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Abstract: - We consider mathematical properties of the three-dimensional compressible rotating fluid in a 

homogeneous gravity field, which may find an application in the study of the Atmosphere and the Ocean. In 

particular, we investigate the structure and localization of the spectrum of internal oscillations for differential 

operators generated by such flows. This spectrum may be very useful for studying the stability of the flows, 

since it is closely related to the non-uniqueness of the limit amplitude of the stabilized flow. Also, it is 

important in the investigation of weakly non-linear flows, since the bifurcation points where the small non-

linear solutions arise, belong to the spectrum of linear normal oscillations. We consider both inviscid and 

viscous fluid for various boundary conditions. The novelty of this research is to consider simultaneously the 

effects of rotation and stratification, which has been studied separately in previous works. 

 

Key-Words: - Partial Differential Equations, Sobolev Spaces, Compressible Fluid, Rotational Fluid, Stratified 

Fluid, Essential Spectrum, Internal Waves.  

 

1 Introduction 

Let us consider a bounded domain 
3RΩ⊂  with the 

boundary ∂Ω  of the class 
1C and the following 

system of fluid dynamics 
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Here ( )1 2 3, ,u u u u=
�

 is a velocity field, ( , )p x t  is the 

scalar field of the dynamic pressure and  ( , )x tρ  is 

the dynamic density. In this model, the stationary 

distribution of density is described by the function 
3Nx

e
−

, so N is a positive constant. For the 

compressibility coefficient α , the kinematic 

viscosity coefficient ν , and the volume (bulk) 

viscosity coefficient β  we assume 

0 , 0 , 0α ν β> > ≥ . We also suppose that ω  is a 

positive constant so that system (1) describes linear 

motions of compressible stratified barotropic 

viscous fluid which is rotating over the vertical axis 

with a constant angular velocity ( )0,0,ω ω=
�

. 

We consider as well the inviscid case of the model 

decribed by (1): 
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For inviscid case, the equations (2) are deduced in 

[1]-[3]. For viscous compressible fluid, the system 

(1) is deduced, for example, in [4].  

The mathematical properties of rotational inviscid 

fluid were studied in various works of S. Sobolev, 
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starting from the famous paper [5]. The studying of 

qualitative properties of solutions of PDE systems 

modeling rotational compressible flows was started 

by V. Maslennikova in [6] and was developed later 

in her future works. We may observe that, despite an 

extensive study of stratified flows from the physical 

point of view (see, for example, [7]-[11]), there have 

been relatively few works considering the mathema-

tical aspect of the problem, some results may be 

found in [12]-[16]. Particularly, for 

0  and  0ν β= = , for the case of compressible fluid 

( 0α > ), in [16] it was proved that the essential 

spectrum of operator of normal vibrations is the 

interval of the imaginary axis [ ],iN iN− . For 

rotational inviscid fluid, the corresponding result 

was proved in [17], [24]. And, finally, the spectral 

properties of stratified compressible viscous fluid 

were studied in [18], [19]. However, the case of 

rotating stratified (either inviscid or viscious) fluid 

has not been considered previously. The novelty of 

this problem, the explicit relationship between the 

parameters of rotation and stratification in the 

description of the spectral properties and its possible 

applications to the dynamics of the Atmosphere and 

the Ocean was the motivation of this paper. 

Let us consider first the system (2) with the 

boundary condition 

                             0u n
∂Ω

⋅ =
� � ,                            ( 3 ) 

where n
�

 is an external normal vector for the 

boundary ∂Ω . We consider the following problem 

of normal oscillations 
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We denote ( )4 5, ,v v v v=
�

ɶ  and write (2)  as 

                                    0Lv =ɶ                               ( 5 ) 

where L M Iλ= −  and        
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Let us denote as 1M  the differential operator (6) 

corresponding to the boundary conditions (3). 

We define the domain of the differential operator 

1M  as follows.  
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where ( )1

2W Ω  is a Sobolev functional space with 

the norm 
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On the other hand, we will consider the system (1) 

with the boundary conditions  
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∂Ω
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�

.                               ( 8 ) 

For system (1) we apply the separation of variables 

(4)-(5), and thus the matrix M will take the form 
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We denote as  2M  the differential operator (9) 

associated with the boundary conditions (8).  In this 

way, the domain of operator 2M  can be defined as 

follows. 
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 where  ( )
0

1

2W Ω  is a closure of the functional space 

( )0C
∞ Ω  in the norm (7). 

From the physical point of view, the separation of 

variables (4) serves as a tool to establish the 

possibility to represent every non-stationary process 

described by (1), (2), as a linear superposition of the 

normal oscillations. The knowledge of the spectrum 

of normal vibrations may be very useful for 

studying the stability of the flows. Also, the 
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spectrum of operators 1 2, M M is important in the 

investigation of weakly non-linear flows, since the 

bifurcation points where the small non-linear 

solutions arise, belong to the spectrum of linear 

normal vibrations. Our aim is to study the spectrum 

of operators 1 2,  M M .  

 

 

2 Problem Formulation 
We observe first that the operators 1 2, M M  are 

closed operators, and their domains are dense in 

( )( )5

2L Ω . 

Let us denote by ( )ess Mσ  the essential spectrum of  

a closed linear operator M. We recall that the 

essential spectrum  

( ) ( ){ }:  is not of Fredholm type ,ess M C M Iσ λ λ= ∈ −

is composed of the points belonging to the 

continuous spectrum, limit points of the point 

spectrum and the eigenvalues of infinite multiplicity 

(see [20] ,[21]).  

In this way, every spectral point which does not 

belong to the essential spectrum, is an eigenvalue of 

finite multiplicity. To find the essential spectrum of 

the operator M , we will use the following property 

(see [22]): 

( )ess M Q Sσ = ∪ , 

where 

( ): is not elliptic 

in sense of Douglis-Nirenberg

C M I
Q

λ λ ∈ − 
=  
  

 

and 

( )\ : the boundary conditions of 
.

do not satisfy Lopatinski conditions

C Q M I
S

λ λ ∈ − 
=  
  

We will use the definition and following properties 

of ellipticity in sense of Douglis-Nirenberg from 

[23], and the definition of the Lopatinski conditions, 

from [22]. 

We also will use the following criterion which is 

attributed to Weyl ([20],[21]): a necessary and 

sufficient condition that a real finite value λ  be a 

point of the essential spectrum of a self-adjoint 

operator M  is that there exist a sequence of 

elements ( )nv D M∈  such that 

  ( )1 ,   0 ,   0 .n n nv v M I vλ= − →⇀         ( 10 ) 

We will find the essential spectrum of the operators 

1 2, M M . For that, we will use the concepts of 

Lopatinski conditions and ellipticity in sense of 

Douglis-Nirenberg. Additionally, for the operator 

1M  we will prove the property of skew-

selfadjointness and, for all the values of the spectral 

parameter belonging to the essential spectrum, we 

will construct an explicit Weyl secuence (10), which 

is the main result of this work. For the operator 2M  

we will localize the sector of the complex plane to 

which all the eigenvalues belong. 

Finally, we will compare the obtained spectral 

results for stratified rotating fluid with the previous 

analogous results considering separately the cases of 

rotation and stratification, either for viscous or for 

inviscid fluid. 
 

 

3 Problem Solution 
Theorem 1.  

The operator 1M  is skew-selfadjoint. 

Proof. 

We observe that 1M  can be represented as  

                   1 0 ,NM M B Bω= + +                       ( 11 ) 

where 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 ,   .0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

NB B N

N
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ω
ω
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   −   
   
   

 

Since , NB Bω  are anti-symmetric bounded 

operators, then it is sufficient to prove the skew-

selfadjointness for the operator 0M  with the domain 

( ) ( )0 1 .D M D M=  

Let ( )0,u v D M∈ɶ ɶ . Integrating by parts, we obtain 

( ) ( )0 0, ,M u v u M v= −ɶ ɶ ɶ ɶ . 

Now, let ( )*

0v D M∈ɶ . Thus, ( )2v L∈ Ωɶ  and there 

exists ( )2f L∈ Ωɶ  such that 

( ) ( ) ( )0 0, ,   for all M u v u f u D M= ∈ɶɶ ɶ ɶ ɶ . 

Take ( )1

5 5 2(0,0,0,0, ) ,  u u u W= ∈ Ωɶ . Then, we will 

have 

( ) ( )5 5 5, ,u v u f∇ =
�

. 

For ( )1 2 3, , ,0,0u u u u=ɶ  we obtain 

( ) ( )5 , ,div u v u f=
�� �

. 
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From the last two relations we conclude that 5v  has 

a weak gradient from ( )2L Ω  and ( )1

5 2 .v W∈ Ω  

Since 0M  is not acting on the fourth component of 

the vector uɶ , we may consider 4 4 4 0.u v f= = =  

In this way, we have verified that 

( ) ( )*

0 0 .D M D M⊂  

The reciprocal inclusion can be proved analogously 

and thus the theorem is proved. 

Theorem 2.  

Let { } { }min ,  ,  max ,a N A Nω ω= = . Then, the 

essential spectrum of 1M  is the following 

symmetrical set of the imaginary axis: 

{ }0 [ , ] [ , ]iA ia ia iA∪ − − ∪ . 

Proof 1. 

According to [23], [24], for operator M in (6), we 

can choose the numbers 0i js t= =  for , 1,2,3,4i j =  

and 5 5 1s t= = . In this way, the main symbol ( )L ξɶ  

takes the following form: 
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1 2 32
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λ
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α
 = + + + + 

ɶ .   ( 12 ) 

We can see from (12) that if  

{ } ( ) ( )0 , ,iA ia ia iAλ∉ ∪ − − ∪   , 

then the operator L  is elliptic in sense of Douglis-

Nirenberg. Now, let us prove that the boundary 

condition (3) satisfies Lopatinski conditions. 

If we write the conditions (3) in form 

0Gu
∂Ω
=ɶ , 

we obtain immediately that 

1 2 3( , , ,0,0)G n n n=  

and G is a vector row. It can be easily seen that 

( )ˆ ,L ξ τɶ  is a matrix whose size is 5x5, and that ˆGL  

is a non-zero row with five components. In other 

terms, the Lopatinski condition is satisfied, which 

completes the proof. 

 

Proof 2. (construction of an explicit Weyl sequence) 

From theorem 1 we know that the spectrum of the 

operator 1M  belongs to the imaginary axis. Taking 

into account (12), we consider ( ) { }0 , \ 0ia iAλ ∈±  

and choose a vector 0ξ ≠  such that 

( )( ) ( )2 2 2 2 2 2 2

0 1 2 0 3 0Nλ ξ ξ λ ω ξ+ + + + = . 

Therefore, there exist the vector η  such that 

                               ( ) 0L ξ η =ɶ .                         ( 13 ) 

Solving (13) with respect to η  , we obtain one of 

possible solutions: 
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We observe that 0 ,  1,2,3,4,5.i iη ≠ =  Now, let us 

choose a function ( ) ( )2

0 0 0
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x
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
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 ( 14 ) 

It can be easily seen that the sequence (14) satisfies 

the conditions (10) and thus the Theorem is proved. 

We note that the limit points ,ia iA± ±  belong to the 

essential spectrum due to the fact that an essential 

spectrum is a closed set. We would like to observe 

as well that the sequence (14), being an explicit 

solution of the system (5) for λ  belonging to the 

essential spectrum, serves as an example of non-

uniqueness of the solution, due to the arbitrary 

election of the function 0ψ . 

Theorem 3 

The essential spectrum of the operator 2M  is 

composed of three real isolated points 
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so that the main symbol of the operator (5)-(9) 
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We calculate the determinant of the last matrix: 
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λν
λ ξ ξ νλα β

α
− = + − , 

and thus we can see that for two points   

( )2

1
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1
λ λ

να β
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+
 

the operator  2L M Iλ= −  is not elliptic in sense of 

Douglis-Nirenberg. It is easy to see, additionally, 

that  for the point ( )2
1

2
λ

να β
=

+
 the condition 

of Lopatinski is not satisfied, which concludes the 

proof of the Theorem. 

Theorem 4.  

Let { }max ,A Nω= . Then, the spectrum of operator 

2M  is symmetrical with respect to the real axis, and 

all the eigenvalues of operator 2M  are in the 

following sector of the complex plane: 
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2
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:  Re 0,  ImZ C A
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λ
λ λ λ

να β

 
= ∈ ≥ ≤ + 
 

. 

Proof. 

Let us denote  ( )*

1 2 3 4, , ,v v v v v=    and take notations 

for the matrices   ,  NB Bω  from (11). 

Then, the system  ( ){ }*

2 5, 0M I v vλ− =   can be 

written in the form 

* * *

5

5

1
div 0

1
div 0

Nv B v B v v v v

v v
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λ
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
− + =


� �

�
. 

Now we multiply the last system by { }*

5,v v  and 

then integrate by parts in Ω . In this way, we obtain 

the following equations: 
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( )

( )

2
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3
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5
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5 5
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div ,div 0

1
div , 0 .
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− + + +
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− + =
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We sum up these two equations and then separate 

the real and the imaginary parts, keeping in mind the 

fact that for a skew-symmetric matrix B the 

expression ( )* *,Bv v  is imaginary. 

3
2 2

1

2 2*

5

div

Re 0
k

k

v v

v v

ν νβ
λ =

∇ +
= ≥

+

∑ �

, 

( ) ( ) ( ) ( )* * * *

5 5

2 2*

5

1
, , div , ,div

Im ,
NB v v B v v v v v v

i
v v

ω αλ
+ +  −  

= −
+

� �

from which we have 
( )

2

Re
Im A

A

λ
λ

να β
≤ + . 

It remains to prove now that the spectrum is 

symmetrical with respect to the real axis. For that 

purpose, we apply the complex-conjugation to the 

original system of 2 0M Iλ− = : 

* * *

5

5

1
div 0

1
div 0

Nv B v B v v v v

v v

ωλ ν νβ
α

λ
α

− + + − ∆ − + ∇ =

− + =


� �

�
 

and thus we can see that, if λ  is an eigenvalue of 

2M , then λ  is also an eigenvalue of operator 2M , 

which concludes the proof of the theorem. 

 

 

4 Conclusion 
For the inviscid case of compressible rotating 
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stratified fluid, as we have seen, the essential 

spectrum of inner oscillations is the symmetrical 

bounded set of the imaginary axis 

{ }0 [ , ] [ , ]iA ia ia iA∪ − − ∪ . 

Comparing these results with the compressible 

viscous case, we can conclude that the considered 

problems and the results of Theorems 2 and 3, are 

remarkable and interesting due to the special 

property that, for the viscous fluid, the two points of 

the essential spectrum  

( ) ( )2 2

1 1
,

1 2να β να β+ +
 

move to infinity for , 0ν β → ; while the essential 

spectrum of the inviscid fluid contains an interval of 

the imaginary axis. 

Additionally, we can see, that the results obtained 

for the inviscid fluid in theorem 2 correspond, in a 

certain way, to the statement of theorem 3 if we put 

Re 0λ = :  ( )Re 0,  Im Aλ λ= ≤ . 

Finally, we would like to observe that, if we put, for 

example, 0N =  in (2), then, according to theorem 

2, the essential spectrum will be the interval of the 

imaginary axis [ ],i iω ω− , the result which was 

proved for rotating (non-stratified) compressible 

fluid in [24].  

 

References: 

[1]  B. Cushman-Roisin, J. Beckers, Introduction to 

geophysical fluid dynamics, Acad.Press, N.Y., 2011. 

[2]  D. Tritton, Physical Fluid Dynamics, Oxford 

UP, Oxford, 1990. 

[3]  P. Kundu, Fluid Mechanics, Acad. Press, N.Y., 

1990. 

[4]  L. Landau, and E. Lifschitz, Fluid Mechanics, 

Pergamon Press, London, 1959.   

[5]  S. Sobolev, On a new problem of mathematical 

physics, Izv. Akad. Nauk. Ser. Mat, Vol. 18, 1954, 

pp. 3-50. 

[6]  V. Maslennikova, Solution in explicit form of 

the Cauchy problem for a system of partial 

differential equations, Izv. Akad. Nauk. Ser. Mat, 

Vol. 22, 1958, pp. 135-160. 

[7]  N. Makarenko, J. Maltseva, and A. Kazakov, 

Conjugate flows and amplitude bounds for internal 

solitary waves, Nonlin. Processes Geophys., No. 16, 

2009, pp. 169-178.  

[8]  B. Maurer, D. Bolster, and P. Linden, Intrusive 

gravity currents between two stably stratified fluids, 

J. Fluid Mech., Vol. 647, 2010, pp. 53-69.   

[9] T. Dauxois, and W. Young, Near-critical 

reflection of internal waves, J. Fluid Mech., Vol. 90, 

1999, pp. 271-295.  

[10]  V. Birman, and E. Meiburg, On gravity 

currents in stratified ambients, Phys. Fluids, No. 19, 

2007, pp. 602-612. 

[11]  B. Sutherland, and W. Peltier, The stability of 

stratified jets, Geophys. Astrophys. Fluid  Dyn., No. 

66, 1992, pp. 101-131.  

[12] S. Sekerz-Zenkovich, Construction of the 

fundamental solution for the operator of inner 

waves, Dokl. Ak. Nauk USSR, No. 246, 1979, pp. 

286-288. 

[13] V. Maslennikova, and A. Giniatoulline, On the 

intrusion problem in a viscous stratified fluid  for 

three space variables, Math. Notes, No. 51, 1992, 

pp. 374-379. 

[14] A. Giniatoulline, On the essential spectrum of 

operators generated by PDE systems of stratified 

fluids, Intern. J. Computer Research, Vol. 12, 2003, 

pp. 63-72. 

[15]  A. Giniatoulline, and C. Rincon, On the spect-

rum of normal vibrations for stratified fluids, 

Computational Fluid Dynamics J., Vol. 13, 2004, 

pp. 273-281. 

[16]  A. Giniatoulline, and C. Hernandez, Spectral 

properties of compressible stratified flows, Revista 

Colombiana  Mat., Vol. 41, (2 ), 2007, pp. 333-344. 

[17] V. Maslennikova, and A. Giniatoulline, 

Spectral properties of operators for systems of 

hydrodynamics, Siberian Math. J., Vol. 29, 1988, 

pp. 812-824. 

[18] A. Giniatoulline, and T. Castro, Spectral 

properties of normal vibrations in a viscous 

compressible barotropic stratified fluid, Advances in 

Fluid Mechanics and Heat and Mass Transfer, 

WSEAS Press, 2012, pp. 343-348. 

[19] A. Giniatoulline, and T. Castro, On the 

spectrum of operator of inner waves in a viscous 

compressible stratified fluid, J. Math. Sci. Univ. 

Tokyo, Vol. 19(3), 2012, pp. 313-323. 

[20]   T. Kato, Perturbation theory for linear opera- 

tors, Springer, Berlin, 1966.  

[21]   F. Riesz, and B. Sz.-Nag, Functional Analysis, 
Fr. Ungar, N.Y., 1972.  

[22]  G.. Grubb, and G. Geymonat, The essential 

spectrum of elliptic systems of mixed order, Math. 

Ann., Vol. 227, 1977, pp. 247-276.  

[23]  S. Agmon, A. Douglis, and L. Nirenberg, 

Estimates near the boundary for solutions of elliptic 

differential equations. Comm. Pure and Appl. 

Mathematics, Vol. 17, 1964, pp. 35-92. 

[24]  A. Giniatoulline, An Introduction to Spectral 

Theory, Edwards, Philadelphia, 2005. 

Recent Advances in Mathematical Methods and Computational Techniques in Modern Science

ISBN: 978-1-61804-178-4 118




