
Artificial Immune System Algorithm Framework for Bound-Constraint

Numerical Problems

Nebojsa BACANIN, Milan TUBA

Faculty of Computer Science

University Megatrend Belgrade

Bulevar umetnosti 29, N. Belgrade

SERBIA

nbacanin@megatrend.ac.rs, tuba@ieee.org

Abstract: In this paper we present our implementation of an immune system algorithm for solving unconstraint

optimization problems. Proposed framework is robust and flexible, and can easily be adjusted to different

optimization problems. Also, further upgrades and modification can be implemented with little effort.

Framework is based on object-oriented principles and multi-tier design paradigm. We tested our algorithm on

four standard optimization benchmarks. Algorithm and framework implementation are described in detail, as

well as the test results with explanations and comparisons.

Key-Words: - Optimization metaheuristisc, artificial immune system, nature inspired algorithms

1 Introduction
1Sometimes we face complex problems which cannot

be solved in a reasonable amount of computational

time. In such cases, classical optimization

techniques do not achieve satisfying results because

it is not possible to obtain optimum solution.

Fortunately, for solving complex problems,

usually we do not need to find optimal solution, but

satisfying solution in reasonable time [1]. Heuristics

and metaheuristics methods have been developed to

tackle such problems. Heuristics can be constructive

and local search. Constructive heuristics build

solution gradually from the scratch until the

complete solution is generated. At the other side,

local search heuristics randomly chose complete

solution from the search space, and try to improve it

by incremental modifications. Metaheuristics are

collection of algorithms which are used for defining

general heuristic methods applicable on different

problems [2].

Over the last decades, bio-inspired

metaheuristics have been devised for solving

optimization problems. Bio-inspired metaheuristics

are population based approaches and can logically

be divided into two groups: evolutionary algorithms

(EA) and swarm intelligence algorithms. EA are

inspired by natural mechanisms such as selection,

recombination (crossover) and mutation. The most

prominent EA representative, which was

successfully applied on wide variety of problems

This research is supported by Ministry of Science, Republic

of Serbia, Project No. 44006

[3], and was analyzed in detail [4], is genetic

algorithm (GA).

Swarm intelligence algorithms simulate flock of

birds, school of fish, colonies of ants and bees, etc.

They are composed of many homogenous

components called artificial agents. Local

interactions between agents are guided by simple

rules, while globally agents produce complex

interactions and behavior which lead whole system

to the desired result. One of the pioneers of swarm

intelligence algorithms is particle swarm

optimization (PSO) proposed by Kennedy and

Eberhart [5]. Other swarm intelligence approaches

include artificial bee colony (ABC) [6] along with

its upgrades [7] and hybridization with genetic

operators [8], ant colony optimization (ACO) and its

applications [9], cuckoo search (CS) [10] and

others.

Artificial immune system (AIS) algorithm is bio-

inspired, population - based local search

metaheuristics. It was inspired by the characteristics

and behavior of the immune system in the living

organisms. First, it was used just as a tool to

maintaining diversity in GA population and for

handling constraints in EA [11]. One of the first

attempts to solve function optimization problems

directly with immune system emulation was

introduced by Carlos Coello and Cruz Cortes [12].

AIS metaheuristics is used to tackle various

continuous and discrete optimization problems [13],

[14], [15].

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 150

In this paper, we present our implementation of

AIS algorithm for unconstraint optimization

problems. These problems can be defined as

follows:

 min (or max) f(x), x=(x1,x2,x3,…xd)
nR , (1)

where xS is a real vector with d >= 1 components,

S is search space and S R
n
. R

n
 is defined by lower

and upper variables' bounds:

 lbi ≤ xi ≤ ubi, 1 ≤ i ≤ n (2)

This paper is organized into 5 sections. After

introduction, in Section 2, brief biological

background necessary for understanding AIS

algorithm is given, as well as details of our AIS

algorithm. Section 3 provides description of AIS

object-oriented framework developed for testing

purposes. Section 4 shows results of numerical

experiments on four standard benchmark functions

to validate integrity and robustness of our AIS

implementation. Conclusion and final remarks are

given in Section 5.

2 AIS Algorithm in detail

2.1 Brief biological background
The immune system is responsible for detecting and

combating against pathogens. Pathogens are

infectious foreign elements in the organism such as

bacteria, viruses and toxins. IS consists of the two

main entities [13]:

 antigen (Ag) – substance that triggers immune

response and

 antibody (Ab) – molecule (lymphocytes) that is

able to match and confront to Ag.

It should be noted that the immune response is

specific for each antigen. This characteristics makes

IS even more appealing for the implementation in

the nature-inspired algorithms.

There are two types of Lymphocytes: B

lymphocytes (B cells) and T lymphocytes (T cells).

For the sake of simplicity, our AIS algorithm

considers only B lymphocytes.

 Lymphocyte that detects Ag and best recognize

its pattern will proliferate by cloning. Some of the

cloned cells will be distinguished as plasma cells,

while others will be recognized as memory cells

[12]. The clones are then exposed to the affinity

maturation process. This process is directed towards

improving the binding with the Ag.

Mutation of the clones is directly proportional to

their affinity to the Ag. Clones with the highest

affinity will have low mutation rates, while the

lowest affinity clones will undergo high mutation

rates. This mechanism of selective pressure will

result in the survival of the cells with the highest

affinity. Due to the random nature of mutation

process, some clones could be dangerous for the

organism. Such clones are disposed.

Plasma cell clones are able to generate only one

type of antibodies which are relatively specific to

the antigen. When the antibodies eliminate antigens,

the immune system with its regulatory mechanism

will dispose exceeding cells and the organism will

converge to the stable state. But, the immune system

is able to learn from past experience and thus, some

exceeding cells will remain in the body as memory

cells to ensure more efficient response to the same

antigen in the future. The second encounter with the

same antigen is called secondary response [12].

Described cloning and mutation processes are

called clonal selection principle [16]. Our algorithm

follows this principle.

2.2 Proposed algorithm

In this subsection we will present our proposed

algorithm with the most important details. We

must emphasize that our algorithm is adjusted

for solving numerical optimization problems.

Function to be optimized is considered as

antigen, while the population of possible

solutions is considered as population of

antibodies. Steps in our algorithm are given

below:

1. Create initial random uniformly distributed

population of N antibodies. Assign fitness and

objective function value to each antibody in the

population;

repeat steps 2 - 5 until stopping criteria is met

(stopping criteria is generation number and it

is a control parameter)

repeat steps 2a - 2c N times

2. Clone creation and clonal selection process;

 2a. each antibody is reproduced in C

clones. Each clone is locally mutated by a

random perturbation using the current fitness in

the population and affinity maturation which

will be described below. The amplitude of

mutation decreases when the fitness of the original

parent cell increases;

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 151

 2b. for each clone calculate fitness and

objective function value;

 2c. perform clonal selection – the best

clone (clone with the highest fitness value)

replaces the original parent;

3. Calculate affinity interactions between all

antibodies in the system using Euclidean

distance between cells;

4. Remove antibodies whose affinity with

other antibodies is below a predefined

threshold;

5. Introduce randomly generated antibodies

into population (diversity);

6. Sort all antibodies according to its fitness

and differentiate the best one.

Each antibody (potential solution to a problem)

ai (i= 1, 2, …, N) is a D-dimensional vector, where

D is number of function parameters that should be

optimized. Initial population is created, as well as,

random antibodies to maintain diversity in

population (see steps 1 and 5 in the pseudo–code

above), using the following equation:

)lbub(*)1,0(randlba jjjij , (3)

where aij is j-th parameter of the i-th antibody in the

population, lbj and ubj are lower and upper bounds

of the j-th parameter respectively and rand(0,1) is a

random number uniformly distributed between 0

and 1.

 For antibody i, we calculate fitness for function

minimization problems using simple fitness

function:

,
0objFun|,objFun|1

0objFun,
fitness

ii

iobjFun1
1

i
i

 (4)

where objFuni is value of objective function for

antibody i.

Each parameter of clone ci is mutated using the

following equation:

 cij=cij + afi*rand(0,1) (5)

where cij is j-th parameter of the clone of the i-th

antibody in the population. afi is affinity maturation

parameter calculated using Eq. 6:

 afi = mFi*exp(-fitnessi
*
) (6)

where mFi is mutation factor, and it is irreversibly

proportional to the fitness of the parent antibody i.

(see Eq. 7). This is good approximation because it is

impossible to calculate affinity of the antibody i

with the antigen (function to be optimized). In this

way, we ensure that the clone that is closest to

optimal solution is mutated less.

 mFi =
ifitness

1
, (7)

where fitnessi
∗ is normalized value of the fitness

of parent antibody i. It is calculated using the

following expression:

 fitnessi
∗ =

lowhigh

lowi

fitnessfitness

fitnessfitness

, (8)

where fitnesslow is the fitness of the “weakest”

antibody in the population, and fitnesshigh is the

fitness of the “strongest” antibody in the population.

 Affinity between antibody ai and a(i+1) is

calculated using Equation 9.

 2

1
),1(,)1(,)(

D

j
jijiii aaaffinity (9)

3 Framework implementation
For testing and validity purposes, we developed our

framework for AIS algorithm. We used C# as a

programming language incorporated into .NET

Framework 4.5 and Visual Studio 2010 working

environment. Due to space restrictions, in this

section, we will describe only the most important

details of our framework.
Framework is programmed using object–

oriented paradigm. Object–oriented programs are

robust, scalable and flexible. Class diagram is given

in Fig. 1.

Fig 1: Class Diagram

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 152

There are a large number of connections between

classes in our program. Application is using mult-

tier architecture with three underlying layers: data

layer (antibody), data access layer (controller class)

and user interface layer (main form). AIS algorithm

cannot be used in its basic form for all function

optimization problems. Unconstraint benchmark

functions differ in parameter size and parameter

bounds. In order to make our framework scalable

and adjustable to different problems, we created

Function abstract class which is inherited by

problem specific classes. In this way, if we want to

test another function, we just add another class that

inherits Function class. Problem specific parameters

are hard-coded in the application (see below). As

we can see from Fig. 1, in our very first

implementation, we used only four function classes

that inherit Function abstract class.

Each antibody in the population is special

instance (object) of Antibody class. This makes our

framework slower in the sense of execution time,

but more flexible to modifications and upgrades. We

found this as good trade-off. Antibody class

implements System.ICloneable interface which is

used in the cloning process. Antibody constructor

takes only two arguments: instance of class that

inherits Function abstract class and instance of

Random class with random or predefined seed.

Constructor generates new antibody according

to Eq. 3. Most important methods in the Antibody

class are:

 Clone() – clones antibody and uses

System.ICloneable() interface method

MemberWiseClone;

 calcAffinity(Antibody a) – calculates affinity

with another antibody which is passed as an

argument;

 calcNormFit (double l, double h) – calculates

normalized fitness for relevant antibody;

 calcObjective() – calculates objective function

value for relevant antibody.

Fitness class is used to calculate fitness using Eq.

4. It is instantiated in the Antibody class and fitness

for each antibody in the population is calculated

using its only method calcFitness().
AISControl class is controller class that links all

above described classes. All framework control

parameters are implemented as global variables in

AISControl. Also, all major loops used for iterative

execution, and clone generating and selecting

processes are implemented here. This class also

controls sum of fitness of all population members,

global affinity interactions of antibodies, sorting of

antibodies according to its fitness, etc. All

antibodies are stored in this class using ArrayList
data structure and C# Generics. This provides

obvious advantages like type-safety,

performance and reusability.
Finally AISForm class is used to create GUI

(Graphical User Interface). It takes results for

AISControl and shows it to the user. Also, it

provides user interface for parameters adjustments.

Our framework provides simple and user-friendly

GUI.

Framework control parameters are:

 Na is the number of antibodies in the initial

population of antibodies;

 Nc defines the number of clones which are

generated for each antibody;

 Ng is the number of generations (iterations) in

algorithm`s execution (steps 2-5 in pseudo-code

shown in Subsection 2.2);

 Cst is clonal selection threshold parameter

which controls clonal selection process;

 Rt is remove threshold parameter. This

parameter controls which antibody will be

removed from the population according to its

affinity with other antibodies (step 4 in pseudo-

code shown in Subsection 2.2);

 Dv is population diversity parameter. It controls

the number of new members introduced into

population as a percentage of the number of

current population members (step 5 in pseudo-

code shown in Subsection 2.2)

Due to the nature of our framework for easy

implementation of new functions, problem specific

parameters are hard-coded. These parameters

include:

 D is the number of function parameters;

 Ub is upper bound for specific parameter;

 Lb is lower bound for specific parameter.

4 Test results
For testing accuracy and robustness of our

algorithm, we used four standard bound-constraint

benchmarks. Unconstraint functions used in this test

are summarized in Table 1.

All tests were performed on Intel Core2Duo

T8300 mobile processor on 2.4 MHZ with 4GB of

RAM memory. Windows 7 x 64 Operating System

platforms was used. Code was executed in .NET

Framework 4.5 environment using Visual Studio

2010 technology.

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 153

Name Formula Range

Sphere

n

1i

2
iX [-100,100]

Griewank 1)i/xcos(
4000

x n

1i
i

n

1i

2
i

 [-600,600]

Rastrigin))x2cos(10x(n10 i

n

1i

2
i

 [-5.12,5.12]

Rosenbrock

1n

1i

2
i

2
1i

2
i)1x()xx(100 [-50,50]

Table 1: Summary of benchmark tests

Taking into account the nature of statistical tests,

we ran each test 30 times consecutively with 100

generations (iterations). The average and best

solutions are measured for efficiency purposed and

standard deviation is used for stability comparisons.

We used similar parameter set like in immune

algorithms proposed for multi - objective

optimization [13] [17]. Control parameter set used

in our tests are showed in the Table 2.

Parameter Value

Na 100

Nc 4

Ng 100

Cst 0.01

Rt 0.2

Dv 0.2/0.3

Table 2: Control parameters

As can be seen from the table, we ran tests with

two different values for population diversity

parameter (Dv = 0.2 and Dv = 0.3). We wanted to

measure the impact of this parameter on algorithm`s

performance.

For evaluations, all tested function are 30

dimensional (D = 30), upper (Ub) and lower (Lb)

parameter bounds are specific for each test function

and can be seen in Table 1. Antibodies are encoded

as real values and each antibody is 30 - dimensional

array which stores function parameters.

Results of proposed tests with dv = 0.2 and dv =

0.3 are shown in Table 3 and Table 4 respectively.

With elevation of dv parameter, exploration

power of the algorithm increases, because new

population members are being introduced. Also,

number of population members exponentially

increase.

Function Results

Sphere
Best

Mean

Stdev.

1.26E-5

3.04E-4

9.13E-4

Griewank
Best

Mean

Stdev.

2.18E-6

3.15E-5

8.41E-6

Rastrigin
Best

Mean

Stdev.

8.53E-6

1.01E-5

7.23E-5

Rosenbrock
Best

Mean

Stdev.

1.29E-1

0.005

0.003

Table 3: Tests with dv=0.2

By comparing Tables 4 and 5, where dv is set to

0.2 and 0.3 respectively, we conclude that this

parameter has significant impact on algorithm`s

performance. This fact is the most obvious on

Sphere, Rastrigin and Rosenbrock tests where its

bests improve noticeably (by the factor of 10
-1

). In

Grienwank test, only mean result improvement can

be noteced.

Function Results

Sphere
Best

Mean

Stdev.

0.15E-6

6.23E-5

6.09E-5

Griewank
Best

Mean

Stdev.

8.28E-6

1.28E-6

0.26E-6

Rastrigin
Best

Mean

Stdev.

5.19E-7

9.08E-6

1.15E-6

Rosenbrock
Best

Mean

Stdev.

0.33E-2

0.003

0.001

Table 4: Tests with dv=0.3

It is interesting to emphasize the impact of dv
parameter on algorithm`s execution time. In the

second case, when dv = 0.3, algorithm executes

much slower than with dv set to 0.2. Also,

memory is consumed more in the second case

because antibodies in the ArrayList (see Section

3) are dynamically added and thus more

memory needs to be allocated. Low

performance systems could experience Memory

Exception error.

As we can see from Table 3 and Table 4, our

AIS framework obtains satisfying results for all

presented benchmarks and can be compared

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 154

with other algorithms and software systems like

the one presented in [18].

6 Conclusion
In this paper, we presented our implementation of

AIS algorithm for solving unconstrained

optimization problems. We developed our

framework for AIS algorithm`s testing and validity

purposes using object–oriented programming and

multi–tier design paradigms.

The performance of the algorithm was tested on

four standard unconstraint benchmark problems.

We conclude that our AIS implementation has

potential to handle various unimodal and

multimodal problems and it is worth of further

research. Further research on applying AIS

algorithm on other problems similar to one proposed

in [19] and [20] are worth of considering.

References:

[1] Chiong R., Nature-Inspired Algorithms for

Optimisation, Springer, 2009, p. 536.

[2] Michalewicz Z., Fogel B. D., How to solve it:

Modern Heuristics 2nd edition, Springer-

Verglag, 2004, p. 561.

[3] Nicoara E. S., Filip F. G., Paraschiv, N.,

Simulation-based Optimization Using Genetic

Algorithms for Multi-objective Flexible JSSP,

Studies in Informatics and Control, Vol. 20,

Issue 4, 2011, pp. 333-344.

[4] Paterlini S., Minerva T., Genetic Algorithms in

Partional Clustering: A Comparison, WSEAS

Recent Advances in Neural Netoworks, Fuzzy

Systems & Evol. Computing, 2010, pp. 28-36.

[5] Kennedy J., Eberhart R., Particle Swarm

Optimization, Proceedings of IEEE

International Conference on Neural Networks,

1995, pp. 1942–1948.

[6] Karaboga D., An idea based on honey bee

swarm for numerical optimization, Technical

Report TR06, Computer Engineering,

Department, Erciyes University, Turkey, 2005.

[7] Brajevic I., Tuba M., An upgraded artificial

bee colony algorithm (ABC) for constrained

optimization problems, Journal of Intelligent

Manufacturing, 2012, available Springer

Online First, doi: 10.1007/s10845-011-0621-6,

pp. 1-12.

[8] Bacanin N., Tuba M., Artificial Bee Colony

(ABC) Algorithm for Constrained Optimization

Improved with Genetic Operators, Studies in

Informatics and Control, Vol. 22, No. 2, 2012,

pp. 137-146.

[9] Jovanovic, R., Tuba, M., An ant colony

optimization algorithm with improved

pheromone correction strategy for the

minimum weight vertex cover problem, Applied

Soft Computing, vol. 11, issue 8, 2011, pp.

5360–5366.

[10] Yang X. S., Deb S., Cuckoo search via Lévy

flights, In: Proc. of World Congress on Nature

& Biologically Inspired Computing (NaBIC),

2009, pp. 210-214.

[11] Kurpati A., Azarm S., Immune Network

Simulation with Multiobjective Genetic

Algorithms for Multidisciplinary Design

Optimization, Engineering Optimization, Vol.

33, 2000, pp. 245-260.

[12] Coello C., Cortes C., Solving Multiobjective

Optimization Problems using an Artificial

Immune System, Genetic Programming and

Evolvable Machines, Vol. 6, Issue 2, 2005, pp.

163-190.

[13] Freschi C., Repetto M., Multiobjective

Optimization by a Modified Artificial Immune

System Algorithm, Proc. of the 4
th
 Int. Conf. of

Artificial Immune Systems, 2005, pp. 248-261.

[14] Dasgupta D., Yu S., Nino F., Recent Advances

in Artificial Immune Systems: Models and

Applications, Applied Soft Computing, Vol.

11, Issue 2, 2011, pp. 1574-1587.

[15] Afshari M., Sajedi H., A Novel Artificial

Immune Algorithm for Solving the Job Shop

Scheduling Problem, Int. Journal of Computer

Applications, Vol. 48, No 14, 2012, pp. 46-53.

[16] Burnet F. M., Clonal selection and after,

Theoretical Immunology, 1978, pp. 63-85.

[17] Deb K., Pratap A., Agarwal S., Meyarivan T.,

A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II, IEEE Transactions on

Evolutionary Computation, Vol. 6, 2002, 182-

197.

[18] Bacanin N., Tuba M., Brajevic I., Performance

of object-oriented software system for

improved artificial bee colony optimization,

Int. Journal of Mathematics and Computers in

Simulation, Vol. 5, Issue 2, 2011, pp. 154-162.

[19] Magalhães-Mendes J., Complex Scheduling

Problems Using an Ant Optimization

Methodology, WSEAS Transactions on

Information Science and Applications, Vol.

7, Issue 2, 2010, pp. 220-229.

[20] Exnar F., Machac O., The Travelling

Salesman Problem and its Application in

Logistics, WSEAS Transactions on

Business and Economics, Vol. 8, Issue 4,

2011, pp. 163-173.

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 155

http://apps.webofknowledge.com.proxy.kobson.nb.rs:2048/full_record.do?product=WOS&search_mode=GeneralSearch&qid=12&SID=1CJIJm1AB3bd@43n8D6&page=1&doc=1
http://apps.webofknowledge.com.proxy.kobson.nb.rs:2048/full_record.do?product=WOS&search_mode=GeneralSearch&qid=12&SID=1CJIJm1AB3bd@43n8D6&page=1&doc=1
http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html

