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1 Introduction
The most common methods for solving large systems
of linear equations Ax = b is to decompose the orig-
inal matrix into factors of lower or upper triangular
matrices. Cholesky factorization is based on decom-
posing the original symmetric positive definite matrix
A into the product of a lower triangular matrix L and
its transpose LT . The matrix L is called Cholesky fac-
tor.

Based on the approach taken in computing L,
Cholesky factorization can be row or column oriented.
In both of these approaches previously computed rows
or columns are used for the computation of the cur-
rent row or column. Matrix sparsity is utilized in
Cholesky algorithms for sparse matrices in recogniz-
ing the fact that a row or column does not necesserily
depends on all previously computed rows or columns
(due to the sparsity structure). That is why, in the
case of the sparse matrix, a pre step, known as sym-
bolic factorization, of predicting the nonzero pattern
of Cholesky factor L before computing the actual val-
ues is a good practice. After the nonzero structure of L
is known, computation can be focused only on com-
puting nonzero entries. To implement this we use a
structure called elimination tree, whose computation
is part of symbolic factorization and which shows col-
umn dependencies in Cholesky factor L.

Cholesky factorization of sparse matrices offers a
number of possibilities for parallel computation. The
structure of the elimination tree can serve as a guide in
choosing the best task decomposition strategy needed
for designing parallel algorithms.

2 Sparse Matrices
A matrix whose most of the entries are zero elements
is called sparse matrix. Exploring the advantage of
sparse matrices structure is mostly based on the fact
that operations are done only on its nonzero entries.

2.1 Sparse matrix data structure
Sparse matrix data structure is based on storing only
nonzero elements of a matrix. Some of the storage
forms that are commonly used are: compressed row
and column storage, block compressed row storage,
diagonal storage, jagged diagonal storage, and skyline
storage. Compressed row and column storage will be
explained briefly.

The material from [2] was used in writing this
section. Both column and row version of compressed
storage for sparse matrices are based on forming three
arrays: two arrays which serve as pointers to nonzero
values, and one array for the actual nonzero values.
In the case of compressed column storage, one of the
pointer arrays (which will be referred to as index ar-
ray) will hold indexes of positions of nonzero entries
in each column; other pointer array (which will be re-
ferred to as pointer array) will point to the positions
in the index array where new column starts and the
third array (which will be referred to as values array)
will hold nonzero values of a matrix in a column order.

Instead of using two dimensional array and go-
ing through all entries in a column, with compressed
column structure nonzero entries of a column i can
be accessed relatively easy and in less time. For
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each column i, its values are at: values[pointer[j]]
to values[pointer[j+1]-1]. The similar rules hold for
compressed row storage, the only difference is that
instead of listing items by columns, they are listed by
rows. In this paper, the column compressed storage
format is assumed.

3 Cholesky factorization
Cholesky factorization is a method which solves
Ax = b, with A a symmetric positive definite matrix,
by factorizing the original matrix A into the product
of the lower triangular matrix L and its transpose LT :

A = LLT

Factor matrices L and LT are then used to get un-
known vector x by solving the following equations:

Ly = b (1)
LTx = y (2)

which is now straightforward computation task, since
both L and LT are triangular. The column version of
the algorithm is:

Algorithm 1 Solving triangular system accessing by
columns

1: x← b
2: for each column j do
3: xj ← xj/ljj
4: for each row i with index greater than j, for

which lij 6= 0 (j...n) do
5: xi ← xi–lijxj
6: end for
7: end for

For sparse matrices a pre step is needed in which
it is needed to predict the nonzero structure of the
vector x. Using the predicted nonzero structure of x,
the sparse version of the algorithm (Algorithm 2) will
compute the actual values.

The nonzero structure of LT is represented by
GL, the graph defined as follows: GL = (V,E),
where V = {1, ..., n} the set of nodes is set of
columns of L, and E = {(j, i)|lij 6= 0}.

Which nodes are reachable from a given node is
determined using depth first search. After DFS is run
for each node i of GL for which bi 6= 0, the union of
all obtained Reach sets is the nonzero structure of the
solution x.

Theorem 1. Define the directed graph GL = (V,E)
with nodes V = {1, . . . , n} and edges E =

Algorithm 2 Solving triangular system , x is sparse
1: input: nonzero structure of x
2: x← b
3: for each column j for which xj 6= 0 do
4: xj ← xj/ljj
5: for each row i with index greater than j, for

which lij 6= 0 (j . . . n) do
6: xi ← xi–lijxj
7: end for
8: end for

{(j, i) | lij 6= 0}. Let ReachL(i) denote the set of
nodes reachable from node i via paths in GL, and let
Reach(B), for a set B, be the set of all nodes reach-
able from any node in B. The nonzero pattern X =
{j|xj 6= 0} of the solution x to the sparse linear sys-
tem Lx = b is given by X = ReachL(B), whereB =
{i|bi 6= o}, assuming no numerical cancellation [3].

Algorithm 3 Lx=b, nonzero structure of x
1: for each node i for which bi 6= 0 do
2: mark node i
3: perform depth first search
4: end for

Algorithms for computing Cholesky factor are
based on one of the three approaches: left, right or
up looking approach. Each method uses previously
computed rows (in the case of left and right looking)
and columns (in the case of an up looking) to compute
current row or column. An up looking Cholesky algo-
rithm computes L one row at a time. When computing
kth row, this algorithm uses all rows from 0 to k − 1
which are assumed to be already computed:

Algorithm 4 Up looking Cholesky factorization

1: l11 ←
√
a11

2: for each row k such that 0 < k < n do
3: kT ← L(k−1)(k−1)k

T = a∗k
4: k ← transpose of kT

5: compute diagonal entry lkk ←
√
akk − l

6: end for

The sparse triangular solve algorithm in Algo-
rithm 2 is based on predicting the nonzero structure
of the unknown vector x. This means that for each
row k, its nonzero structure is predicted first, and then
the sparse triangular algorithm is performed. Thus,
the third line of the Algorithm 4 consists of the steps
that are listed in the Algorithm 5.
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Algorithm 5
1: set K is empty
2: for each i for which aik 6= 0 do
3: K ← K union depth first search on

L(k−1)(k−1) starting at node i
4: end for
5: perform algorithm 2 with set K as nonzero pat-

tern

If the nonzero structure of the whole matrix L is
known in advance, the Algorithm 5 would have the
simpler structure. This is why Cholesky factorization
algorithms are based on two major steps: symbolic
and numerical factorization. Symbolic factorization
stands for a process during which only the structure
of L is predicted without computing the actual values
of its entries. Cholesky factor L will have nonzero en-
tries at positions where original matrix A has nonzero
entries plus additional nonzeros which are called fill
in. After the nonzero structure of L is known, compu-
tation of each row by triangular solve would be faster
since the time for predicting the nonzero structure of
rows would be reduced. A structure which is com-
monly used as a reflection of the nonzero structure of
L is elimination tree.

Theorem 2 states that the Cholesky factor L
will have all nonzero positions as its original matrix
A. Theorem 3 defines positions on which additional
nonzero entries, called fill in, will appear. Following
these rules, we can construct the nonzero pattern of L.

Theorem 2. For a Cholesky factorization LLT = A
and neglecting numerical cancellation, aij 6= 0 im-
plies that lij 6= 0. That is, if aij is nonzero, then lij
will be nonzero as well [4].

Theorem 3. For a Cholesky factorization LLT =
A and neglecting numerical cancellation i < j <
k, lji 6= 0, lki 6= 0 =⇒ lkj 6= 0 . That is, if both
lji and lki are nonzero where i < j < k, then lkj will
be nonzero as well [4].

The elimination tree is obtained from GL by re-
moving certain edges: If there is a path from i to k
via j that does not traverse the edge (i, k), the edge
(i, k) is not needed to compute Reach(i). Reach(t)
for a node t, if there is a path from t to i is also not
affected if (i, k) is removed from GL. If j > i is
the least numbered node for which lij 6= 0, all other
lki 6= 0, where k > j are not needed.

To get the nonzero structure of rows in L, the
elimination tree is traversed as described in the fol-
lowing algorithm.

Algorithm 6
1: input: elimination tree
2: for each i < k for which aik 6= 0 do
3: mark node i
4: climb up the tree and mark each node, until a

marked node or node k is reached
5: end for
6: marked nodes are nonzero pattern of k

4 Parallel Cholesky factorization for
sparse matrices

There are several issues that need to be considered
when talking about parallel algorithms for Cholesky
factorization. The level of task decomposition and
strategy which will be used to map tasks to computing
resources are probably the most important ones. Task
can be seen as a process in the computation, while the
computing resource is a runner of the task. Several
tasks may be assigned to a single computing resource.
This is another important issue that influences algo-
rithm efficiency: the strategy and the level used to map
tasks to computing resources available. Depending
on the architecture available, this assignment can be
done dynamically (in shared memory architecture) or
statically (in distributed memory architecture). Either
way, in most algorithms for parallel Cholesky which
are based on column approach the level at which the
tasks are assigned to processors is column level. This
means that one processor is responsible for perform-
ing all tasks related to one or more columns assigned
to it.

We consider column level task decomposition.
For discussion on entry level decomposition and block
level decomposition we refer the reader to [1].

For sparse matrices, a column j does not neces-
sarily depends on all columns i, 0 < i < j. By
its structure, elimination tree reflects column depen-
dencies of L in a way that a node i in the elimina-
tion tree (column i) depends on all nodes that are its
descendants in the elimination tree. In other words,
all columns that are below it in the elimination tree
need to be computed first and are used in computing
a column i. According to this we can conclude that
columns which are leaves in the elimination tree are
those which do not depend on any other columns.

After the structure of the elimination tree is
known, the dependency set can be built for each col-
umn j and then it can be used to construct parallel
Cholesky algorithms whose task decomposition is on
column level in a way that columns which do not de-
pend on each other can be computed in parallel. At
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each stage of the computation, columns that corre-
spond to leaves in the elimination tree can be com-
puted simultaneously. An algorithm designed on this
basis is presented in [6]. The algorithm is based on
repeatedly performing the following steps until all
columns are computed:

1. Compute columns which correspond to leaves in
elimination tree

2. Delete leaves from the elimination tree

Obviously the running time depends on the elimi-
nation tree height, which means that wider and low
height elimination tree is preferable. The way in
which the structure of the elimination tree is affected
is by reordering the original matrix A. The algorithm
itself relies a lot on the symbolic factorization and
nonzero structure of Cholesky factor L.

Depending on the nature of the communication
model, the algorithm can be implemented in several
ways. One of them is to assign a processor to each
nonzero in L. The assumption is that each processor
Pij have access to the structure of the elimination tree.

Each column is computed only when it becomes
a leaf in the elimination tree, and is then deleted from
the elimination tree so that a node which depends on
it becomes a leaf and can be computed next. Again,
as a reminder, the operations which need to be done
on each column j (once it becomes a leaf):
1. Modification of each nonzero lij value by nonzero
values in columns which are direct descendants of a
column j in the elimination tree:
1.1. Each lij will be computed by subtracting each
multiple ljzliz for each z which is direct descendant
of j in elimination tree
1.2. The multiples can be computed and subtracted
one by one or can be summed up an subtracted at
once
1.3. Once a column j becomes a leaf in elimination
tree, each processor Pji (which are in charge of values
in row j – since its multiples are affecting column )
is signaled and modifications are made (either one by
one or after summing them up)
2. Division of each nondiagonal nonzero value by the
square root of its diagonal value
2.1. When a node j becomes a leaf, all processors
which are in charge of nodes in column j, Pij have to
divide its value lij by the square root of diagonal value

The assumption is that each processor can access
the values of other processors. Each processor will ac-
cess only those values that are needed for the compu-
tation. Since each of them will start only after all val-
ues on which it depends are computed, it will not hap-

pen that a processor accesses the value whose compu-
tation is not finished.

Another assumption is that each processor Pij is
signaled to start once all values in j’s dependency
set are computed - that is, when j becomes a leaf in
the elimination tree. The signalization may also be
done by a processor which would be in charge of the
scheduling. On the other hand, since each processor
can access the structure of the elimination tree by it-
self, each can know when its column is a leaf and can
start its computation without any signalization. How-
ever, since this is the case when a processor is as-
signed to a single value and thus a single column is
computed by multiple processors - they each would
have to regularly check if their column is a leaf, it is
better for the efficiency that there is a single processor
dedicated to scheduling and signalization.

The signalization processor communicates with
each processor Pij signalling them to start. Each pro-
cessor Pij , on the other hand, informs the signaliza-
tion processor once it is done. This is how the signal-
ization processor knows when each value in column is
computed, so it can delete it from the elimination tree
and inform new leaves to start.

Algorithm 7 Schedule processors

1: while there are nodes in elimination tree do
2: signal each processor Pij , for which j is a leaf

to start computation
3: if all values in column j are computed then
4: delete j from the elimination tree
5: end if
6: end while

Algorithm 8 Computation processor Pij

1: if i 6= j then
2: for each descendant z of j in elimination tree

do
3: lij ← lij − ljzliz
4: end for
5: lij ← lij/ljj
6: else
7: for each descendant z of j in elimination tree

do
8: ljj ← ljj − ljzljz
9: end for

10: ljj ←
√

ljj
11: end if
12: inform signalization processor that lij is com-

puted
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Requiring one processor per nonzero in L could
lead to too many processors needed. Instead, this
same logic could be implemented by assigning the
whole column to a single processor. The level of task
decomposition and basic algorithm structure would
remain the same, but each processor would have more
entries to be in charge of. Again, columns which are
current leaves of elimination tree can be computed at
the same time:

• Each processor Pj would know when column j
is a leaf

• When its column becomes a leaf, Pj collects all
multiples needed to perform updates on its values
– it needs updates only from columns which are
the direct descendants of its column in the elimi-
nation tree. Since the elimination tree structure is
known to each processor, Pj knows which values
it needs

• Alternatively, these updates could be summed up
by sourcing processors and then applied to values
in j

• Finally, processor Pj divides its values by the di-
agonal entry

The efficiency would not suffer in this case if each
processor knows by itself when it becomes a leaf,
without the signalization processor. The logic is thus
that each processor Pj regularly checks the structure
of the elimination tree. Once j is a leaf, the computa-
tion of its values starts. After all values are computed,
j is deleted from the elimination tree.

Algorithm 9 Computation processor Pj

1: for each descendant z of j in elimination tree do
2: ljj ← ljj − ljzljz
3: end for
4: ljj ←

√
ljj

5: for each nondiagonal value i in column j do
6: for each descendant z of j in elimination tree

do
7: lij ← lij − ljzliz
8: end for
9: end for

10: lij ← lij/ljj
11: delete j from the elimination tree

5 Running sample algorithms
5.1 Sample matrix and tools
In this section, the results and graphs obtained in
running different algorithms on sample matrices and

comparing their performance will be presented.
The sample matrix used in this section is one of the
matrices that can be found in Sample Gallery of the
University of Florida Sparse Matrix Collection [7].
MATLAB and its built in functions are used for build-
ing and running tests. tic and toe MATLAB com-
mands were used to measure the running time of the
functions.
The matrix chosen for the examples in this section is
called mesh2e1. It is a real symmetric positive definite
matrix of size 306 by 306. Total number of nonzero
entries is 2018 (out of total 93636), which place it in
the group of sparse matrices.

5.2 Full versus sparse
As a first test case, comparison is made on perfor-
mance of the Cholesky factorization algorithm on
the same matrix - once presented as a full and once
presented as a sparse matrix.
Cholesky factorization algorithm that is used for the
test is MATLAB’s function chol.
Part of the MATLAB code that was used to perform
these steps is below. The first line converts the matrix
into the full form; following with the code section
which performs cholesky factorization on it and
measures the running time. The other part of the
code converts the matrix back to the sparse form and
performs the same algorithm on it.

F = full(A);
tic
CF = chol(F)’;
toc;
%Result: Elapsed time is 0.070510 seconds.

S = sparse(A);
tic
CS = chol(S)’;
toc
%Result: Elapsed time is 0.003222 seconds.

Notice that Cholesky factorization of the matrix repre-
sented as a sparse one takes around 21 times less time
then performing the factorization on the same matrix
represented as a full one.

The methods for reordering the original matrix
before computing the actual Cholesky factor are very
common. We consider the minimum degree ordering
and Reverse Cuthill-McKee ordering method.

The minimum degree ordering algorithm is a
widely used heuristic for finding a permutation P so
that PAP T has fewer nonzeros in its factorization
than A[4]. Its MATLAB implementation is the func-
tion symamd. To test the effects which this ordering
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has on the original matrix and fill in of its Cholesky
factor, matrix mesh2e1 is reordered and the time
needed for Cholesky factorization is measured again.
The result shows that in this case, matrix reordering
improved the speed of Cholesky factorization.

% minimum degree ordering and its effect on
Cholesky factor ;
%A is mesh2e1 matrix
S = sparse(A);
MD = symamd(S);

%perform Cholesky factorization on ordered matrix
tic
MDC = chol(S(MD,MD))’;
toc
%Result: Elapsed time is 0.000625 seconds

Reverse Cuthill-McKee ordering method moves
all nonzero elements closer to the diagonal. Its
corresponding MATLAB function is symrcm, which
returns the permutation vector which is then applied
to the original matrix.

S = sparse(A);
p = symrcm(S);
tic
L = chol(S(p,p))’;
toc
%Result: Elapsed time is 0.001047 seconds.

5.3 Symbolic factorization
Figure 1 shows the elimination tree of the Cholesky
factor obtained out of the original matrix (the elimi-
nation tree figure is generated in MATLAB).

Figure 1: Elimination tree

It shows that there are not many computations
which could be done in parallel. Several large
leafchains mean that there are many nodes that de-
pens on many other nodes (all nodes that are below
it in the chain) and thus can not be computed with-

out them.The options for the possible parallelism are
marked in the figure. Leafchains marked with the
same mark could be computed in parallel. Leafchains
marked with L-1 could be computed independently of
each other, following by the nodes and leafchains at
the level L-2 which depend on the nodes computed
in L-1 level. Finally, level L-3 can be computed only
after nodes marked with L-1 and L-2 are computed.
Parallelism at the entry level could be added inside
the leafchains themselves.

For the examples of the elimination trees of the
Cholesky factor of a matrix reordered using mini-
mum degree ordering and also using Reverse Cuthill-
McKee ordering the reader is referred to [1].
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