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Abstract: - Crowd is an emergent phenomenon raised by the local interactions of a large number of individuals. 

Managing these interactions implies both low level mechanisms such as navigation and path planning in virtual 

environments, and high level behaviors qualified as social behaviors. Most existing simulation models deal 

with the navigation process, leading to the emergence of macroscopically identifiable groups. However, these 

models do not provide means to individuals to reason about groups, and so to take into account groups in social 

behaviors. In this paper, we propose a novel behavioral approach to simulate high-level decision mechanisms 

based on social characteristics. These mechanisms enable the support of social agents evolving in informed 

virtual geospatial environments. We show that this agent-based model allows taking into account different 

psychological and sociological theories in order to provide realistic and sophisticated groups management. 

Finally, we show the interest of our approach to crowd simulation thanks to its application to the simulation of 

crowd control in urban environments. 

 

 

Key-Words: - Social Agents, Virtual Humans, Informed Virtual Geospatial Environments, Social 

Behavior, Crowd Simulation. 

 

1 Introduction 

Understanding social behaviors such as the crowd 

phenomenon has reached a rapidly growing 

audience from a variety of disciplines, either 

animation for entertainment goals, or simulation for 

validation and safety reasons. However, most of the 

current approaches usually focus on physical 

interactions occurring between individuals in 

crowds.  These approaches do not consider the 

behavioral aspects neither the interactions with the 

physical environment. Though, the high-level 

decisions of individuals are strongly influenced by 

their belonging to groups, be they emergent like in 

crowds, or set like a family. Indeed, the influence of 

a group can be so strong that it may imply a 

complete behavioral change of an individual, as it 

the case in panic or rioting situations.  

One candidate approach to simulate crowds is 

Multi-Agent Geo-Simulation (MAGS). MAGS is a 

modeling and simulation paradigm which aims to 

study phenomena in a variety of domains involving 

a large number of heterogeneous actors 

(implemented as software agents) evolving in, and 

interacting with, a Virtual representation of the 

Geospatial Environment (VGE) [5]. Crowd 

phenomena take place in a spatial environment, and 

ignoring the characteristics of this environment 

would greatly decrease the quality of crowd 

simulations. A critical step towards the development 

of an efficient crowd simulation tool is the creation 

of a VGE, using appropriate representations of the 

geographic space and of the sensors evolving in it, 

in order to efficiently support the agent situated 

reasoning [3]. Since a geographic environment may 

be complex and of large scale, the creation of a 

VGE is difficult and needs large quantities of 

geometrical data originating from the environment 

characteristics (terrain elevation, location of objects 

and agents, etc.) as well as semantic information 

that qualifies space (trees, buildings, etc.). In order 

to yield realistic crowd simulations, a VGE must 

precisely represent the geometrical information 

which corresponds to geographic features. It must 

also integrate several semantic notions about various 

geographic features. To this end, we propose to 

enrich the VGE with semantic information that is 

associated with the geographic features. A number 

of challenges arise when creating such a 

semantically-enriched and geometrically-accurate 

representation of a VGE, among which we mention 

[5]: 1) automatically creating an accurate geometric 

representation of a 3D VGE; 2) automatically 

integrating the geometric representation with several 

types of semantic information; 3) making use of this 
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representation in “situated reasoning” algorithms. 

Examples of such algorithms include path planning 

and navigation which aims to support agent mobility 

within the with respect to the environment’s 

characteristics (obstacles, land cover, terrain shape, 

etc.). 

In this paper, we aim at gaining better insight in 

social behaviors as well as the modelling of virtual 

geospatial environment. We propose a bottom up 

approach of the crowd phenomenon, by making it 

emerge from the sum of individual behaviors and 

interactions between individuals or with the physical 

environment. We particularly focus on the high-

level decision mechanisms related to groups and 

social considerations, by building our model on 

well-established sociological and psychological 

theories. Nevertheless, our model fits in the 

continuity of recent agent-based approaches by 

extending the agents reasoning abilities, while 

taking advantage of existing reactive behavioral 

models. The proposed model also builds on top of 

spatial agent capabilities to interact with virtual 

geospatial environments.  

The rest of the paper is organized as follows. 

Section 2 also provides an overview on the 

importance of virtual geospatial environments to 

support agent interactions with the virtual 

environment in which it evolves. It also presents 

related works on crowd simulation as well as social 

behaviors either from a computer science or a 

sociological point of view. Section 3, introduces a 

new model to automatically build informed virtual 

geographic environments Section 3 provides an 

overview of our social agent’s behavioral model. 

Section 4 details the high-level decision mechanism 

and the social behaviors of our agents. Section 5 

highlights some simulation results, and presents an 

illustration of the concepts introduced in this paper. 

Finally, Section 6 concludes with the perspectives of 

our work. 

 

2 Related Work 

2.1 Virtual Geospatial Environments  

GIS data are mainly represented in two forms [1]: 

raster and vector formats. The raster format 

subdivides semantic information into regular 

squares or square regions representing discrete, 

contiguous land areas. This approach generally 

presents averaged quantitative data, whose precision 

depends on the subdivision size. The vector format 

exactly locates semantic information with arbitrary 

complex geometric shapes. This approach generally 

presents one qualitative object per defined shape.  

The VGE exploitation of these data is generally 

done in two ways. First, the grid method [2] is the 

direct mapping of the raster format, and can also be 

applied to the vector format (Figure 1). The 

advantage of this discrete method is that multiple 

semantic data layers are easily merged in the same 

geometric representation [3]: the locations where 

data can be stored are predefined by the grid cells. 

The main drawback of this method is the problem of 

localization accuracy, which makes it difficult to 

position information that is not aligned with the 

subdivision. Another disadvantage of the grid 

approach is that its memory complexity depends on 

the chosen cell resolution, which makes it difficult 

to represent large environments with fine precision. 

This method is mainly used for animation [3] or 

large crowd simulation [2] because of the fast data 

access it provides.  

 

 

 

 

Fig 1. The two common cell decomposition techniques 

used to represent environments 

Second, the exact geometric subdivision method 

consists of subdividing the environment in convex 

cells defined by the original vector format. The 

convex cells can be obtained by several algorithms, 

among which the most popular is the Constrained 

Delaunay Triangulation (CDT) [4]. The CDT 

produces triangles while keeping the original 

geometric shapes whose boundaries are named 

constraints. The first advantage of the exact 

subdivision is that it preserves the input geometry, 

allowing accurate visualization of the environment 

at different scales. Another advantage is that the 

memory complexity of this approach only depends 
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on the number of shapes, not on the environment’s 

extent and subdivision as is the case for grids. The 

main drawback of this approach is the difficulty of 

merging multiple semantic data for partially 

overlapping shapes. This method tends to be used 

for crowd microscopic simulation where the motion 

accuracy is fundamental.  

Two kinds of information can be stored in the 

description of a VGE. Quantitative data are stored 

as numerical values which are generally used to 

depict geometric properties (like a path’s width of 2 

meters) or statistical values (like a density of 2.5 

persons per square meter). Qualitative data are 

introduced as identifiers which can be a reference to 

an external database or a word with arbitrary 

semantics, called a label. Such labels can be used to 

qualify an area (like a road or a building) or to 

interpret a quantitative value (like a narrow passage 

or a crowded place). An advantage of interpreting 

quantitative data is to reduce a potentially infinite 

set of inputs to a discrete set of values, which is 

particularly useful to condense information in 

successive abstraction levels to be used for 

reasoning purposes.  

In this paper, we briefly illustrate our approach that 

is based on an exact representation whose precision 

allows realistic applications such as micro-

simulation of crowds [4]. The resulting topological 

graph encompasses quantitative data as well as 

qualitative information from the arcs of the graph 

are propagated to the nodes, which allows, for 

example, deduction of the internal parts of the 

buildings or of the roads in addition to their outline.  

 2.2 Crowd Simulation 

Since critical situations such as escape panic and 

unplanned evacuations may threaten public safety, 

many research works have been carried out on the 

simulation of dense crowds. Models based on 

particle and fluid dynamics have been proposed to 

explain people’s behaviors in such constrained 

situations, mainly for evacuations scenarii. In these 

models individuals’ behaviors are very simple and 

mainly consist of reactions to surrounding forces. 

For example, Helbing et al. [12] introduced the 

Social force model for pedestrian dynamics, where 

individual motion is subject to so-called social 

forces (acceleration, attraction, repulsion) which are 

a measure of the internal motivation of individuals 

to perform certain actions or movements. Pelechano 

et al. [21, 22] mention that usually social  forces 

models tend to create simulations that look more 

like particle animation than human movement, and 

propose to add psychological, physiological and 

geometrical rules. Other approaches address some 

kinds of social links in a different way. Reynolds 

[25] proposes a set of behavioral rules to manage 

emergent motion phenomena between flocks of 

simple agents.  

More recently, Lamarche et al. [16] have enhanced 

this principle to control crowds of people in 

constrained environments, with more complex 

behaviors. These authors also propose an open 

architecture for realistic navigation, where each 

pedestrian can perform high-level decision 

behaviors such as path planning [17]. However, 

these systems fail to explain why patterns of group 

movements occur because they lack references to 

psychological and sociological high-level behaviors 

of crowd members.  

Other authors proposed models for individual agents 

that incorporate psychological factors.  For example, 

Kenny et al. [15] propose to use five psychological 

factors (motivation, stress, confidence, focus and 

emotions) to understand and assess individual 

behaviors in a crowd. Silverman et al. [13, 26] 

developed the PMFserv framework to model human 

decision-making based on emotional subjective 

utility constrained by stress and physiology. Other 

authors attempt to include cognitive appraisal 

models to create computational models of emotions 

that can be embedded in agent systems [7] and to 

use them to explain and simulate the reactions of 

people in a crowd. Most of these approaches 

provide models to specify the individual’s 

characteristics (physiological, psychological and 

emotional) in order to model emotion appraisal and 

the individual’s behaviors.  

However, they do not provide sufficient constructs 

and mechanisms, whenever they provide any, to 

specify and simulate the interactions of individuals 

and groups. Hybrid systems combine particle, 

flocking, and reactive behaviors [29], where the 

intelligence level of the agents can vary from none 

to high. Musse and Thalmann [19] developed Vi-

Crowd, a system that is composed of a hierarchy of 

a virtual crowd, groups and individuals. The authors 

developed a model that distributes the "crowd 

behaviors" to the groups and then to the individuals. 

This kind of approach allows them to simulate some 

aspects of the dynamics of groups in a crowd, but 

essentially in a kinematic way, by taking advantage 

of the geometric properties of agents moving in 

groups, such as inter-distances, orientations, or 
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personal space. However, there is a need for more 

elaborated models integrating both the individual’s 

characteristics (psychological, emotional) and social 

behaviors in order to explain why agents may join 

or dissociate from a group.  

It is worth investigating the large body of literature 

on the sociology of crowds and on collective actions 

and group dynamics. Several theories have been 

proposed over the past fifty years such as the social 

contagion, the social comparison theory [10], and 

the social identity theory [23, 24]. Social contagion 

is the spread of a behavior between individuals in a 

population, such as the spread of rumors and 

aggressive actions in riots. Computational 

approaches to simulate social contagion are based 

on threshold models [11], where each agent has a 

threshold which leads him to adopt an activity when 

exceeded. Newell [20] also introduced social 

contagion in his behavioral decision model, using a 

set of axioms. The phenomenon of contagion 

reminds us of the early writings on crowd done by 

Le Bon [18] which presented the idea that crowd 

participants are given to spontaneity, irrationality, 

loss of self-control, and a sense of anonymity. While 

social contagion may occur in specific extreme 

circumstances, in most cases individuals do not lose 

their individualities in order to adopt the uniform 

behavior of the crowd entity.  

In an attempt to explain this phenomenon, the Social 

Comparison Theory (SCT) [27] claims that 

individuals evaluate their own opinions and desires 

by comparing to others. In a recent work, Kaminska 

and Fridman [14] claim that SCT may account for 

some characteristics of crowd behavior, in particular 

with respect to imitational behavior and group 

formation. They propose algorithms that allow 

agents to carry out some behaviors based on social 

comparison. However, they only tackle what we call 

the kinematics of groups, in a similar way to the 

Social Forces Model [22]. It is too simplistic and 

must be completed with other theories.  

The Social Identity Theory refers to an individual’s 

self-understanding as a member of a social category 

[28], and assumes that identity is multiple and 

constitutes a complex system rather than being 

unitary. Evidences to support the social identity 

model come from both experimental and field 

studies [8]. The Elaborated Social Identity Model of 

crowds (ESIM) [9] enhances the initial social 

identity model with a notion of self in social 

relations, along with the actions that are 

characteristic of a social position. A typical pattern 

of identity change has been observed in several 

crowd events: moderate participants of a crowd 

change identity and become activists as a result of 

police actions perceived as being illegitimate [24].  

 
Fig 2: The four stages to generate an IVGE from GIS 

data.  

In order to simulate and explain collective behaviors 

and attitude changes in crowd phenomena, we 

propose to extend current approaches by explicitly 

introducing:  

 Social notions in the agent models, such 
as the social identity and the 
mechanisms that allow an agent to adopt 
a new identity under some conditions;  

 The notion of social group to which an 
agent may belong, and identify to (as for 
example a group of agitators, a family, 
etc.);  

 The notion of what we call a Spatio-
Temporal Group (STG), which is easily 
recognizable in space and time such as a 
line of policemen or a group of friends 
walking side by side; 

 Mechanisms that allow an agent to join a 
group or to leave a group. 

 

3 Generation of IVGE from GIS Data 

We propose an automated approach to compute the 

IVGE data directly from vector GIS data [5]. This 

approach is based on four stages which are detailed 

in this section (Figure 2): input data selection, 

spatial decomposition, maps unification, and finally 

the generation of the informed topologic graph. 

3.1 GIS Input Data Selection 

The first step of our approach consists of selecting 

the different vector data sets which are used to build 
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the IVGE. The input data can be organized into two 

categories. First, elevation layers contain 

geographical marks indicating absolute terrain 

elevations. As we consider 2.5D IVGE, a given 

coordinate cannot have two different elevations, 

making it impossible to represent tunnels for 

example. Second, semantic layers are used to 

qualify various types of data in space.  

3.2 Spatial Decomposition 

The second step consists of obtaining an exact 

spatial decomposition using Delaunay triangulation, 

and can be divided into two parts in relation to the 

previous phase. First, an elevation map is computed, 

corresponding to the triangulation of the elevation 

layers. All the elevation points of the layers are 

injected into a 2D triangulation, the elevation being 

considered as an attribute of each node. This process 

produces an environment subdivision composed of 

connected triangles. Second, a merged semantics 

map is computed, corresponding to a constrained 

triangulation of the semantic layers. Indeed, each 

segment of a semantic layer is injected as a 

constraint which keeps track of the original 

semantic data by using an additional attribute for 

each semantic layer [6].  

3.3 Merging Elevation and Semantics Layers 

The third step to obtain our IVGE consists of 

unifying the two maps previously obtained. First, 

preprocessing is carried out on the merged 

semantics map in order to preserve the elevation 

precision inside the unified map. Then, a second 

process elevates the merged semantics map. The 

elevation of each merged semantics point P is 

computed by retrieving the corresponding triangle T 

inside the elevation map, i.e. the triangle whose 2D 

projection contains the coordinates of P. Once T is 

obtained, the elevation is computed by projecting P 

on the plane defined by T using the Z axis.  

3.4 Informed Topologic Graph 

The resulting unified map now contains all the 

semantic information of the input layers, along with 

the elevation information. This map can be used as 

an Informed Topologic Graph (ITG), where each 

node corresponds to the map’s triangles, and each 

arc corresponds to the adjacency relations between 

these triangles. Then, common graph algorithms can 

be applied to this topological graph, and graph 

traversal algorithms in particular.  

 

4 Social agent behavioral models 

4.1 Behaviors Description 

We propose two ways to specify the behaviors of 

our autonomous agents [1]. These agent’s behaviors 

are automatically triggered during the simulation at 

a chosen frequency. We can first describe behaviors 

by using rules. This easy description can only be 

used for relatively simple and independent 

behaviors, because of the lack of interdependency 

management of this kind of formalism. Each rule is 

composed of a Boolean expression which must be 

validated in order to evaluate the body of the rule, 

composed of agent’s elementary actions. We use 

rules for most of the agent’s reactive behaviors, 

such as the management of navigation or perception.  

The second way to describe behaviors is based on 

hierarchical concurrent state machines. This 

formalism is more suited to specify cognitive 

behaviors because it allows to simply describing 

potentially complex behavioral plans, with the 

introduction of contextual evaluation. Moreover, the 

competition between behaviors is managed thanks 

to resources. A resource symbolises a behavioral 

requirement for the agent, with a limitation notion. 

For example, the agent’s ability to move is 

represented by a resource, allowing a single 

behavior to control the agent’s displacement at a 

given time. In order to separate the competitive 

behaviors for a resource, each state of the automaton 

which declares the need for at least one resource 

must specify a priority. This priority symbolises the 

relative importance of the state with respect to the 

others which need the same resource. Then, the state 

with the highest priority gets the resource and hence 

the ability to execute, whereas other states are 

paused until their priority becomes high enough. 

One can notice that the priority is dynamically 

evaluated at each simulation step, and so that an 

active state can temporarily loose a resource at the 

benefit of another state. 

4.2 Behavioral Model Overview  

We propose to structure the agent’s behaviors with a 

cognitive approach similar to A. Newell’s 

behavioral pyramid [15] (Figure 3(b)). Our model is 

organised in three successive behavioral categories 

(Figure 3(a)).  

Individual behaviors are common to all simulated 

agents. They represent the standard behaviors of a 
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human being such as moving and perceiving. 

Because of their generic aspect, these behaviors 

only address short term decision making. Thus, this 

category only represents the lowest layers of the 

pyramid, with physiological, reactive, and some 

cognitive behaviors. We will not detail the 

behaviors of these layers because they are out of the 

scope of this paper, and we will consider that the 

common abilities of a human being are fulfilled. 

Moreover, one can notice that this behavioral 

category is predefined for all agents, and will not 

change during the simulation.  

 
Fig 3: Comparison between our approach (a) and A. 

Newell’s behavioral  pyramid (b). The arrow on the left 

illustrates the variation potential of the agent’s behavioral 

layers, while the dashed lines indicate their repartition 

inside the pyramid.  

Long term decision behaviors are specific to 

different kinds of people. We will detail these 

behaviors in the next section, but for now we can 

consider that this category is in charge of the long 

term behavioral planning of the social agent. Indeed, 

the behaviors associated with this category represent 

the role of a human being in the society, either on 

his own like a working man or a teenager, or in 

relation to a social group like a father in a family. 

Moreover, this behavioral category manages the 

target goals of the social agent, and selects the 

appropriate sub-goals and actions needed to reach 

these goals.  

In contrast to the individual behaviors, this category 

can be modified during the simulation under certain 

conditions, but with a low variation potential. Social 

influence does not directly control the lower 

behavioral layers. Instead, these behaviors may only 

alter the agent’s characteristics. We will also detail 

this category in the next section, but for now we can 

consider that it represents the influence of the 

agent’s surrounding social environment on its state, 

and thus on its way to behave. Moreover, this 

category is optional, i.e. it is only raised in some 

circumstances depending on the agent’s social 

identity and environment. Additionally, the 

behaviors of this category are the agent’s most 

volatile ones, and can change with a relatively high 

frequency, up to one time per minute.  

5 High Level Decision and Social 

Behaviors 

In our approach, we propose to strongly link the 

high-level decision processes of the agent, 

corresponding to goal-oriented behaviors, with the 

social behaviors. In this way, we are able to 

implicitly manage the social influence on the 

ongoing behaviors, as we will see with the social 

identity and role. Moreover, we also explicitly 

manage short term social influences on the agent 

states, and so on its behaviors, which will be 

illustrated with the spatio-temporal groups and their 

influence. 

5.1 Social Identity 

The social identity represents an individual’s self-

understanding as a member of a social category. 

Examples of social identities can either be general 

like a worker or an unemployed person, or more 

specific like a demonstrator or a journalist. This 

behavioral component defines the long term goals of 

the individual with respect to his social position. 

Moreover, the associated behavioral graph indicates 

the individual’s know how specific of his social 

identity. We propose to manage the social identity 

as a composed behavioral component, divided into 

two parts (Figure 4). An agent has one fundamental 

social identity and may choose one adopted social 

identity among a set of available ones. The 

fundamental social identity is an unchanging 

behavioral graph of the agent. This state machine is 

a controller which defines the dynamics of social 

identity changes, while keeping a link to the original 

behaviors that socially characterise the agent. 

Indeed, this graph can be compared to a controller 

because it does not directly produce any perceptible 

action of the agent, but only selects the currently 

adopted social identity.  

 

Fig 4: The social identity (SI) behavioral management. 

The fundamental SI can change the adopted SI at any 

time, while this one controls the individual behaviors 

resulting in successive elementary actions. 
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This second behavioral graph is independent from 

the first one, and defines the actions path to reach 

the goals of the social identity. Indeed, this is the 

adopted social identity which controls the individual 

behaviors of the agent in order to produce the 

perceptible interactions with the environment. For 

example, this behavior can select the destination and 

speed of the agent, or make it interact with some 

equipment, or even manage its communication with 

other agents. Moreover, this behavior can be 

composed of several concurrent goals and sub-

goals, which are managed locally thanks to 

resources needs inside the hierarchical parallel state 

machines. 

5.2 Social Group 

A social group defines the social interrelationships 

between a group of people who know each other. 

This kind of group does not define geometric links 

between the members, but just reflects their social 

relations. Hence, a social group cannot be directly 

perceived by someone who does not belong to the 

group. However, all the members of a social group 

know each other, i.e. know who they are and what 

their role within the group is. We propose to manage 

a social group thanks to data structures in our 

architecture (Figure 3).  

A social group is an abstract notion (i.e. it is not a 

situated component) composed of a list of social 

roles. Each social role is also an abstract notion, 

which is related to an identified social group. A 

social role is defined by a social identity, 

corresponding to the behaviors associated with all 

the agents playing this role inside the group. These 

agents are referenced by the role allowing them to 

freely access the group structure, including the 

different roles and agents inside the group, and 

eventually to take the group into account in their 

behaviors.  

The social identity associated with a role is defined 

exactly in the same way as previously, with a 

fundamental and an adopted part. However, the 

fundamental social identity can only choose an 

adopted social identity among the potential roles in 

the group. Indeed, it is not possible for someone to 

play a role that is not explicitly linked to his original 

social group. Additionally, agents have the ability to 

leave a social group, and so to abandon their role, 

even if it is a really rare case.  

Let us notice that an agent can belong to any 

number of social groups, from none to many. For 

example, someone can play the role of the father in 

a family social group, as well as being the boss in a 

company social group. Additionally, as it was said 

in the previous section, each agent has an 

elementary social identity defining its general role 

in the society. So, finally an agent may have many 

concurrent social identities in competition to decide 

about its short to long term goals and actions. In the 

same way as previously, this competition is directly 

managed by the resources needs declared by the 

concurrent behaviors. 

 
Fig 3: The social group architecture. A social group 

contains a list of applicable social roles, which each 

contains a list of the agents playing that role by adopting 

an associated social identity.  

5.3 Spatio-Temporal Group  

A spatio-temporal group (STG) manages spatial 

relationships between close people. On the contrary 

to a social group, the members of a STG do not 

necessarily know each other. However, the group 

structure is perceivable from outside, making its 

members identifiable in terms of location, and 

potentially attitudes. In a similar way as for the 

social group, we propose a data structure to handle a 

STG (Figure 4).  

 
Fig 4: The spatio-temporal group (STG) architecture. A 

STG contains a list of the participating agents, as well as 

the geometrical formation they have to maintain and the 

social influence behavior they adopt.  

An STG is a situated notion containing the list of 

member agents. All of these members adopt an 

optional social influence behavior, which cannot 

directly produce actions but can influence the other 

agent’s behaviors. Additionally, the members must 

maintain a given formation in order to belong to a 

STG. This formation defines the spatial organisation 
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that the agents must comply with in order to be part 

of the STG. A formation can be very strict, like a 

line formation for military forces, or quite 

unconstrained, like a loose formation for 

demonstrators which is only defined by a bounding 

circle. A formation is defined relatively to the STG 

hot spot, which defines the position of the entire 

group in the environment. This hot spot can be 

static, like for a waiting queue formation, or 

dynamic, like for a group of friends walking 

together. In this last case, the dynamic hot spot can 

be hold by an agent, moving along with him, or can 

be computed by a third party mechanism. The 

behavior in charge of maintaining the formation is 

defined in the individual behaviors, and thus is 

provided for any agent. This behavior controls the 

agent’s navigation ability, represented by a resource, 

and so is in competition with any other behavior that 

would select a destination.  

One can notice that an agent can only belong to one 

STG at a given time. This limitation is due to the 

strong impact of the STG on the agent’s location, 

because of the formation constraint, making it 

impossible for the agent to maintain two formations 

at the same time. However, an agent can belong to 

an STG as well as to one or several social groups. 

This possibility is very useful to represent spatially 

organised social groups, by combining both notions. 

For example, to represent family members walking 

together, we can use: first, a social group defining 

all the roles of a family (father, mother, and 

children); second, a STG containing all the family 

members, configured with a loose formation and a 

hot spot linked to the agent playing the father social 

role. 

5.4 Synthesis  

To conclude with the social agent’s behavioral 

models, let us look at the overall mechanism. As 

shown in Figure 5, all the three behavioral 

categories of the agent are linked. An optional social 

behavior can be adopted if the agent belongs to an 

STG. This behavior only influences the individual 

behaviors and the long term decision. This long 

term decision is in charge of selecting the immediate 

actions by controlling the individual behaviors.  

While being the rational centre of the agent, the long 

term decision is heavily linked to social 

considerations. Indeed, this category is composed of 

the agent’s social identity, and of all of its optional 

social roles. All these behavioral graphs are 

independently described, but are re solved 

competitively by the agent. Then, the competition 

for the control of the low-level actions of the agent 

is simply managed thanks to the resource needs of 

the behaviors.   

 
Fig 5: Social agent behavioral model synthesis. The 

individual low level behaviors are controlled by the high 

level decision mechanisms, which are composed of a 

social identity and optional social roles. Both of these 

categories can be influenced by a social behavior given 

by an STG. 

6 Results  

The application of our social behavior models in the 

simulation of crowds provides useful tools to a 

variety of application domains. Examples of such 

domains include the entertainment industry (games 

and movies), security planning and crowd 

management (planning events involving large 

crowds such as demonstrations at World Summits, 

popular celebrations such as soccer games and 

religious celebrations), and military operations in 

urban settings involving civilian crowds. In the 

context of a crowd control research project 

conducted in collaboration with Defence Research 

and Development {blind}, we propose to simulate 

crowd control in conflict situations involving 

control forces and the use of non-lethal weapons. 

This research project aims to provide decision 

makers with new ways to analyse such situations 

and to assess the efficiency of different intervention 

strategies.  

In order to validate the novel approach that we 

propose, we simulate a demonstration event which 

reproduces The Summit of the Americas held in 

{blind}. The simulation involves a large number of 

geo-referenced individual social agents immersed in 

an informed virtual environment representing 

{blind} city. Both the crowd and the control forces 

are represented by social agents who are endowed 

with individual capabilities such as perception, 

navigation, and memory. Thus, the agents can 

perceive and react to their evolving virtual 

environment with a plausible level of behavioral 

realism. The scenario that we propose aims to put 

forward the ability of our social agents to 
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autonomously switch roles inside their social 

groups. Such social role dynamics are based on the 

agents’ situation assessment and directed by the 

presented behavior models. For simplification 

purposes, this scenario will focus on the control 

forces. It involves a small squad of control forces 

which is deployed to protect a governmental 

building (A governmental building is presented in 

Figure 6).  

 
Figure 6: A 3D visualization of the simulation 

environment showing the parliament of {blind} protected 

by fences and several police trucks for control forces 

deployment. 

A squad of control forces is basically a social group 

composed of the following social roles: Squad 

Leader, Deputy-leader, and Squad Member. These 

three roles are managed thanks to three fundamental 

social identities (Figure 7): both leader and member 

social identities are very simple, only selecting the 

associated adopted social identity; the deputy-leader 

fundamental social identity manages dynamic  

changes between the leader and member adopted 

social identities (in this case there is no specific 

deputy-leader adopted social identity). The 

following graphical conventions will be used in the 

demonstration screen shots (Figure 8): the 

characters’ main color identifies their fundamental 

social identity (leader in red, deputy-leader in 

yellow, and member in blue); the icons on top of the 

characters identifies their currently adopted social 

identity (star for leader, echelon for member, and no 

icon if the agent has left the group).  

The storyboard of the demonstration scenario 

illustrates a basic manoeuvre of a squad of control 

forces. A squad is initially composed of a leader, a 

deputy-leader, and five members. At first, the squad 

gets out of a police truck (Figure 9(a)). The leader 

creates a STG and binds its hotspot to his position. 

The deputy-leader (who initially has the adopted 

social identity of a member) as well as the squad 

members join the STG, and automatically maintain 

its formation. Then, the leader moves towards the 

fences while carrying the STG hotspot with him. As 

a result, the other squad members follow the leader 

while maintaining the STG formation. As soon as 

the leader reaches the fences, the squad can be 

considered to be deployed (Figure 9(b)).  

 
Fig 7: The leader, member, and deputy-leader 

fundamental social identities.  

 
Fig 8: Graphical convention to identify the squad roles.  

In order to illustrate the social role dynamics, we 

arbitrarily make the leader leave the group (Figure 

9(c)). As a result, the deputy-leader’s fundamental 

social identity (Figure 7) switches from the member 

to the leader adopted social identity. Now that the 

deputy leader has become the new squad leader, the 

hotspot of the STG is linked to his position. This 

leads to an automatic reorganisation of the squad 

members in order to maintain the formation, and 

finally produces a new deployment of the squad 

(Figure 9(d)).  

Finally, the deputy-leader’s adopted social identity 

makes him leave the place by moving back to a 

police truck (Figure 9(e)). In the same way as 

before, the members follow the new leader while 

maintaining the formation.  
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Let us notice that this example is voluntarily 

simplified for demonstration purposes. Indeed, we 

are working on a much more complex scenario 

exhibiting more elaborated actions for the control 

forces, such as the use of non-lethal weapons or 

crowd monitoring. Moreover, we also provide more 

complicated social identities for crowd members 

who have greater social dynamics. 

7 Conclusion and future work 

In this paper, we discussed some shortcomings of 

current research works which deal with social 

behaviors and crowd simulation in virtual geospatial 

environments.  

First, we presented an original approach to extract 

an IVGE from GIS data. This approach goes beyond 

grid based visualization by combining the semantic 

information merging and the vector based 

representations accuracy. Indeed, as shown on 

figure 7, the proposed method combines all the 

advantages of grids and vector layers, cutting out 

their drawbacks. Moreover, this data extraction 

method is completely automated, being able to 

directly process GIS vector data. Finally, we have 

shown the suitability of this method for GIS 

visualization thanks to an application which allows 

two visualization modes: 3D for immersion purpose, 

and 2D to facilitate data analysis. All of these 

characteristics allow anticipating several 

applications of this work, mainly thanks to the 

topological graph exploitation of the representation.  

Second, we proposed a novel approach which aims 

at gaining better insight in crowds’ social behaviors 

by analysing the social interaction mechanisms 

between individuals. Besides, our approach is 

related to crowd microscopic simulation because it 

allows describing individual attitude changes which 

are typically observed in crowd phenomena. The 

proposed agent’s model combines individual and 

long term decision behaviors in a multi-layered 

architecture. Moreover, this model takes into 

account the social influence which represents the 

impact of the agent’s surrounding social 

environment on its characteristics. Finally, emergent 

collective social behaviors are observed at a macro 

level (groups, crowd), resulting of individuals 

behaviors and interactions at a micro level.  

The proposed behavioral models have been 

implemented and validated in the scope of an on-

going crowd control research project.  

 

(a) The squad members get out of a truck. 

 

(b)  The squad is deployed and waits. 

 
(c) For an arbitrary reason, the leader leaves the 

social group. T deputy-leader becomes the new 

leader, and the group automatically reorganises.  

 
(d) The squad is now reorganised and waits. 

 
(e) Finally, the deputy-leader gets out, taking with 

him the other members because they continue to 

follow the STG’s formation. 

Fig 9 Illustration scenario of the proposed models: social 

group, roles dynamics, and spatio-temporal group 

management. 
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There are several ways in which we may improve 

and extend our work. First, we plan to create a data 

base of commonly used social identities and social 

groups, first for crowd control, and then for less 

specific situations. These behaviors will be specified 

thanks to the models presented in this work, and 

validated by experts of the related domains (police 

members, or sociologists). Then, thanks to the 

modularity of our solution, we will be able to 

directly use already existing social identities, or 

easily extend them. A second perspective of our 

work concerns animation. Indeed, thanks to the easy 

implementation of our model, we can quickly design 

simple social identities and spatio-temporal groups 

to fast populate a virtual world. Nevertheless, a 

deeper analysis of our model performances is 

required in order to check the acceptable degree of 

complexity of the behaviors that allows the 

animation of a reasonable number of agents in real 

time. 
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