial components of the system. The failure to detect faults is quite likely to cause very serious problems, which makes it vital to carry out effective fault detection and isolation processes. Through the determination of the size of the fault, it might be possible to make use of this information in the realization of the repair so that the detection of faults for complex systems might be carried out more effectively. In this study, the detection and isolation of sensor faults were carried out through bank of Unknown Input Observers. Additionally, a structure using fuzzy controllers was suggested in order to have an idea about the size of the fault. When this suggested structure is used, it might be possible to choose the most suitable control type to remove the effects of the fault during system reconfiguration following fault detection and isolation.

Key-Words: - Fault detection, fault isolation, fuzzy logic, reconfiguration.

1 Introduction
The detection, diagnosis and reconfiguration of a fault involves [1, 2]:
- The detection of the fault: Determining the problem when something goes wrong in the system,
- Isolating the fault: Determining the exact location and the type of the fault,
- Identification of the fault: Determining the size of the fault and its intensity,
- System Reconfiguration: The realization of control activities which allow the system to function despite low performance.

Fault can be defined as the deviation of at least one characteristic function from standard, acceptable and usual functioning of a system. Fault occurs within a system and can lead to lower or even no performance of a component of the system responsible for a specific task. There are various types of faults resulting from the following situations; faulty design and production, inappropriate use, maintenance procedures, software, operator, and environmental condition. Some of these faults can also be classified as “errors”. In this respect, there is a great human effect in these processes. When no intervention is applied in case of a fault, it can lead to a bigger fault and consequently system disfunctioning (failure).

On the other hand, a failure refers to permanent interruption in the functioning of a system fulfilling a certain task under predetermined working conditions. One or more faults may lead to a system failure.

Any deviation in the system should not be considered fault. Deviations can be categorized into three types; temporary, intermittent and permanent. Temporary deviations are due to the effects of external disturbance and last a certain time and turns back to normal functioning with no intervention required. Intermittent deviations are generally due to unstable device and tool functions. Permanent deviations can be caused by component faults, physical damage and design fault. It is quite difficult to detect the cause leading to temporary and intermittent deviations since deviations exist when the cause leading to deviations are present and they end when the cause is not present anymore [3].

The methods used for fault detection can be examined in two groups in general sense; those that are not based on a model and those that are based on a model. The methods which are not based on a model do
not require the process to make use of a mathematical model.

The simplest and the most common model used in fault detection is to control the limit of measurable variable. For these purposes, two limit values are assigned as measurable variable $Y(t)$. When the value of this variable exceeds the upper limit defined as Y_{max} and is lower than the lower limit Y_{min}, it might be concluded that a problem exists in the system. The disadvantage of this method is the changes in working limits.

Another method that might be applied in fault detection is based physical redundancy that is the comparison of output values of system components [4].

In addition to the methods that are not based on a model mentioned above, faults can also be detected by making spectrum analyses of system measurements or making use of the structures allowing logical deductions.

The fault detection methods based on modeling involve residual production and decision making processes. They also require the use of a mathematical model as analytical redundancy. The most common fault detection methods used are the observers in deterministic systems and Kalman Filter in stochastic systems.

The sensor fault detection, its isolation and reconfiguration of the system on an aircraft model by using fuzzy logic by Savanur et al. are shown through simulations. In their studies, the faults are first detected and isolated through Kalman Filter, and later an appropriate control input is established through a rule database which is based on fuzzy logic [5].

By using simulations, Kiyak et al. are shown how sensor faults for different scenarios of VTOL aircraft were detected [6].

Similarly, the method used by Kulkarni et al. for fault detection in hydraulic systems by using fuzzy logic is shown through simulations. In fuzzy logic controller, residuals and cumulative residuals are used as input, and the intensity of the fault as output. The studies by Kulkarni et al., in short, emphasize not only the detection of the faults but also their size [7].

Kiyak et al. carry out the detection and isolation of aircraft sensor and actuator faults through unknown input observers. The reconfiguration suggests by them allowed the aircraft to function normally again [8].

In this study, the detection and isolation of sensor faults in a flight control system are carried out through observers based on modeling. In addition, a structure is suggested using fuzzy controller so as to have an idea about the size of sensor fault. When this suggested structure is used, it might be possible to choose the most suitable control type to remove the effect of the faults efficiently during the phase of reconfiguration following the detection and isolation of the fault.

2 Model-Based Fault Detection and Isolation (FDI)

It is quite disadvantageous to have at least two spares so as to detect one fault. For instance, it is not convenient to have two spares for each component (sensor, actuator and control surfaces) in such a complex system like aircraft since they might cause extra weight and cost as well as space problems. Therefore; this method should be used for simpler systems where above mentioned disadvantages do not cause considerable problems.

As for fault detection, it would be more advantageous to use analytical redundancy (computer, microprocessors or software) in which a mathematical model is used and various computations are made rather than using software excess through special sensors, physical excess and limit control that are not based on modeling.

The basic principle of observers is that the predictions of state variables of a dynamic system are closer to the predictions of state variables of another system called “observer”. The same principle is applicable for unknown input observers (UIO), which is also a type of “observer”.

Consider a continuous linear time invariant state space model of the system [9, 10]:

$$x(t) = Ax(t) + Bu(t) + Ed(t)$$

$$y(t) = Cx(t)$$

A, B, C, E, x, u, y, and d represent the system coefficient matrix, the input coefficient matrix, the output coefficient matrix, the unknown input distribution matrix, the state vector, the input vector, the sensor output and the unknown input vector respectively.

The structure of the unknown input observer is described as [11, 12]:

$$\dot{x}(t) = Fz(t) + TBu(t) + Ky(t)$$

$$\hat{x}(t) = z(t) + Hy(t)$$

F, z, and \hat{x} represent the observer dynamics matrix, the observation vector, and the estimated state vector respectively. T, K and H are defined below.

The error vector is given by:

$$e(t) = x(t) - \hat{x}(t)$$

Using Equation (1) and (2), error vector is obtained:

$$e(t) = x(t) - \hat{x}(t) = x(t) - z(t) - Hy(t)$$

$$= x(t) - z(t) - HCx(t)$$

$$= (I - HC)x(t) - z(t)$$

Using Equation (4), derivative of the error vector is obtained:

$$\dot{e}(t) = (A - HCA - K_1C)e(t) - [F - (A - HCA - K_1C)]z(t)$$

$$- [K_2 - (A - HCA - K_1C)H]y(t)$$

$$- [T - (I - HC)]Bu(t) - (I - HC)Ed(t)$$

If the following relations hold true and $K = K_1 + K_2$;
Recent Researches in Circuits, Systems, Mechanics and Transportation Systems

\[(HC-1)E = 0 \quad (6)\]
\[T = I - HC \quad (7)\]
\[F = A - HCA - K_C \quad (8)\]
\[K_2 = FH \quad (9)\]
derivative of the error vector will be [13]:
\[\dot{e}(t) = Fe(t) \quad (10)\]
and, then the solution of the error vector is
\[e(t) = e^F e(0).\] If \(F\) is chosen as a Hurwitz matrix, the solution of the error equation goes to zero asymptotically. So, \(\dot{x}\) converges to \(x\).

Once the fault is detected, locating the component where the fault occurs is called the isolation of the fault.

The fault isolation is to locate the fault. One method is called “Dedicated Observer Scheme” (DOS) in the related literature. Here, each residual signal is designed to be sensitive to one fault but is insensitive to others. These properties make isolation possible. However; it is quite demanding to obtain such a situation. To make maximum design freedom, another method is used a generalized observer scheme (GOS). Here, each residual signal is designed to be sensitive to faults in all but one sensor. The relationship between residuals and the fault in this structure is as follows:
\[
\begin{align*}
\left| r^I(t) \right| &< e^I \\
\left| r^k(t) \right| &\geq e^k \\
& k = I, \ldots, j - I, j + I, \ldots, n
\end{align*}
\] (11)

In this situation, any fault in sensor (j) can be detected by checking the norm of residuals as in Equation (11). Here, \(e^I\) and \(e^k\) are defined as threshold values.

During the identification and reconfiguration phase, fuzzy logic is used. The fuzzy process consists of three main units; namely fuzzifier unit; rule processing unit, and defuzzifier unit.

Fuzzifier unit is the first unit in fuzzy system. The data entered into this unit as certain and feedback results are fuzzified through some scale changes. In other words, each piece of information is assigned a membership value, and sent to rule processing unit after they are converted into a linguistic structure. The data that reach the rule processing unit are combined with rule processing data (“if ... then ... else”) that are based on a database available as stored in the rule processing unit. The logical propositions mentioned here can be formed with numerical values as well depending on the structure of the problem. In the last step, the results obtained by using appropriate logical decision propositions are sent to defuzzifier unit. When Fuzzy set relationships that are sent to defuzzifier unit are considered, fuzzy data are converted into real numerical values following another change of scale [14, 15].

\[
\begin{align*}
\beta & \in [\beta] \\
p & \in [p] \\
r & \in [r] \\
\phi & \in [\phi]
\end{align*}
\] (12)

A and B matrices obtained from stability derivatives are described as: [16]:
\[
\begin{bmatrix}
Y_v & 0 & -1 & g/U_0 \\
L'_{\beta} & L'_p & L'_r & 0 \\
N'_{\beta} & N'_p & N'_r & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}, \quad B =
\begin{bmatrix}
0 & Y^*_{\beta} \\
L^*_{\beta} & L^*_{p} \\
N^*_{\beta} & N^*_{p} \\
0 & 0
\end{bmatrix}
\] (13)

\(\beta\) is side-slip angle; \(p\) is roll rate; \(r\) is yaw rate; \(\phi\) is roll angle; \(\delta_\beta\) is aileron deflection; \(\delta_r\) is rudder deflection; and \(Y_v, L'_p, L'_r, N'_p, N'_r, Y^*_{\beta}, L^*_{\beta}, N^*_{\beta}\) are stability derivatives.

Fault detection, isolation and reconfiguration are evaluated according to sensor fault related scenario. While these scenarios are produced, the values with Gauss distribution are applied in random time intervals within [5 10] closed range as unknown input (d). As for system input, \(u = [1 \quad 1]^T\) and \(F = diag \{-10\}\) are chosen and used in observer equations.

3 Detection of Aircraft Sensor Fault and Determining Its Size

The Figure 1 displays the block diagram of FDI and reconfiguration.

Fig. 1 The detection of aircraft sensor fault, determining its size and restructuring

As seen in Figure 1, the faults regarding the sensors during the overall process are determined through residuals by using unknown input observer structure. During decision making process, fault detection and isolation are carried out by evaluating the produced residuals. Later, fuzzy logic is used to obtain information concerning the size of the fault. Depending on the result of the evaluation, the generating corrective control signal or the generation of the signal switching on the spare sensor are realized.

Lateral state variables and input vector in an aircraft can be defined as:

\[
x = \begin{bmatrix} \beta \\ p \\ r \\ \phi \end{bmatrix}, \quad u = \begin{bmatrix} \delta_\alpha \\ \delta_r \end{bmatrix}
\] (12)

\[
A =
\begin{bmatrix}
Y_v & 0 & -1 & g/U_0 \\
L'_{\beta} & L'_p & L'_r & 0 \\
N'_{\beta} & N'_p & N'_r & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}, \quad B =
\begin{bmatrix}
0 & Y^*_{\beta} \\
L^*_{\beta} & L^*_{p} \\
N^*_{\beta} & N^*_{p} \\
0 & 0
\end{bmatrix}
\] (13)

\(\beta\) is side-slip angle; \(p\) is roll rate; \(r\) is yaw rate; \(\phi\) is roll angle; \(\delta_\alpha\) is aileron deflection; \(\delta_r\) is rudder deflection; and \(Y_v, L'_p, L'_r, N'_p, N'_r, Y^*_{\beta}, L^*_{\beta}, N^*_{\beta}\) are stability derivatives.

Fault detection, isolation and reconfiguration are evaluated according to sensor fault related scenario. While these scenarios are produced, the values with Gauss distribution are applied in random time intervals within [5 10] closed range as unknown input (d). As for system input, \(u = [1 \quad 1]^T\) and \(F = diag \{-10\}\) are chosen and used in observer equations.
Unknown inputs might be non-measurable external disturbances, unknown control effects or unmodelled system dynamics.

Stabilized A is obtained as follows:

$$
A = \begin{bmatrix}
-0.1208 & 0.0022 & -0.9520 & 0.0622 \\
-1.6612 & -0.7362 & 0.0644 & -0.0507 \\
1.6127 & -0.1465 & -1.5933 & -0.0123 \\
0 & 1 & 0 & 0
\end{bmatrix}
$$

$B = \begin{bmatrix}
0 & 0.014 \\
0.13 & 0.15 \\
0.018 & -0.39 \\
0 & 0
\end{bmatrix}$

$E = \begin{bmatrix}
0.1 \\
0.1 \\
0.1
\end{bmatrix}$

C = I (4x4) \hspace{1cm} \text{(14)}$

“f_a” fault effect shows the effect due to sensor fault and is applied after the moment of fault emergence. The matrix used after the fault time is as follows:

$$
f_a = \begin{bmatrix} 0 & 0 & x \end{bmatrix} \hspace{1cm} \text{(15)}
$$

“x” is defined as $x < 20$ degrees/s. The effects under various scenarios are examined in simulations.

The output effects in Figure 2 are obtained by using the system matrices given above. As a requirement of the scenario, the fault is produced at any time between the [0, 1000] range. Figure 2 displays the effect of the fault on outputs. 1, 2, 3, and 4 refer to side-slip angle, roll rate, yaw rate and, and roll angle respectively.

Fig. 2 Outputs

In Figure 2, the effects of unknown inputs are observed after the 200th second. After the 400th second, there is a sharp increase in yaw rate, which is the 3rd increase. Since it is quite difficult to determine whether the sudden change that occurred in the 200th second is due to disturbance or a fault, it is more convenient to use GOS for fault detection.

The norms of the residuals to be used in fault detection through UIO were obtained as displayed in Figure 3.

According to GOS equipment, a total of four residual norms were obtained. When these residual norms are examined, it is observed that a small increase occurs due to disturbance in residual norms after the 200th second. After the 400th second, on the other hand, there is a considerable increase in every residual norms except the residual norm which belongs to yaw angle, which is the 3rd state variable. In this situation, the fault in the sensor that belongs to yaw angle state, which is the 3rd state variable has been detected. For the purpose of not evaluating the small increases due to unknown inputs as faults by mistake, faulty sensor was detected by determining a threshold value.

After the faulty sensor was detected, the size of the fault was measured for which a fuzzy logic based structure was used. Fuzzy logic structure has one input and one output. In order to determine the size of the fault, the multiplication of residual norms, which might be considered as function of residual norms, which is evaluated as an input parameter. According to GOS equipment, fault detection is carried out due to the increase in a total of three residues. Naturally, these increases in residual norms make it possible to use residual norms multiplication in a clearer way.

The output and input functions of fuzzy controller were chosen as very small, small, medium, big and very big. The functions that belong to controller were formed as shown in Figure 4 and 5 with the help of expert knowledge and observing the relationships between fault size and the multiplication of residue norms.
Fig. 4 Membership functions belonging to residual norms multiplication (input)

Fig. 5 Fault Size (Output)

The Truth table used for the determination of the fault size is used in a way similar to Table 1.

Table 1 Truth Table

<table>
<thead>
<tr>
<th>I</th>
<th>VS</th>
<th>S</th>
<th>M</th>
<th>B</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>VS</td>
<td>S</td>
<td>M</td>
<td>B</td>
<td>VB</td>
</tr>
</tbody>
</table>

According to suggested fuzzy controller and centroid method, the fault sizes given in Equation (15) were successfully detected as shown in Figure 6 and Figure 7.

Fig. 6 The detection of a fault size \(x=5\) through fuzzy logic

Fig. 7 The detection of a fault size \(x=10\) through fuzzy logic

After the detection, isolation of the fault and determination of its size, the outputs displayed in Figure 8 and 9 were obtained through reconfiguration phase for two different scenarios.

Fig. 8 The reconfiguration for the size \(x=5\)

Fig. 9 The reconfiguration for the size \(x=10\)

After the 200th second, a sharp increase is observed due to unknown input into the system. FDI unit is insensitive to disturbance. On the other hand, a fault that occurred in the 400th second was able to be detected as soon as it occurred. During reconfiguration phase, a corrective control signal was produced depending on the
size of the fault. Corrective control signal is the negative value of fault size after the assessment of fault size. Instead of forming a corrective control signal, different methods can be used for reconfiguration when relatively larger scale faults occur.

4 Conclusion
In this study, the detection and the isolation of sensor faults in an aircraft model have been carried out through the use of unknown input observers to detect the fault despite the presence of unknown inputs.

The suggested method has been successful in detecting and isolating sensor faults that occurred randomly at any time. At this point, in order to have an opinion about the upcoming system reconfiguration process, a structure with the rules based on fuzzy logic has been designed for the determination of the size of the fault. The objective of these attempts has been to provide the choice and implementation of an appropriate control structure on a certain basis. It has been found that fuzzy logic controller determine different fault sizes in a quite similar way, which have been presented through simulations under different scenarios. System reconfiguration process has been established by forming corrective control signal and desired outcomes have been obtained.

References: