
SOA Management and Security Enforcement

MARIANA GORANOVA, JULIANA GEORGIEVA, BOGDAN SCHISCHEDJIEV

Department of Programming and Computer Technologies

Technical University of Sofia

Sofia, Bul. “Kl. Ohridski” 8, bl. 2

BULGARIA

mgor@tu-sofia.bg, july@tu-sofia.bg, bogi@tu-sofia.bg

Abstract: - This paper discusses the importance of integrating SOA management and security enforcement into

an existing IT management environment. It is proved why the thinking about management and security earlier

helps to establish effective governance. The task of unifying the management and the security enforcement in a

SOA is been resolving using the mechanism of JaxView and Security Token Services. Architecture schemes

and JaxView functions for achieving the solution of the raised issues are suggested. Using JaxView to

centralize security for Web services saving time and easily security management instead of implementing and

managing security functions on individual service interfaces is enabled and depicted.

Key-Words: - SOA, service, management, security enforcement, security token, JaxView, proxy gateway

1 Introduction
The most effective way to manage a service oriented

architecture (SOA) infrastructure is to manage it

without having to disrupt the SOA [5]. There are

more than a few SOA management solutions. Most

of them require an agent to be installed on all the

application servers or gateways to be able to provide

visibility [1], [2]. Managing the agents and

deploying the agents is both time consuming,

disruptive and intrusive [9], [10]. With these agents

installed you could then get visibility into different

protocols such SOAP, REST, JDBC, RMI etc. But

the over head the agent adds to the server to be

installed on and the time to configure all the agents

is too much for many companies that they just go

about their SOA without a management tool.

A better way to go about SOA management is to

manage the SOA environment without using any

agents by monitoring at the network layer instead of

the server [3]. Many network monitoring tools use

this architecture to monitor tcp/udp packets. The

question to use the same mechanism to monitor

other protocols that are used within the SOA is

raised. That is exactly how the agent less

deployment from JaxView monitors the SOA.

Some reasons in favour of agent less approach

are generalized in [4].

 Platform Independent Obviously since nothing

is installed on the server there is no dependence

on what platform the server is installed on.

 No Change to Provider or Consumer Since

this is managing and providing SOA visibility by

monitoring out of band traffic there is any

change that occurs to either the consumer or the

provider.

 No Load ‒ No Latency Since the monitoring is

done on the network and only out of band traffic

this adds virtually zero latency or load to the

system as a whole.

 All Protocols By dissecting all tcp protocols this

deployment can provide visibility into SOAP,

REST, JMS, JDBC, RMI etc.

 Service Discovery This is the best way to auto

discover rogue services in the SOA

environment.

Security remains an ongoing concern in SOA

connected with the followings: 1) Web services

have to apply security policies consistently; 2) the

changes to security policies have to be implemented

easily across all services; 3) the SOA developers

have to implement security functions for individual

services.

The delivery of Web service monitoring and

management is closely knitted to effective identity

management and perimeter security. That division

between application development and operational

security has worked so long as security could be

embedded in a network hardware appliance, but

when it runs across both hardware and software

solutions, the implications aren’t confined to the

operational domain. Most Web service vendors

agree that the only viable solution in the long run is

to set up and manage user identities and access

policies as a separate dedicated resource, and then

implement the Web service infrastructure so that it

enforces those security rules [2], [8]. When using

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 59

Web services, the next challenge comes when an

authenticated user wants to access a specific

resource. This needs a way of securely passing the

appropriate credentials from the access management

system through to the requested Web service [4].

The very nature of the dynamic SOA world,

consisting of many component services that can be

recombined and reused, gives rise to potential SOA

responsiveness, management issues and business

risks, for instance: 1) how can you monitor what's

going on in the heterogeneous, distributed SOA

environment, to find and resolve problems quickly?;

2) how can you know and ensure that your SOA

business processes are delivering the right level of

customer service?; 3) how can you guarantee that all

services are responsive, secure and compliant with

appropriate regulatory and business policies?

2 Problem Formulation
The thinking about management and security earlier

helps to establish effective governance ‒ assigning

clear decision-making rights. Management, as a part

of the SOA lifecycle, should not be thought of as a

discrete step in a linear sequence. Instead, tightly

integrate management and security with the

modelling and design of Web services. This is a

relatively new approach which has not been

examined and depicted in the literature sufficiently.

2.1 Service Manager

One example of environment in this connection

is Service Manager, which is the industry’s

leading SOA management and security product

[6]. It intermediaries provide the foundation for

SOA management, security, and run-time

policy enforcement. Service Manager provides

the industry’s most comprehensive SOA

security solution for trust enablement of Web

service providers and consumers. Service

Manager provides: 1) comprehensive end-to-

end security of Web service messages

(authentication, authorization, privacy, non-

repudiation, and audit); 2) built-in PKI (Public

Key Infrastructure); 3) security token exchange

and mediation services; 4) first-mile security; 5)

last-mile security; 6) in-transit security.

The raised issue of unifying the SOA

management and the security enforcement will

be resolved using the mechanisms of JaxView

and Security Token Services.

2.2 JaxView ‒ security and monitoring tool

The proposed JaxView tool is easier to be used and

provides quick time-to-value while is offering a

deep and wide set of governance features that are

otherwise found on tools with a much larger

footprint and price. It can be deployed very quickly

and monitors and secures all service applications.

JaxView is the most cost-effective yet

comprehensive SOA governance tool on the market

[7].

The JaxView server installs as a service on

Windows and is immediately ready to use as a

service proxy gateway. The management console is

hosted on the same server and, once you log in, you

see the interface depicted on. Web services under

management appear in the left pane and can be

grouped into folders for convenience. The main

frame of the “Services” tab gives you a simple view

of the performance and operability (errors, alerts,

and faults) for the level of the Web service

hierarchy (all, folder, or individual service) view

that you choose in the left navigation pane. A

summary report of how a service operation is

performing could be received as well. The most

important services could be classified in the

following groups: 1) monitoring services with theirs

three categories: performance, transaction, and

availability monitoring; 2) managing services

involving applying policies to service-consumer

interactions and including security polices as well as

routing and transmission ones; 3) scheduled and on-

demand performance and operability reports for the

services.

2.3 Security Token Service (STS)

Web services need to authenticate clients in a

heterogeneous environment so that additional

controls such as authorization and auditing can be

implemented. How does the Web service verify the

credentials presented by the client? The answer is to

use brokered authentication with a security token

issued by a Security Token Service (STS). The STS

is trusted by both the client and the Web service to

provide interoperable security tokens.

The client sends an authentication request, with

accompanying credentials, to the STS. The STS

verifies the credentials presented by the client, and

then in response, it issues a security token that

provides proof that the client has authenticated with

the STS. The client presents the security token to the

Web service. The Web service verifies that the

token was issued by a trusted STS, which proves

that the client has successfully authenticated with

the STS.

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 60

The protocol used for issuing security tokens is

based on WS-Trust. WS-Trust is a Web service

specification that builds on WS-Security. Fig. 1

illustrates the process by which a security token is

issued to the client by the STS and then is used to

authenticate with a service, which then returns a

response to the client.

Fig. 1

2.3.1 The client initializes and sends

authentication request to the STS
It is in the form of an RST message (provides the

means for requesting a security token from an STS

or directly from the server). This step can be

performed by presenting the client's identifier and

proof-of-possession (such as user name and

password) directly to the STS or by using a token

issued by an authentication broker (such as an

X.509 digital signature or Kerberos tokens).

2.3.2 The STS validates the client's credentials
After the security token service determines that the

client's credentials are valid, it may also decide

whether to issue a security token for the

authenticated client. For example, the STS may

have a policy where it issues tokens only for users

who belong to a specific role or for valid X.509

certificates that can be validated through a specific

trust chain.

2.3.3 The STS issues a security token to the

client
If the client's credentials are successfully validated,

the STS issues a security token (such as a Security

Assertion Markup Language) for exchanging

authentication and authorization data between

security domains in a RSTR message (returns the

requested token and supporting state) to the client,

typically, the security token contains claims related

to the client. The security token is usually signed by

the STS; when the security token is signed by STS,

the service can confirm that the token was issued by

the STS and that the security token was not

tampered with after it was issued.

2.3.4 The client initializes and sends a request

message to the service

After the client receives a security token from the

STS, it initializes a request message that includes

the issued security token, and then it sends the

request message to the service.

2.3.5 The service validates the security token

and processes the request
The security token is validated by the service that

verifies that the token was issued by the trusted STS

and that the token was not tampered with after it

was issued. After the token is validated by the

service, it is used to establish security context for

the client, so the service can make authorization

decisions or audit activity.

2.3.6 The service initializes and sends a

response message to the client

A response is not always required. Frequently, the

response message contains sensitive data, so it

should be secured.

3 Problem Solution
There are two raised issues to be resolved: 1) to

propose the architecture scheme for achieving SOA

management and security enforcement

simultaneously; 2) to select JaxView’ functions

supposed to fulfill all requirements as far as SOA

management and security enforcement are

concerned.

The questions that have to receive an answer in a

flexible SOA environment could be summarized as

follows: 1) are your Web services available to the

applications that need them; 2) can your end-users

complete transactions that flow through services; 3)

how do you identify problems and resolve them

quickly; 4) do you know who is accessing your

services and can you prevent unauthorized access;

5) can you report and quickly respond to changes; 6)

who is accessing your Web services and how often;

7) how are your services and transactions

performing; 8) are you able to audit message

communication between the consumer and the

providers of service; 9) are end users having

problems and how can they be fixed; 10) are you

looking to discover rogue services automatically.

The solutions of the raised problems will be

developed consecutively, showing some schemas

and functions to be used. The first goal is to manage

the SOA environment without the use of any agents

by monitoring at the network layer instead of the

server.

3.1 Agent less deployment architecture

for monitoring services and enabling

security and policy enforcement
Fig. 2 shows: 1) how JaxView could be deployed as

a service proxy or XML firewall assuring security

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 61

and policy enforcement for services; 2) how it could

communicate with the installed agent components;

3) how it could fulfill the role of a switch in order to

listen to the network traffic. The enforceable

security policies include authentication,

authorization, single sign on, encryption, digital

signatures, and integration with identity

management systems.

Fig. 2

3.1.1 JaxView as service gateway / proxy

The role of the proxy server is to forward messages

from clients (internal and external) to the service

endpoints (service applications). In this architecture,

all service messages are routed through the JaxView

proxy where copies of message data are forwarded

to the processing modules and service requests are

forwarded to service endpoints. When installed in

this configuration JaxView can be used as an XML

firewall. The server allows security giving end-to-

end control of all aspects of SOA management and

SOA governance as: visibility, availability, security,

and brokering (explained later in this paper). The

directory services allow more easily management of

network resources. Management of service

infrastructures through bi-directional

communication with UDDI registries is enabled as

well.

3.1.2 Message agent

It is a component that is installed on the container

where a Web service is run. No code modifications

are needed at the Web services. It is used to forward

service message data from Web application servers

to the JaxView server.

3.1.3 Monitoring Web services as a network

appliance

JaxView is configured to passively listen to network

traffic, monitoring packets for Web service requests

and responses. It then records the service

information and message data for management

purposes. It enables auto discovery of Web services

and can help uncover rogue services in the

environment.

3.2 SOA visibility
Service processes that are composed of interactions

with multiple service end points create new

challenges for understanding the many layers of

service activity. It is more important to have

complete visibility into all Web service activity and

end user experiences, and be able to diagnose the

source of problems when they happen.

Fig. 3

Fig. 3 shows how and where JaxView delivers

visibility across the SOA environment. Some of the

issues resolved by JaxView could be generalized as

follows: monitoring SOAP service messages and

REST messages; enforcement of Service Level

Agreements (SLA); visibility into backend protocols

such as RMI, and SQL; auto discovery of existing

Web services; automatic identification of rogue

services; centralized view of all Web service

activity; client usage rate monitoring; monitoring of

service throughput per client; monitoring fault totals

and fault rate; fault type and content monitoring

including fault code and fault text string; the number

of faults as a percentage of requests.

3.3 SOA security enforcement
The goal is to save implementation time and ease

security management by using JaxView as a service

proxy to check and enforce policies on XML

message content [11]. The three main tasks

deployed by JaxView are: 1) authenticate and

validate users and services requests; 2) enforce

security policies for service access and usage, and 3)

automatically enforce security policy changes.

Fig. 4 shows the two main points which have to

be validated: 1) the service requests from the

consumer ("first mile"); 2) the application server

(“last mile”). JaxView is able to extend the security

enforcement functionality to include the security

policies as a XML gateway in the first side and a

XML firewall in the second. Some of the needed

and used essential features for SOA service security,

assured by JaxView could be summarized as

follows: 1) security proxy and XML firewall

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 62

functions (authenticate and authorize consumers

using STS; encrypt or decrypt XML message

content for both request and response; insert digital

signatures in the request or response xml messages;

validate XML digital signatures and WS-Security

headers etc.); 2) consumer authentication and

authorization; 3) threat protection from: replay

attacks; XML bomb attacks; SQL injection; XPath

injection; denial of service attacks etc.; 4) embedded

secure token services; 5) runtime policy

enforcement functions (used to combine

enforcement of automated policies on service access

and usage with visibility into policy compliance); 6)

Web service policy profiles (created and assigned to

a group of Web services).

Fig. 4

3.4 SOA message brokering
JaxView acts as a XML Gateway to enable runtime

message mediation and content-based brokering for

Web services (Fig. 5). This feature allows to: easily

integrate different systems; convert protocols from

http to non-htp and vice versa; create virtual

services from artefacts of other services;

dynamically modify message schemas etc. Some of

the used runtime service mediation and brokering

functions are: Modify service message schema in

runtime to mediate between different systems and

protocols; Reroute service requests in runtime based

on content checking rules such as service version;

Allow only a specific number of messages to reach

the service in a specific period of time; Provide load

balancing and failover support for back end

services.

Fig. 5

3.5 Web services availability monitoring
A few issues are raising here: about the availability

of Web services; about altering when the problems

happened; about the correctness of services’

responses. Some of the used functions are: 1)

service end point availability monitoring; 2) multi-

step transaction availability; 3) service performance

metrics; 4) event notification alerts; 5) reporting

functions.

3.6 Infrastructure model for JaxView

Security Token Service
JaxView includes a Secure Token Service for

creation and validation of tokens for single sign on

functionality. You can have a single JaxView work

both as a STS and a gateway or separate the

functionality. The proposed model is given on Fig.

6.

Fig. 6

Client (consumer) sends authentication request to

JaxView STS. The RST message contains a security

token that holds the client's credentials, which are

required to authenticate the client. Claims in the

client's credentials, such as a password, may be

sensitive in nature, so it is very important to secure

the RST. The specific security mechanism used for

securing the RST depends on the relationship

between the client and the STS.

JaxView STS validates client’ credentials and

authenticates the user through: 1) LDAP

(Lightweight Directory Access Protocol) for

accessing and maintaining distributed directory

information services over an Internet; 2) active

directory (a service included in most WS Server

operating systems which is responsible for

authenticating and authorizing); 3) IDMS (Identity

managed system) assuring immediate the

provisioning of unnecessary rights disallowing the

availability and use of user accounts or availability

of non-locked accounts etc.

After the authentication the information goes

back to the consumer and so the client gets token

usually signed by the STS. The token is embedded

in the request.

Next step is sending the request to JaxView

XML Firewall which is needed its validation as

well.

So JaxView XML Firewall sends the request to

JaxView STS in order that the last validates token.

The request is sending to the service provider.

The response message should be secured because it

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 63

contains sensitive data. That is why: 1) this message

is sent to JaxView XML Firewall; 2) the XML

encryption and decryption for the authenticated

request are done.

3.7 Algorithm based policy enforcement
JaxView XML Gateway enforces policies based on

most standards (for example WS-Security standards

which can automatically evaluate authentication

parameters).

The options for algorithm based policies within

JaxView include: 1) dynamic schema modification

‒ the ability to invoke an algorithm to modify the

request or response for the service as a policy of the

service; 2) user name token retrieval ‒ the ability

to invoke an algorithm to retrieve the username and

password from the request header or body; 3)

schema validation ‒ invokes an algorithm to

validate the schema of the request or response as a

policy of the service; 4) XML encryption ‒ invokes

an algorithm to encrypt or decrypt part or all of the

request/response payload; 5) exception based

routing policies ‒ JaxView allows the user to look

for specific faults from the service to re-route the

request; 6) STS integration ‒ JaxView can request

and validate tokens from a STS using WS-Trust but

an algorithm policy can be set for proprietary STS

integration protocols.

4 Conclusion
The proposed approach in this paper is to manage

the SOA environment and security enforcement in a

single step without using of any agents by

monitoring at the network layer instead of the

server. This truly agent less monitoring option using

the so called switch has very low overhead and

minimizes additional traffic on the network,

monitoring packets for Web service requests and

responses.

Using JaxView monitoring tool to centralize

security for Web services to save time and ease

security management instead of implementing and

managing security functions on individual service

interfaces is enabled. The infrastructure model for

JaxView security token service is presented. The

model of JaxView’s deployment as a service proxy

assuring security and policy enforcement and

listening to the network traffic is proposed. The

options for algorithm based policies enforcement

within JaxView are composed.

The main contribution is the integration of SOA

management and security enforcement into one

environment and investigations of using a concrete

tool in order to resolve this issue.

ACKNOWLEDGMENT

This paper is supported by the National Scientific

Fund of Ministry of Education and Science in

Bulgaria under the contract № DO 02-175/2008.

References:

[1] Keith Rodgers, Security Rules in SOA

management, Loosely Coupled Monthly

Digest, November 2004.

[2] End-to-end Visibility, Security and Control of

Your Service Oriented Architecture,

http://www.progress.com/en/Product-

Capabilities/soa-management.html.

[3] The Challenge of Securing SOA, New Rowley

Group, Inc., 2006.

[4] Secure and Manage Services in an SOA

Environment to Achieve Business Objectives,

IBM Corporation Software Group, 2006.

[5] Axel Buecker, Paul Ashley, Martin Borret,

Ming Lu, Sridhar Muppidi, Understanding

SOA Security, Design and Implementation,

IBM Technical Support Organization, 2007.

[6] Service Manager ‒ SOA Management and

Security, 2001 ‒ 2012 SOA Software, Inc.

[7] Paul O’Connor, SOA Product Review: Managed

Methods JaxView 4.0, http://soa.sys-

con.com/node/620354, 2008.

[8] T. Mouelhi, F. Fleurey, and B. Baudry, A

Generic Metamodel for Security Policies

Mutation, IEEE International Conference on

Software Testing Verification and Validation

Workshop (ICSTW'08), 2008.

[9] I. Momtchev, Intelligent Agents – Issues

Analysis and Architecture Proposal,

Proceeding of 18th International Conference

Systems for Automation of Engineering and

Research (SAER), 2004, Varna, Bulgaria, pp

201-206.

[10] A. Kazandzhiev, I. Momtchev, L. Popova, and

D. Shikalanov, Distributed Multi-Agent Based

Approaches, Proceeding of KIMAS 05, IEEE,

2005, Boston USA, pp 3-9.

[11] A. Georgieva, B. Georgiev, Nontraditional

Approach to XML Web Services, Interactions,

Proceedings The Fifth International Conference

on Internet and Web Applications and Services,

9-15 May, Spain, Barcelona, 2010, ISBN: 978-

0-7695-4022-1, pp.67-72.

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 64

