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Abstract: In this paper, we describe Large vocabulary Continuous Speech Recognition (LVCSR) system SPO-
JUS++ which has been developed in our laboratory for over 20 years and recently fully reimplemented from
scratch. SPOJUS++ employs a context-dependent Hidden Markov Model (HMM) as an acoustic model and an
N-gram model as a language model to decode speech. SPOJUS++ has many novel features including a dynamic
expansion of linear dictionary, a use of likelihood index for efficient handling of the inter-word dependency and
one pass decoding. SPOJUS++ can decode speech in real time on current standard PC without painful degradation
of the performance even though it uses a context-dependent HMM and a high order N-gram language model (N
>= 3). Also, SPOJUS++ can construct a confusion network which leads to word error rate minimization recog-
nition. Constructed confusion networks can be used in many kinds of post-processing applications which require
automatic speech recognition results. We evaluated SPOJUS++ in terms of word accuracy, real time factor and
search error. Experimental results showed that SPOJUS++ is comparable to state-of-the-arts.

Key–Words: Automatic speech recognition, LVCSR, decoder

1 Introduction

Large Vocabulary Continuous Speech Recognition
(LVCSR) is quite difficult because which should deal
with large vocabulary which has sometimes over 1
million words and continuous speech where word
boundaries are not known, nevertheless, current re-
search efforts for achieving LVCSR had made it pos-
sible [1, 2].

In our laboratory, we also have been devel-
oped LVCSR system called SPOJUS (SPOntaneous
Japanese Understanding System) for over 20 years
[3, 4, 5]. Originally, although it was written in C
language, recently we have rewritten it in C++ lan-
guage from scratch. We named the new LVCSR sys-
tem SPOJUS++.

SPOJUS++ is a one pass decoder which employs
a context-dependent Hidden Markov Model (HMM)
as an acoustic model and an N-gram language model
as a language model. Novel features of SPOJUS++
including a dynamic expansion of linear dictionary, a
use of likelihood index for efficient handling of the
inter-word dependency and one pass decoding are de-
scribed in this paper. SPOJUS++ can decode speech
in real time on current standard PC without painful
degradation of the performance even though it uses a
context-dependent HMM and constraints with a high
order N-gram language model (N >= 3). Also, SPO-

JUS++ can construct a confusion network which leads
to word error rate minimization recognition. Con-
structed confusion networks can be used in many
kinds of post-processing applications which require
automatic speech recognition results.

We evaluated SPOJUS++ in terms of word ac-
curacy, real time factor and search error on serveral
Japanse corpora. These experimental results showed
that SPOJUS++ is comparable to other state-of-the-art
decoders.

This paper is organized as follows. In the next
section, basic algorithms used in SPOJUS++ is pro-
vided. Novel features of SPOJUS++, namely, dy-
namic expansion of linear dictionary, decoding using
likelihood index and one pass decoding with high or-
der N-gram language model are described in Sections
3, 4, 5, respectively. In Section 6, a two pass decod-
ing scheme employed for SPOJUS++ is discussed. In
Section 7, a construction method of confusion net-
work [6] from word trellis instead of word lattice is
explained. Experimental results are presented in Sec-
tion 8. Finally, this paper is summarized in Section
9.

2 Basic Algorithms
SPOJUS++ is a one pass decoder which employs a
HMM as an acoustic model and an N-gram model as a
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language model. Suppose O (|O| = N ) represents an
acoustic observation sequence and PW (i) represents
the score of the partial hypothesis W ending at time
i. LVCSR using an N-gram language model can be
formulated as follows:

PW ′=Ww(i) = max
w

PW,w(i), (1)

PW,w(i) =

max
j<i

{PW (j) +Qw(j, i) + L(w|W )}, (2)

where PW,w(i) means a score of a hypothesis Ww
ending at time i which was resulted in by connect-
ing the word w to the partial hypothesis W , Qw(j, i)
means an acousic score when the word w was ex-
panded at time j and ending at time i, and L(w|W )
is a language score of word w when connecting to W .
The number of allowable combination of words in the
optimization problem of Eq. (1) explodes exponen-
tially as time increases, therefore, we need to solve the
problem with accurate approximation and pruning.

SPOJUS++ expresses a word lexicon by tree
structure and expands only the best hypothesis at each
frame by assuming 1-best approximation as described
in Section 3.2. When using a tree lexicon, we cannot
apply language score to a hypothesis until the hypoth-
esis reaches leaves of the tree. Before applying the
true language score at a leaf of the tree, uni-gram lan-
guage score is assigned to the hypothesis. Uni-gram
score of each word is factored from the leaves of the
tree to the root node. The uni-gram score is replaced
with the true N-gram score when hypothesis reaches a
leaf node.

Pruning is conducted based on the number of ac-
tive nodes, the score difference between a hypothesis
and the best hypothesis and the number of words end-
ing at each frame. At each frame, only the predifined
number of hypotheses are retained. The hypotheses
whose scores have larger difference compared to the
score of the best hypothesis are pruned. The pred-
ifined number of words are allowed to connect and
examin the score when backtrace is conducted.

To speed up the decoding, SPOJUS++ also uses
language model score cache by assuming that hy-
potheses which reach a word node (a leaf in the tree
lexicon) are same during several frames.

In addition to these basic algorithms which are
often used in other LVCSR systems, SPOJUS++ has
several novel features which are described in the fol-
lowing sections.

a sa hi
a sa ga o
a ki ta
i ru ka

· · ·
(a) linear lexicon

a sa hi
ga o

ki ta
i ru ka

· · ·
(b) tree-structured lexicon

Figure 1: Linear lexicon and tree-structured lexicon.

3 Dynamic Expansion of Linear dic-
tionary [4]

3.1 Linear lexicon and tree-structured lexi-
con

HMM-based LVCSR takes more computational cost
when the vocabulary size becomes larger. When us-
ing a linear lexicon illustrated in Fig. 1 (a), the number
of expanded HMM states increases proportionally to
the vocabulary size and then the computational costs
is also proportional to the vocabulary size. The tree-
structured lexicon illustrated in Fig. 1 (b) is conven-
tionally used to reduce the number of expanded HMM
states.

3.2 Recognition using tree-structured lexi-
con and 1-best approximations of word
history dependency

The likelihood and boundary of a word depend on the
word history. So we have to execute the forward de-
coding procedure independently for all new hypothe-
ses generated by concatenating a word to all the possi-
ble hypotheses. Since many hypotheses are generated
in this process, we have to make an assumption on the
word history dependency and bundle the hypotheses
using an approximation based on the assumption.

Compared to other methods such as word-pair ap-
proximation [7] which assumes that the word bound-
aries depend on just one previous word, the 1-best ap-
proximation [8] does not assume any word-history de-
pendencies. This approximation reduces the compu-
tational cost dramatically because the algorithm does
not need copies of the HMM network and uses only
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one reentrant network. However, this approximation
is not exact. The HMM network is shared by the
hypotheses expanded at all the time frame and thus
many paths are overrided and wiped off by the other
path. So the path which is optimal when considering
the language score which can be applied at the leaf
node may be rejected by this mechanism. In this way,
the optimal word sequence is not guaranteed to be ob-
tained by tree-structured lexicon search under the 1-
best approximation.

3.3 Recognition using linear lexicon

Linear lexicons for vocabulary words are connected
each other from the tails to the heads in an HMM net-
work. Using this network, any sub-word HMMs are
not shared among words unlike the tree lexicon. This
enables the system to apply language scores at the first
node of each word whereas the tree-structured lexi-
con does not. This means that the system can use lan-
guage look-ahead, resulting in efficient constraints of
the search space. Also, because there are no conflicts
among words, the first best hypothesis is guaranteed
to be obtained even though the HMM nodes in linear
lexicons are also shared among histories and thus the
optimal N-best hypotheses are not guaranteed to be
obtained.

Fig. 2 (a) shows an example of the new word at-
tachment to hypotheses using a linear lexicon. The
word “a-sa-ga-o” is attached to the hypothesis D
which maximizes the sum of the total score of hypoth-
esis D and the language score P (a-sa-ga-o|D). On
the contrary, the HMM network is attached to the hy-
pothesis A in the case of a tree-structured lexicon as
illustrated in Fig. 2 (b) because of its highest likeli-
hood among the hypotheses not considering the word
probabilities when given the histories.

Decoding using a linear lexicon is more accu-
rate than using a tree lexicon, however, the computa-
tional cost needed is much higher than that for a tree-
structured lexicon.

3.4 Combinational use of dynamically ex-
panded linear lexicon and static tree-
structured lexicon

SPOJUS++ employs a new search method using
search on dynamically expanded linear lexicon along
with the 1-best approximation search on a tree-
structured lexicon [4]. That is, we basically used the
1-best approximation tree-structured lexicon search
and also used the linear lexicon search in parallel.
Only the small number of words Nlin, which were
dynamically selected, are expanded in a linear lexicon

(a) Tree-structured
lexicon expansion
with 1-best approxi-
mation

(b) Linear lexicon expansion

Figure 2: Word attachment with partial sentence hy-
pothesis (assuming P (A) > P (B), P (C), P (D) and
P (a-sa-ga-o|D) ≫ P (a-sa-ga-o|A)).

network.
In our dynamic selection of the words to be ex-

panded in a linear network, we evaluated all the vo-
cabulary words at every time frame using the follow-
ing equations:

Qtree(w, t) = max
v

(Phyp(v, t) + L(w|v)), (3)

Qlin(w, t) = max
sw

(Pstate(sw, t)), (4)

where Phyp(v, t) is the likelihood of the final HMM
state of the hypothesis which ends with the word v,
Pstate(sw, t) is the likelihood of the HMM state sw in
word w which is expanded on a linear HMM network
at the time frame t and L(w|v) is a look-ahead prob-
ability which is the occurrance probability of word w
given a word history v. Qtree(w, t) in Equation (3)
means the maximum value among the sums of like-
lihood of preceding word sequence ended by word v
in a tree-structured network and the look-ahead prob-
ability. Qlin(w, t) in Equation (4), which means the
maximum value among the HMM states of the word
w, is calculated for the word w which is already ex-
panded in the linear HMM network. If a word w cor-
responds to both Qtree(w, t) and Qlin(w, t), then the
maximum value of Qtree(w, t) and Qlin(w, t) is se-
lected as the evaluation value for the word.

The Nlin-best words are selected based on the
scores computed by Eqs. (3) and (4). The words
selected and not expanded on the linear network yet
will be expanded. The words selected and already ex-
panded on the network will be kept on the network.
The words not selected on the linear network will be
removed from the network. Using the linear lexi-
con, the optimal path lost by the 1-best approximation
search on the tree-structured lexicon will be likely to
be kept. On the other hand, the paths with low lin-
guistic probability will be pruned out from the linear
network without acoustic evaluation because of the
language look-ahead, however, such paths also have
chance to be kept on the tree-structured network.
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4 Inter-Word Context-Dependent
Modeling using Likelihood Index
[9]

Because Japanese syllables consist of a consonant and
vowel pair, there are relatively small number (approx.
120) of syllables and we only need to consider small
variations (approx. 7 or 8 including vowels and pause)
of left context. So we can use full syllable model-
ing considering C-V context dependency and also eas-
ily extend the Context Independent HMM (CIHMM)s
to full left Context Dependent HMM (CDHMM)s to
consider V-C context dependency.

As well known, intra-word context-dependent
modeling can be realized by describing the CD sylla-
bles in the dictionary. However, inter-word modeling
should be realized by recognition process1.

SPOJUS++ deals with the context dependency as
illustrated in Fig. 3. As described in Fig. 3 (a), we
only need to make branches for the head syllable ac-
cording to the contexts and the paths are merged at
the second syllable for the linear lexicon. For the
tree-structured lexicon, branches are made in a sim-
ilar way. At the end node of a word, the language
scores have to be compensated considering the inter-
word context, however, the scores of contexts other
than that of the best history are lost because of the
merge at the second syllable. To solve this problem,
we introduce the ‘likelihood difference index’ (Fig.
3(b)). The likelihood differences between phonetic
contexts are calculated at the merging points and the
difference index is inherited to the succeeding nodes.
For example, Fig. 3(b) shows that i-a (“a” with the
left context “i”) after 1st syllable matching is the best.
Using this index, language scores are accurately com-
pensated considering inter-word phonetic contexts at
the end node of the words.

Even though this handling of conext dependency
is accurate only for left context dependent models
such as ours, this algorithm can be used to deal with
tri-phone model by just ignoring inter-word right con-
text and considering only inter-word left context of
tri-phone. This is not accurate for one pass decoding,
however, we can use a two pass recognition scheme
described in Section 6 in such a case.

5 One Pass N-gram decoding [5]
Similar with using bigram language models, we ex-
pand bigram language models to trigram language

1Inter-word description can be prepared a priori as in the case
of WFST based method, however such modeling is often realized
by some kinds of approximations to reduce memory consumption.

(a) Linear lexicon
Keep difference of scores between 
phonetic contexts and starting point
of each context

start 5 7

start 5 7 76

start 5 7

(b) Tree-structured lexicon

Figure 3: Approximate inter-word context-dependent
modeling and recognition.

Figure 4: Backtracking of word history.

models and 4-gram language models (It can be ex-
panded to arbitrary N-gram). If we adopt trigram lan-
guage models and 4-gram language models, Eq. (2)
would turn into Eqs. (5) and (6), respectively:

Qla(w, t) = max
v

(Phyp(v, t) + L(w|u, v)), (5)

Qla(w, t) = max
v

(Phyp(v, t) + L(w|s, u, v)),(6)

where L(w|u, v) and L(w|s, u, v) are look-ahead
probabilities which are the occurrance probabilities of
word w given word history v, u and v, u, s, respec-
tively. When adopting bigram language models, the
optimal hypothesis is guaranteed to be obtained us-
ing a linear lexicon. However, adopting trigram and
4-gram language models, optimal hypotheses may be
lost, because optimal language score for the current
word according to two or three word history can not
obtain even if we use a linear lexicon. The two or
three word hisotry is traced by backtracking Pûv and
Pˆ̂sûv as shown in Fig. 4.
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6 Two pass decoding

SPOJUS++ can achive accurately one pass search
by employing the algorithms explained in this paper.
However, because there are still some approximations
such that using 1-best approximation and assuming
fixed word boundaries except adjacent words, there
is no guarantee that the most plausible hypotheses are
obtained. Therefore, two pass decoding is also imple-
mented for SPOJUS++.

Two pass decoding of SPOJUS++ uses best-first
stack decoding on word trellis obtained from the result
of one pass search for the second pass search. To ob-
tain forward heuristics which stack decoding require,
SPOJUS++ runs a backward algorithm on the word
trellis. If we adopt backward stack decoding, we can
utilize scores obtained by the first pass result as back-
ward heuristics without additional forward recursion
to compute heuristics [8]. However, SPOJUS++ is a
one pass decoder and uses an N-gram language model
where N > 2 on the first pass. Hence, having back-
ward N-gram in addition to forward N-gram is not ef-
ficient.

During the second pass stack decoding, only lan-
guage model scores are recomputed. The language
model used in the second pass can be changed from
the one used in the first pass. To make the second pass
search be efficient, hypotheses which share context
are bundled and stack size is limited to a predifined
number. N-best hypotheses resulted in are rescored
in terms of acoustic score where the model used for
rescoreing can be changed from the one used in the
first pass similar to the language model.

7 Construction of Confusion Net-
work from Trellis [10]

According to Mangu’s algorithm, a confusion network
is constructed from a word lattice [6]; however, SPO-
JUS++ does not produce a word lattice. Since it as-
sumes a 1-best approximation in the first pass, SPO-
JUS++ generates a word trellis instead of a word lat-
tice. Although a lattice could be generated by search-
ing the trellis in the second pass, it would be redun-
dant since we do not need a lattice, but a confusion
network. Hence, we need a method to construct a con-
fusion network from a word trellis, instead of a word
lattice.

A word trellis contains information about the be-
ginning and end points of each word stored in the trel-
lis. Using this information, a huge lattice can be gen-
erated from the trellis by regarding words stored in the
trellis as edges and the beginning and end frames of
each word as the nodes, from which the confusion net-

work can be constructed. In most cases, we need lat-
tice pruning based on the posteriors before construct-
ing the confusion network because the lattice usually
contains a huge number of edges (typically more than
0.1 million),

8 Experiments

8.1 Setup

To evaluate the performance, we used three kinds of
data sets. The first set is IPA100 test set consisting of
100 utterances by 23 speakers from Japanese newspa-
per read speech in JNAS corpus2. The second set is
4 lecture speech utterances from the Corpus of Spon-
taneous Japanese (CSJ) 3. The final set is 8 lecture
speech utterances from the Corpus of Japanese Lec-
ture Class (CJLC) [11] 4. All of speech data were
sampled with a sampling frequency of 16 kHz, and
the signal was pre-emphasized by a factor of 0.98. A
Hamming window of 25 ms length was applied and
shifted with the step of 10 ms. The 38 dimensional
feature vectors were used including 12 dimensional
MFCCs, their first and second deviation coefficients
and the first and second deviations of log power.

For JNAS evaluation data set, 27992 utterances
read by 175 male speakers (JNAS corpus) were used
to train 116 Japanese context-independent syllable
HMMs (strictly speaking, mora HMMs [12]) includ-
ing short pause and silence. For CSJ and CJLC eval-
uation data set, 116 CSJ context-independent HMMs
were adapted from the 116 JNAS context-independent
HMMs by MAP [13, 14] using 987 lectures from the
CSJ corpus uttered by 987 male speakers. Using these
context-independent HMMs (CIHMMs) as base mod-
els, we also trained 928 context-dependent HMMs
(CDHMMs) with 8 left contexts (5 vowels, silence,
/N/, and short pause including /q/). Each continuous
density HMM had 5 states, and 4 of them had pdfs of
output probability. Each pdf consisted of 4 Gaussians
with full-covariance matrices.

For the JNAS evaluation data set, trigram lan-
guage models with a 20000 word vocabulary size
were trained from the text of 75 months Mainichi
Japanese newspaper. For the CSJ and CJLC evalua-
tion data set, trigram language model with a 20000
word vacabulary size was trained using a text made
by correctly transcribing lecture speech of CSJ corpus
(970 lectures).

2http://www.mibel.cs.tsukuba.ac.jp/ 090624/jnas/instruct.html
3We used a01m0007, a01m0035, a01m0074 and a05m0031
4We used L11M0011, L11M0012, L11M0031, L11M0032,

L11M0041, L11M0042, L11M0051 and L11M0052
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Table 1: Experimental condition
OS Linux 2.6.26-2-amd64

CPU Intel(R) Xeon(R) CPU X5365 3.00GHz
Memory 32GB
Compiler g++ (GCC) 4.4.5

Optimization -O3

We evaluated SPOJUS++ in terms of word accu-
racy, real time factor and search error. Word accuracy
is computed as follows:

Acc. = #Cor.−#Sub.−#Del.−#Ins.
#Cor. (7)

where #Cor.，#Sub.，#Ins.，#Del. mean the number
of correct words, the number of substituted words, the
number of inserted words and the number of deleted
words, respectively. Real time factor is computed as
follows:

xRT =
Thyp(i)

Dref (i)
(8)

where Thyp(i) means time needed to decode speech
data i and Dref (i) means the duration of speech data
i. If xRT is less than 1.0, speech can be decoded in
real time. The experimental condition to assess the
real time factor is shown in Table 1. Search error is
evaluated as follows:

SE =
∑
i

δ(Pref (i) > Phyp(i)) (9)

where δ(x) is a function 1 if x is true, 0 otherwize and
Pref (i) means the score for speech data i and Phyp(i)
means the best hypothesis for speech data i. If the
score of the best hypothesis system returned is lower
than the score of correct hypothesis(manual transcrip-
tion), we can regard it as a search error.

8.2 Results

8.2.1 Experiments on IPA100 test set

In this section, we evaluated SPOJUS++ on IPA100
test set. Using the test set, the novel algorithms im-
plemented in SPOJUS++ except construction of con-
fusion network from trellis was evaluated.

Evaluation of one pass algorithm Table 2 shows
the word accuracies on IPA 100 test set by one pass
recognition described in Section 5. In Table 2, #Node
and #Beams are pruning parameters and they means
the number of active nodes which are retained at each
frame and #Beam means the number of hypotheses

Table 2: One pass recognition results on IPA 100 test
set [%].

#Node #Beam #Linear
0 100 250 500

1000 5 90.3 91.6 91.7 91.6
1000 10 91.8 92.5 92.6 92.3
1000 20 92.1 92.3 92.4 92.4
1000 30 92.2 92.3 92.5 92.5
1500 5 90.8 91.7 91.8 91.7
1500 10 92.4 92.5 92.5 92.5
1500 20 92.6 92.4 92.5 92.5
1500 30 92.5 92.5 92.6 92.6
3000 5 90.6 91.6 91.6 91.5
3000 10 92.3 92.5 92.4 92.4
3000 20 92.6 92.5 92.5 92.5
3000 30 92.7 92.5 92.5 92.5
5000 5 90.8 91.9 91.9 91.9
5000 10 92.6 92.9 92.7 92.7
5000 20 92.9 92.8 92.8 92.8
5000 30 93.0 92.9 92.9 92.9

which allowed to expand at each frame, respectively.
#Linear means the number of words expanded as the
linear lexicon. We can see that the word accuracies
increase as pruning parameters are relaxed. The com-
binational use of dynamically expanded linear lexicon
and static tree-structured lexicon was effective espe-
cially when pruning parameters were tight.

Evaluation of two pass algorithm Table 3 shows
the word accuracies on IPA 100 test set by two pass
recognition described in Section 6. Two pass recogni-
tion results were slightly superior to one pass recog-
nition results shown in Table 2. Therefore, the one
pass algorithm described in Section 5 was not perfect.
However, since the differences were not so large, our
one pass algorithm would be effective when we need
recognition results as fast as possible.

Evaluation of search error and real time factor
Tables 4 and 5 show the search error and real time
factor on sevral conditions, respectively. From the ta-
bles, we can see that pruning parameters and search
error is trade-off and two pass recognition consitently
decrease the search error compared to one pass recog-
nition. SPOJUS++ can recognize speech in real time
by tuning pruning parameters appropriately.

Evaluation of dealing with tri-phone SPOJUS++
is tuned to deal with left context dependency and not
tuned to deal with right context which is needed for
dealing with tri-phone. However, as described in Sec-
tion 4, SPOJUS++ can use a tri-phone model by just
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Table 5: Real time factor on IPA 100 test set (one pass / two pass) [%].

#Node #Beam #Linear
0 100 250 500

1000 5 0.39 / 2.01 1.80 / 3.50 1.32 / 2.86 1.37 / 2.92
1000 10 0.57 / 2.19 1.62 / 3.20 1.64 / 3.21 1.73 / 3.30
1000 20 0.69 / 2.35 2.00 / 3.65 2.04 / 3.69 2.18 / 3.80
1000 30 0.80 / 2.54 2.33 / 4.06 2.39 / 4.10 2.54 / 4.29
1500 5 0.65 / 2.26 1.49 / 3.07 1.50 / 3.06 1.55 / 3.11
1500 10 0.75 / 2.39 1.81 / 3.42 1.85 / 3.46 1.93 / 3.53
1500 20 0.88 / 2.53 2.40 / 4.08 2.47 / 4.18 2.62 / 4.32
1500 30 1.04 / 2.83 2.52 / 4.28 2.84 / 4.62 2.85 / 4.62
3000 5 1.05 / 2.63 1.87 / 3.45 1.91 / 3.47 1.95 / 3.50
3000 10 1.15 / 2.76 2.37 / 3.99 2.25 / 3.87 2.59 / 4.25
3000 20 1.33 / 3.04 2.64 / 4.32 2.69 / 4.38 3.20 / 4.92
3000 30 1.68 / 3.52 3.25 / 5.03 3.33 / 5.11 3.19 / 4.99
5000 5 1.51 / 3.06 2.33 / 3.92 2.35 / 3.91 2.43 / 4.00
5000 10 1.65 / 3.28 2.69 / 4.30 2.74 / 4.38 3.10 / 4.72
5000 20 1.81 / 3.51 3.11 / 4.81 3.17 / 4.83 3.27 / 4.95
5000 30 2.01 / 3.81 3.47 / 5.29 3.55 / 5.34 3.69 / 5.48

Table 3: Two pass recognition results on IPA 100 test
set [%].

#Node #Beam #Linear
0 100 250 500

1000 5 90.9 92.2 92.2 92.0
1000 10 92.5 93.0 93.2 93.0
1000 20 92.6 92.9 93.0 93.0
1000 30 92.7 93.0 93.1 93.1
1500 5 91.4 92.3 92.3 92.2
1500 10 93.2 93.2 93.2 93.2
1500 20 93.2 93.1 93.2 93.2
1500 30 93.1 93.2 93.3 93.3
3000 5 91.2 92.0 91.9 91.8
3000 10 93.0 93.2 93.1 93.1
3000 20 93.2 93.1 93.1 93.1
3000 30 93.2 93.2 93.2 93.2
5000 5 91.4 92.3 92.2 92.2
5000 10 93.4 93.5 93.4 93.4
5000 20 93.5 93.4 93.4 93.4
5000 30 93.6 93.5 93.5 93.5

ignoring right context in the first pass. Although this
one pass recognition is not exact, SPOJUS++ can con-
duct two pass recognition to improve recognition re-
sults.

Table 4: Search error on IPA 100 test set (one pass /
two pass)[%].

#Node #Beam #Linear
0 100 250 500

1000 5 8 / 7 5 / 4 4 / 3 4 / 3
1000 10 5 / 3 3 / 2 2 / 1 2 / 1
1000 20 4 / 2 3 / 2 2 / 1 2 / 1
1000 30 4 / 2 3 / 2 2 / 1 2 / 1
1500 5 8 / 7 5 / 4 4 / 3 4 / 3
1500 10 5 / 3 3 / 2 2 / 1 2 / 1
1500 20 4 / 2 3 / 2 2 / 1 2 / 1
1500 30 4 / 2 3 / 2 2 / 1 2 / 1
3000 5 8 / 7 5 / 4 5 / 4 5 / 4
3000 10 4 / 2 2 / 1 2 / 1 2 / 1
3000 20 3 / 1 2 / 1 2 / 1 2 / 1
3000 30 3 / 1 2 / 1 2 / 1 2 / 1
5000 5 7 / 6 4 / 3 4 / 3 4 / 3
5000 10 3 / 1 1 / 0 1 / 0 1 / 0
5000 20 2 / 0 1 / 0 1 / 0 1 / 0
5000 30 2 / 0 1 / 0 1 / 0 1 / 0

Table 6 shows the recognition results when us-
ing tri-phone as an acoustic model in SPOJUS++. We
used 2000 states PTM tri-phones for the evaluation.
Each tri-phone consisted of 3 states which had 16
Gaussians with diagonal covariance matrices. The ta-
ble shows that one pass algorithm employed in SPO-
JUS++ is not accurate when using tri-phone, however,
two pass recognition could improve the recognition
results. For comparison, the recognition results by
open source state-of-the-art decoder Julius5 are also

5Julius Version 4.1.4
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Table 7: Recognition results on CSJ and CJLC [%].
Corpus method #Linear Acc.

CSJ

MAP(1pass) 0 70.2
MAP(1pass) 250 70.6
MAP(2pass) 0 70.9
MAP(2pass) 250 71.4

ConfNet 0 71.0
ConfNet 250 71.4

CJLC

MAP(1pass) 0 51.9
MAP(1pass) 250 54.4
MAP(2pass) 0 52.2
MAP(2pass) 250 55.5

ConfNet 0 53.6
ConfNet 250 56.8

listed in Table 6. We used the same acoustic model
and language model with SPOJUS++ and tuned Julius
to achive the highest accuracy. From the result, we
can say that the two pass recognition of SPOJUS++
is comparable to the result of Julius in terms of word
accuracy6. Also, we can say that recognition result
in Tables 2 and 3 are comparable to the result of the
state-of-the-art recognizer.

8.2.2 Experiments on CSJ and CJLC

In this section, we evaluated SPOJUS++ on CSJ and
CJLC test sets. Using the test sets, the consen-
sus decoding [6] by constructing confusion network
from trellis was evaluated. Table 7 shows recogni-
tion results on CSJ and CJLC when using Maximum
a Posteriori decoding (MAP) or consensus decoding
(ConfNet). The table shows that consensus decod-
ing is superior to the one pass decoding and is at
least comparable to the two pass decoding. This result
shows that the effectiveness of consensus decoding by
constructing confusion network from trellis. Because
a confusion network can provide multiple hypotheses
with word posterior information, it is suitable for the
intermediate representation of ASR results [15].

9 Conclusion
In this paper, we described the LVCSR decoder SPO-
JUS++. We evaluated the decoder in terms of word
accuracy, search error and real time factor. Experi-
mental results showed that SPOJUS++ was compara-

6Even though parameters were set to achive the highest ac-
curacy, the real time factor of Julius was 0.45. Julius achived the
high accuracy with the high speed. Of course Julius is the state-of-
the-art decoder, however, the algorithm employed by Julius such
as the backward search on the second pass (i.e., backward trigram)
would be especially effective for Japanese recognition.

ble to state-of-the-arts. In the future, since we evalu-
ated SPOJUS++ only on Japanese corpora in this pa-
per, we want to examine SPOJUS++ on corpora of
foreign languages. Recently, SPOJUS++ was applied
to English recognition successfully [16]. Therefore,
we expect SPOJUS++ can be used broadly for sev-
eral languages. Also, we want to explore utilizing
tied-state left context dependent HMM as similar to
PTM tri-phones to make the decoding of SPOJUS++
be more efficient while preserving the accuracy.
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