
Multi-agent tracking in wireless sensor networks: implementation

FILIPPO ZANELLA
University of Padova

Department of Information Engineering
Via Gradenigo 6/B, 35131 Padova

ITALY
fzanella@dei.unipd.it

ANGELO CENEDESE
University of Padova

Department of Information Engineering
Via Gradenigo 6/B, 35131 Padova

ITALY
angelo.cenedese@unipd.it

Abstract: In this work the design and implementation of an application to track multiple agents in a indoor Wireless
Sensor Actor Network is proposed. The adopted embedded hardware for the network nodes is the TMOTETM SKY,
an ultra low power IEEE 802.15.4 compliant wireless device, which has become a reference in the academia for the
early development of algorithms and applications for Wireless Sensor Actor Networks. These devices are based
on the TINYOS operative system and are programmed in NESC, a C-derived language specifically developed for
embedded systems. NESC has become indispensable for low-level management of individual agents while JAVA
was chosen to provide the user with a simple and intuitive graphical interface to show and coordinate the tracking.

Key–Words: wireless sensor network, embedded systems, TINYOS, NESC

1 Introduction

In recent years, the employment of Wireless Sensor
Actor Networks (WSANs) for gathering data from
the environment have been increasingly envisaged
for building management systems and environment
control [1][2][3], thanks to their versatility of
use, easiness of deployment, pervasiveness of data,
adaptability to system and environment variations [4].

This revolution has been supported by the
diffusion of small and cheap devices, capable of radio
frequency (RF) communication, computation, and
memory, although of limited resources. An example
in this sense is the TMOTETM SKY [5], an ultra
low power IEEE 802.15.4 compliant wireless device,
which has become a reference in the academia for
the early development of algorithms and applications
for WSANs. These devices are based on the
TINYOS operative system [6] and are programmed
in NESC [7], a C-derived language specifically
developed for embedded systems.

In this companion paper we describe the
implementation stage of a wireless network for
RF-based localization and tracking, where the aspects
related to the mathematical model and algorithms has
been presented and discussed in [8]; to briefly recall
the context, we consider the scenario where a set
of mobile devices (i.e. mobile nodes) are moving
within a network of fixed (and known) position
similar devices (i.e. fixed nodes), with which they
communicate through the RF-channel exchanging
information on the surrounding.

The implementation of the algorithm in this
framework appears particularly challenging since the
tracking procedure requires correct communication,
scheduling, and synchronization among the devices to
work properly and attain the expected performance.
Moreover, the limited resources available to the
embedded devices calls for efficient coding solutions,
both in terms of memory and computational power.

The code is available freely as open-source on
Sourceforge [9], distributed under the GNU General
Public License.

2 Software design

A set of indexed mobile nodes M =
{m1, . . . ,mM} ⊆ N moves within a network of
indexed fixed nodes F = {f1, . . . , fF } ⊆ N, each
node running a TINYOS module and communicating
via wireless, assuming the parameters of the
radio channel as known [10]. Also, each mobile
node is connected to a client (laptop) through a
USB connection, with the client performing the
multi-agent tracking (MAT) computation envisaged
by the algorithm [8] and implementing JAVA classes
for the Graphical User Interface (GUI).

When one (or more) mobile node mi starts the
tracking process:

1. every Ts ms mi alerts its client Cmi to be ready,
sending via USB PCMmax pings every Tp ms;
afterwards, mi sends via wireless PNMmax

pings every Tn ms;

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 180

2. as Cmi receives a ping from mi, it enables a timer
that starts the MAT procedure every Tc ms;

3. the set of fixed nodes {fi} that gets in touch with
mi starts to broadcast DMmax messages every
Tt ms, for a period not exceeding Ts ms;

4. mi stores one by one the messages received
from the {fi}, filtering them according to
a predefined Receive Signal Strength (RSS)
threshold (RSSbound), and forwards these
messages to Cmi ;

5. Cmi stores the messages and every Tc ms
estimates the position of mi, showing it in a GUI.

Fig. 1 outlines the schema of MAT scheduling,
for a complete cycle of the algorithm of Ts =
TIMER_STEP ms. It compares with the same time
scale the operating modes of the fixed nodes, the
mobile node and the client. Scheme of Fig. 1,
although complete, is simplified, as it does not
highlight the randomness linked to the execution
of some events. However, it is significant for
understanding the temporal evolution of the processes
that constitute the main algorithm.

The whole software can be divided into two
main blocks, according to the programming language:
NESC for the nodes and JAVA for the client. Since
in the considered context the peer-to-peer behavior
among nodes appears of major interest, it will be dealt
more in detail in the remainder of the paper.

3 Implementation: NESC for nodes

Four message types are defined to exchange
information among different devices (Fig. 2):

- mote_ctrl_msg, to start/stop the MAT
process. A stop signal interrupts any
communication in progress; vice versa, a
start forces mobile nodes to begin a new cycle
of the algorithm. This message is sent via USB
from Cmi to mi;

- ping_client_msg, to ping the clients. It is
used by mi to inform Cmi that a MAT is ready
to start and to sent configuration settings. This
message is sent via USB from mi to Cmi ;

- ping_node_msg, to ping fixed nodes. It
is used by mi to ping the {fi} in the
communication ranges. This message is
broadcast by mi via radio;

- data_msg, to measure RSS values. When
mi receives this message, it computes RSS
and sends the information to Cmi , enabling the

position estimate . This message is broadcast via
radio by {fi} to mi and via USB by mi to Cmi .

ping_client_msg

data_msg

mote_ctrl_msg

ping_node_msg

data_msg

data_msg

Figure 2: Messages exchange between devices.
Red arrows indicate data msg, purple arrow
mote ctrl msg, green arrow ping client msg
and blue arrows ping node msg.

To avoid potential overlaps among tasks,
commands or events related to various operation
states of the nodes, nodes are treated as finite state
machines, implying that the operations of different
node states cannot interfere with each other.

The feasible states of fixed nodes {fi} are:

- IDLE: inactivity;
- TRANSMISSION: broadcasting data_msg;

while mobile node mi is characterized by the states:

- SEND_CLIENT: sending ping_client_msg;
- SEND_NODE: sending ping_node_msg;
- AUDIT_NODE: auditing data_msg;
- DO_NOTHING: inactivity.

In addiction, mi is enabled/disabled by Cmi through
the following commands:

- START_MN: starts mobile node;
- STOP_MN: stops mobile node.

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 181

Dispatch
PingPcMsg
SEND_CLIENT

TIMER_TRANSMISSION = 15 ms

Dispatch
PingNodeMsg
SEND_NODE

Dispatch
DataMsg

TRANSMISSION

𝒕𝟎

TIMER_STEP = 250 ms

Position
Estimation

Reception
DataMsg

Reception
PingPcMsg

𝒕𝟎 + 𝟏𝟓𝟎

Reception
PingNodeMsg

IDLE

TIMER_SEND_PING_NODE * MAX_PING_NODE_MSG = 10 * 4 = 40 ms

Reception/ Dispatch
DataMsg

AUDIT_NODE

𝒕𝟎 + 𝟏𝟓𝟎

𝒕𝟎 + 𝟏𝟓𝟎

TIMER_TRANSMISSION * floor((TIMER_STEP - (TIMER_SEND_PING_NODE * receivedPckt->pcktID))/ TIMER_TRANSMISSION

𝒕𝟎

𝒕𝟎

Dispatch
DataMsg

TRANSMISSION

Dispatch
DataMsg

TRANSMISSION

… …

… Reception/ Dispatch
DataMsg

AUDIT_NODE
…

AUDIT_TIME = 60 ms

Position
Estimation

Reception
DataMsg

Position
Estimation

Reception
DataMsg

Position
Estimation

Reception
DataMsg

TIMER_SEND_PING_CLIENT = 2 ms

𝒕𝟎 + 𝟐𝟓𝟎 ms

𝒕𝟎 + 𝟐𝟓𝟎 ms

𝒕𝟎 + 𝟐𝟓𝟎 ms

Fixed
Node

Mobile
Node

Client

Figure 1: Scheduling of tasks, timers, and communication events of node and client devices during MAT.

3.1 Mobile node activity
To understand through an example the function
covered by each of the routine of module
MobileNodeP, involved in the MAT algorithm,
we simulate a normal operation of the mobile node
during the tracking procedure.

Boot
When a mobile node mi is turned on, the boot
sequence commences. In the function booted()
of interface Boot peripherals and environment are
initialized, moving mi in the states DO_NOTHING
and WAIT_CMD: mi waits to receive a START_MN
command by client Cmi . The transmission
frequency is set to CHANNEL_RADIO by command
setChannel(uint8_t) of CC2420Config
interface. If the event syncDone(error_t)
signals that the routine is terminated correctly then
radio and serial communication are turned on.

Clock Step
When mi receives a START_MN from Cmi , it
starts the timer ClockStep that every Ts =
TIMER_STEP ms launches the fired()
event. With this instance, the MAT algorithm

begins: mi moves to the SEND_CLIENT
state, all packets counters are reset, and timer
ClockSendPingClient starts.

Clock Send Ping Client
When Tp = TIMER_SEND_PING_CLIENT ms
elapse, Cmi is repeatedly informed of the start of
the MAT process, for a number of times equals
to PCMmax = MAX_PING_CLIENT_MSG.
This activity is performed by posting task
sendPingClientMsg(), which forwards
messages ping_client_msg to the serial port.
Then mi moves to the SEND_NODE state, stops the
timers related to ping_client_msg sending, and
starts the timer ClockSendPingNode.

Clock Send Ping Node
When Tn = TIMER_SEND_PING_NODE ms are
elapsed, task sendPingNodeMsg(), periodically
posted by the timer, broadcasts PNMmax =
MAX_PING_NODE_MSG messages of type
ping_node_msg, specifying the identification
number (ID) TOS_NODE_ID of the node mi and the
settings of the selected transmission channel.

When mi stops to ping fixed nodes {fi} in range,
it moves to the AUDIT_NODE states and stops the

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 182

timer ClockSendPingClient. Then it waits to
receive data_msg messages.

Receive data msg
The fixed nodes {fi} that receive at least one
ping_node_msg respond to the mobile node
mi sending their data_msg messages. From
these messages mi extracts the values of RSSI,
shifted by a RSSI_OFFSET offset, using the
command getRssi(int8_t) of interface
CC2420Packet. Messages with RSS greater than the
threshold RSS_BOUND are stored in a FIFO queue,
Queue<data msg>, of size QUEUE_DATA_SIZE.
Then, mi invokes task sendDataMsg(), which
forwards to the serial port all the data_msg
messages contained in the queue; this is done only if
the queue has not already been emptied in a previous
sending. mi remains in the AUDIT_NODE state until
timer ClockStep fires again, hereupon the mobile
node returns to the initial conditions, ready to begin a
new cycle.

Anytime, the user retains the ability of stopping
the algorithm execution with the command
STOP_MN. In this case all timers are stopped
and mi enters the IDLE state.

3.2 Fixed node activity
Similarly to the previous subsection, to describe
the implementation of module FixedNodeP, we
simulate the normal operation of the routines involved
in the MAT algorithm.

Boot
When one fixed node fi turns on, TINYOS starts
the boot sequence. In the function booted()
peripherals and environment are initialized, moving
fi to the IDLE state, meaning that the fixed node fi
waits to receive a ping_node_msg message from
a mobile node mi, via radio communication. The
transmission frequency is set to CHANNEL_RADIO
and if the event syncDone(error_t) signals that
the synchronization has been completed correctly, the
radio and serial communication are turned on.

Notified event startDone(error_t), a call
of setPower(message_t*, uint8_t) sets
to POWER_RADIO the transmission power of
data_msg messages. After this operation the fixed
node is ready to receive messages from the network.

Receive ping node msg
When fi receives a first ping_node_msg from a
mobile node mi, identified by a unique ID[k], k ∈
[1 PNMmax], it starts the timer TimeToSend that

every Tt = TIMER_TRANSMISSION ms launches
its event fired(). In this stage, before moving to
the TRANSMISSION state, the node fi computes the
maximum number of data_msg to be sent to the
mobile node mi, that is given by:

DMmax :=

⌊
Ts − Tn ID[k]

Tt

⌋
,

where Ts and Tn are the times previously defined
in Subsec. 3.1. This action is carried out in order
to reduce network traffic. Indeed, in doing so, the
fixed node fi stops the transmission of data_msg
messages before the mobile node in range mi enters
in the next step of the algorithm. The DMmax number
is recalculated every time since it is proportional to
the ID[k] of the first ping_node_msg received,
that may change due to the packet loss phenomena
affecting in general the wireless channel, and in
particular the tracking applications [11]. This bound
in the transmission of the data_msg message forces
fi to move to the state IDLE after TtDMmax ms, here
remaining unless it receives other ping_node_msg
by some moving mi present in the environment.

Clock Send Data Node
When Tt ms elapse, the task sendDataMsg(),
periodically posted by the timer, sends DMmax

data_msg messages in broadcast, specifying the
TOS_NODE_ID of the fixed node fi and leaving
empty the fields reserved to the RSS values. As fi
ends to transmit, it returns to the IDLE state and the
timer TimeToSend is stopped; then fi waits for any
other message sent by any mobile node mi in range.

4 Implementation: JAVA for client

The software client, named TESEO, has to accomplish
the following two tasks:

1. executing the MAT algorithm from the data
transmitted by the mobile node, based on the
network retrieved information;

2. managing the output flow and the system setup
phase by means of a friendly user interface.

As for the former issue, we refer to the companion
paper [8], while for the latter point we briefly present
an overview hereafter.

To provide the user with an intuitive interface a
JAVA frame, instance of the class JFrame, has been
designed. The package is made of the classes:

• Teseo: main frame of the GUI, entry point of the
client. It defines the following nested classes:

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 183

– MapPanel: panel that displays the
graphical elements present in the
environment (e.g. fixed nodes, mobile
node, planimetry);

– EstimateTimerTask: task that executes
the routines of class Estimation;

– Estimation: object that collects all the
methods and variables to compute the
position estimation of the mobile node;

• Constants: interface for shared constants;
• DataMsg: just alike data_msg;
• MoteCtrlMsg: just alike mote_ctrl_msg;
• PingClientMsg: as ping_client_msg;
• Channel: object to manage the transmission

channel model and the characteristic parameters;
• Node: object that defines a node as an entity

made up of a set of R2-coordinates and an ID;
• Coordinate2D: generic 2D coordinates;
• VariantExtendedKalmanFilter2D: the

extended Kalman filter implementation for
the R2 tracking case described in [8].

The frame is depicted in figure Fig. 3, where there
can be highlighted four basic elements: The menu bar,
the command console, the graphical environment and
the informative panel.

Figure 3: View of the GUI TESEO.

The graphical environment is a MapPanel,
extension of the class JPanel, that collects a set of
methods to show the movement in R2 of the mobile
node in the surrounding environment. It consists of
the layout of the building in which are positioned the
nodes and of a set of icons useful to point the positions
of the fixed nodes and the different positions of the
mobile node.

The command console allows to interact with
the mobile node, specifying the virtual serial port of
the client to which the mobile node is connected.
Buttons Start and Stop are used to start/stop the
communication between frame and mobile node. In
Fig. 4 there are shown the flow charts of the routines
start() and stop().

START

Mobile node
connected

Client
connected

NO

END

Connect
mobile node

YES

Connect
client

NO

STOP

Client
connected

Mobile node
connected

END

Disconnect
client

Disconnect
Mobile node

YES

NO

YES

NOYES

Figure 4: Flowchart of the start/stop of the mobile
node and the client.

The informative panel, displays the numerical
value of the 2D coordinates of the mobile node
estimate locally by the running MAT algorithm. It
also shows the ID of the mobile node and the number
of steps performed by the mobile node that has been
notified to the client.

After the initialization phase, the frame remains
in an idle state, as long as the user not only connects
the client to the mobile node but also starts the node.
Defining the input source to the client, via the control
panel, it is possible to start the mobile node by
pressing the Start button. Doing so, the ActionEvent
of the JButton calls the routine start(), which
establishes a connection with the mobile node, if
it is not been done before, by calling the method
connect(String). This method creates an object
PhoenixSource to automate both the reading and
the dispatching of packages and the restarting of the
communication port. The PhoenixSource is coupled
to an object MoteIF which provides an interface JAVA
at the application level to receive messages from and
send messages to the TMOTETM SKY. At this point,
the JFrame is registered as a MessageListeners
of the MoteIF for each of the types of messages
DataMsg, MoteCtrlMsg, PingClientMsg.

If the connection is successful, the command
START is forwarded to the mobile node.

From the moment the mobile node is no longer
in the state DO_NOTHING, the frame becomes
sensitive to receive messages transmitted via USB

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 184

(serial) from the mobile node. The message_t
received are handled by the synchronized method
messageReceived(int, Message), which
performs certain operations depending on the type
of the received message. If it is a PingClientMsg
and if it is the first one of this type that the client has
received, the frame:
• gains knowledge of the ID of the mobile node

with whom the client is connected and it stores
its frequency and transmission power;
• synchronizes itself with the mobile node. To do

this it is instantiated a Timer, which schedules
the execution of a EstimateTimerTask at
a fixed rate of Tc = AUDIT_TIME ms.
EstimateTimerTask is a subclass of the
class TimerTask and it implements the
interface Runnable: when the AUDIT_TIME
ms are passed, the method run() of
TimerEstimate is invoked, which calls the
method estimate2D() of class Estimation,
global variable of the frame.

Then the method ends by updating the counter of
the steps performed by the mobile node and, if at
least one DataMsg is not yet arrived, it resets the
HashMap<Integer,Node> of the MapPanel class,
related to the fixed nodes that formed the group
of nodes used by the mobile node in the previous
estimate. If it is a DataMsg and if it is the first
one of this type that the client has received since
the last position estimation executed, the frame resets
the HashMap<Integer, Node> of the MapPanel.
Then, if the fixed node to which the DataMsg
belongs is present in the map, it is added, with
his ID, to the HashMap<Integer,Node> of the
MapPanel and its coordinates are added into the
Vector<Coordinate2D> of the Estimate together
with the measure of the RSS that is put in column
of the Vector<Integer> of the class Estimate. The
method messageReceived int, Message),
as mentioned, continues to discriminate messages for
Tc ms, and then decreed the beginning of the process
of mobile node position estimation, assigned to the
class Estimate. Before the timer expires, the client
must be able to form the set of fixed nodes assigned
to the current step, assuming that the mobile node
is inside a communication range that allows him to
communicate with a non empty group of fixed nodes,
in order to allow the MAT algorithm to make an
estimate that is not the simple evolution of the state
of an open-loop system.

5 Conclusions
In this work, we presented the software design and
the code implementation of a multi-agent tracking

algorithm envisaged for WSANs. We remark how
such issues are of paramount importance when
dealing with embedded devices, because of the
limited resources available. In particular, attention
needs to be posed on the timings among the events
occurring within the agent and the synchronization
with the other peers of the network, thus justifying the
adopted state machine approach to ensure the correct
sequence and completion of the procedure.

References:

[1] K. Römer, F. Mattern, The design space
of wireless sensor networks, IEEE Wireless
Communications 11 (6) (2004) 54–61.

[2] M. Kintner-Meyer, R. Conant, Opportunities
of wireless sensors and controls for building
operation, Energy Engineering Journal 102 (5)
(2005) 27–48.

[3] L. M. Oliveira, J. J. Rodrigues, Wireless
sensor networks: a survey on environmental
monitoring, Journal of Communications 6 (2)
(2011) 143–151.

[4] P. Casari, A. Castellani, A. Cenedese, et al., The
wireless sensor networks for city-wide ambient
intelligence (WISE-WAI) project, Sensors 9
(2009) 4056–4082.

[5] Moteiv, Tmote sky, http://www.snm.
ethz.ch/Projects/TmoteSky (2012).

[6] P. Lewis, Tinyos programming (October 2006).

[7] D. Gay, P. Lewis, R. von Behren, et al., The
NesC language: a holistic approach to network
embedded systems, in: PLDI’03, 2003.

[8] F. Zanella, A. Cenedese, Multi-agent tracking in
wireless sensor networks: model and algorithm,
in: WSEAS Int. Conf. on Information Tech. and
Computer Networks (ITCN), 2012.

[9] F. Zanella, Teseo, http://sourceforge.
net/projects/teseus (2006).

[10] S. Bolognani, S. Del Favero, L. Schenato,
D. Varagnolo, Consensus-based distributed
sensor calibration and least-square parameter
identification in wsns, Int. Journal of Robust and
Nonlinear Control 20 (2) (2010) 176–193.

[11] A. Cenedese, G. Ortolan, M. Bertinato,
Low density wireless sensors networks
for localization and tracking in critical
environments, IEEE Transactions on Vehicular
Technology 59 (6) (2010) 2951–2962.

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 185

