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Abstract: - The aim of this paper is to give an overview of  the main analytical and numerical methods for the 

assessment of masonry arches , highlighting strengths and weaknesses. The methods  are mainly three: i) the 

Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Method. The Thrust Line 

Analysis Method and the Mechanism Method are analytical methods and are based on two of the fundamental 

theorems of the Plastic Analysis, while the Finite Element Method is a numerical method that uses different 

strategies of discretization to analyze these structures.  
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1 Introduction 
In his book [1] “La scienza delle costruzioni e il suo 

sviluppo storico”, Edoardo Benvenuto gave us the 

historical perspective of the first static theories 

regarding the masonry arch. 

Between the seventeenth and eighteenth century, the 

geometric and the empiric rules reported in the 

ancient treatises were replaced by a real static theory 

on the stability of the arches. 

Philippe De La Hire[2] was the first developing an 

innovative approach, which remained the same 

through the eighteenth century. The arch was 

considered as a series of rigid blocks of  well-

defined geometry and  specific weight. However his 

model neglected the friction, which was taken into 

account by Coulomb Model 

Only around the fifties of this century, the problem 

was taken up and dealt with a more congenial 

method. Attempts in the twenties to adapt the elastic 

theory to the masonry arch were not very successful. 

The weak points of these attempts were to assume 

the masonry material as elastic and to consider valid 

the results even if the thrust line was external to the 

core in some points. The turning point of the fifties 

was the introduction of the limit design and of its 

increasing applications in structural analysis. The 

theorems of limit analysis are admirably suited to 

the determination of the collapse load of masonry 

arches. 

So nowadays the engineering methods of 

assessment for arch bridges mainly rely on the 

pioneering work by Pippard and Ashby[3] and 

Pippard [4]. They determined the load required, at a 

given location, to cause the formation of two 

additional hinges, and hence a mechanism, in a two 

hinged arch. These procedures guaranteed that an 

equilibrium configuration exists for the considered 

structural model but gave only rough estimates of 

the limit load. Following this approach  and 

Drucker’s studies, Kooharian [5] published the first 

modern work on this topic  in 1952, which was 

followed one year later by Onat and Prager’s [6] 

paper. 

Another milestone was Heyman  publication [7] in 

1966, in which he explained for the first time the 

applicability of ultimate load theory for any 

masonry loadbearing structure.  

 

 

2 Jacques Heyman and the “Safe 

Theorem” 
Jacques Heyman  introduced three hypotheses for 

the determination of the admissibility domain of the 

masonry material. 

Heyman does not introduce anything new, but 

formalizes in a clear way some hypotheses on the 

material  that formed the basis for the calculation of 

the arches in the XVIII and XIX century. These 

assumptions enable Heyman to frame the masonry 

action in the plastic theory and to formulate the 

famous safe theorem that will be explained later on. 

The  three  hypotheses   are: (i) the  masonry  has no 

tensile strength  (Fig.1);  (ii) the masonry  has 

infinite compression strength (Fig.2); (iii) sliding 

failure doesn’t occur (Fig.3). The first assumption 

that does not always adhere to the reality, but it is a 

safety benefit. It is strictly true only if the masonry 

is made by dry-stone blocks or with weak mortar: 
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however, in most cases, the adherence between 

mortar and masonry blocks is negligible because the 

mortar may decay in time. Therefore, whatever is 

the ultimate tensile strength of the individual blocks, 

the masonry may be considered a non resistant 

tensile material (NRT material). The hypothesis of 

infinite compression strength is a valid 

approximation only if the ratio between the average 

compression stress and the masonry compression 

strength is a negligible value compared to the unit.  

 
 

Fig.1 Heyman’s first two hypotheses 

 
Fig.2  Heyman’s  third  hypothesis 

 

A reduction of the resistant section occurs in a NRT 

material with  a consequent redistribution of the 

compression stresses leading to  an increase of the 

peak values. 

 

 
 

 

Fig.3 Reduction of the resistant section 

In normal conditions of service, stresses are so low 

that any phenomenon of crushing failure does not 

occur. 

The assumption of absence of sliding failure implies  

that the shear component of the stress exerted 

between two adjacent voussoirs can never exceed 

the friction resistance between them. In fact, low 

compression stresses allow developing high friction 

forces that prevent voussoirs from losing cohesion 

and sliding. The validity of this hypothesis can be 

verified considering the slope of the thrust line with 

respect to the joint lines: if the thrust line is 

perpendicular to the joints, there is no mutual 

sliding between the voussoirs. If it forms an angle 

minor than 90°, the voussoirs tend to slide 

downwards or upwards. 

Concerning Heyman’s hypotheses, the collapse 

mechanism of the arch is then identified by the 

progressive formation of hinges that coincide with 

the points where the thrust line is tangent to the 

intrados or extrados of the arch. The mechanism for 

formation of hinges is not the only possible for the 

arch, but the experimental studies of Hendry [8] 

show that it can be considered as the most likely 

collapse mechanism for arches well buttressed. The 

analogy between the rotation failure mechanics of 

the arch and that of the steel frames allows Heyman 

to apply the fundamental theorems of the plastic 

analysis, including the safe theorem: 

“If any equilibrium state can be found that is one for 

which a set of internal forces is in equilibrium with 

the external loads, and, further, for which every 

internal portion of the structure satisfies a strength 

criterion, then the structure is safe”. 

The safe theorem allows remedying the vagueness 

connected to the true thrust line location between 

infinite numbers of possibilities: an arch is safe 

simply if a thrust line can be drawn inside his 

thickness. 

The thrust line has not to go out of the masonry 

thickness: to this end, it is interesting to study its 

two extreme positions that represent two states still 

in equilibrium. In fact, when the thrust line touches 

the lower or the upper boundary of the arch, the 

masonry finds itself at the limit of the admissible 

states region and the eccentricity is such that 

promotes the formation of hinges. In particular, in 

the two extreme conditions, the thrust line gives the 

location of three hinges that open: in this way, the 

value of the horizontal abutment thrust can be 

calculated, as shown in Fig.4. 

In the two extreme positions of the thrust line, the 

horizontal abutment thrust will be: a) minimum; b) 

maximum. The minimum horizontal thrust will be 

obtained when the arch acts on the environment: for 
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Fig.4  (a) Minimum abutment thrust (b) Maximum 

abutment thrust 

 

example,byr removing the centring that supports the 

masonry, an arch will thrust on the abutments and 

these one will open slightly. In minimum thrust 

state, or passive state, the thrust line will have the 

greatest rise and the smallest clear span; it will 

touch the extrados at the key and intrados at the 

back. The maximum horizontal thrust will be 

obtained when the environment acts on the arch: for 

example, when two abutments move closer to each 

other, the arch span diminishes. In state of 

maximum thrust state, or active state, the thrust line 

will have the smallest rise and the greatest clear 

span; it will touch the extrados at the crown and the 

intrados down. Three hinges will open if one is at 

the key; on the contrary, four hinges form. 

It is important to know the two extreme positions of 

the thrust line, because the real thrust of the arch 

can’t be calculated, but the upper and the lower 

limits can be fixed. 

The collapse of a masonry arch does not involve an 

absence of strength, but rather a loss of stability. In 

fact the collapse takes place when a thrust line can’t 

be finding within the arch boundaries. The crisis is 

connected with the formation of a fourth hinge that 

transforms the stable arch in an unstable mechanism 

of collapse. The four hinges open in alternating way 

in the intrados and in the extrados, following a 

pattern that is function of the arch shape and the 

working loads. In case of symmetrical load, a fifth 

hinge can open, but generally slight geometrical 

failings make the structure to behave 

asymmetrically. 

A masonry arch has to support two main types of 

loads: i) the self-weight; ii) the additional loads. The 

additional point loads have a thrusting nature and 

can cause collapses because their action move the 

thrust line out of the arch, generating the fourth 

hinge, as shown in Fig.5.  

 
 

Fig.5 An additional point load generating the fourth 

hinge 

 

On the contrary, the self-weight is the resistant load 

of any masonry structure and offers resistance to 

any mechanism of collapse. 

 

 

2.1 Stability Check 
The catenary is the arch true shape. Arches with 

other shape stand up because catenaries are included 

in their thickness. The thrust line shape is the 

mathematical catenary if the self-weight is equally 

distributed around the arch. There is a minimum 

thickness of semicircular arch that just contains a 

catenary. The limit arch has exactly this minimum 

thickness and is in unstable equilibrium. The ratio 

between the real arch thickness and the limit arch 

one defines the safety factor that is of geometric 

nature. Heyman suggests 2 as safe practical value: 

that is, if you’re able to draw a thrust line in the 

middle half of the arch, the arch is safe, as shown in 

Fig.6. So the thrust line can be perceived as an index 

of the stability condition of the arch. 

 

 
 

Fig.6 Geometry Safety factor of 2 
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2.2 Plastic Limit Analysis 
The research of  Professor Heyman highlights that 

an elastic analysis is problematic for masonry 

structures because there isn’t a unique calculable 

equilibrium state. On the contrary, the limit analysis 

allows considering the structure only in relation to 

its ultimate state, using few material parameters and 

neglecting the initial stress state. Some of the 

principal methods for the assessment of masonry 

arch bridges are based on the fundamental theorems 

of Limit Analysis. 

A summary of the basic rules that apply in the 

theory of plasticity can be found in the work of 

Horne [9]. In the context of masonry arches, there 

are fundamentally three main considerations to 

apply the theorems of plastic limit analysis: i) the 

internal actions must be in equilibrium with the 

external loads; ii) there must be a sufficient number 

of hinges to transform the structure into a 

mechanism; iii) the maximum stresses must be less 

than or equal to the material strength. 

The three fundamental theorems of plastic analysis 

can be stated in simplified form as: 

• Static or lower bound theorem. If the 

equilibrium and yield conditions are everywhere 

satisfied, then the load factor λl is less than or equal 

to the failure load factor λp; 

• Kinematic or upper bound theorem. If the 

equilibrium and the mechanism conditions are 

everywhere satisfied, then the load factor λu is 

greater than or equal to the failure load factor 

λp; 

• Uniqueness theorem. If the internal stress state is 

such that the three conditions of equilibrium, 

mechanism, and yield are satisfied then that load 

factor is the collapse load factor λp. 

 

 

3 Methods for the assessment of the 

masonry arches 
Structural analysis is a general term describing the 

operations to represent the real behavior of a 

construction. The analysis can be founded on 

mathematical models created on theoretical bases or 

on physical models tested in laboratory. In both 

cases, the models try to individuate the load 

carrying capacity of the structure, identifying the 

stress state, the strain and the internal forces 

distribution of the entire structure or of its parts. 

Besides, the models proposed for arch structures try 

to indicate the failure mode and the location of 

plastic hinges. 

In this paper, analytical methods for the structural 

analysis of the masonry arch bridges are treated. In 

literature there are many types of theoretical 

methods that can be used. These methods can be 

divided into different categories concerning their 

origin, scope, and applicability and approximation 

level. 

As previously seen, among the three fundamental 

structural criteria (strength, stiffness and stability), it 

is the stability that governs the life of the masonry 

arches because the average medium stresses are low 

and the strains are negligible (Fig.7 ). 

 

 
 

Fig.7 Methods of load carrying capacity assessment 

 

So the most important methods for the evaluation of 

masonry arch bridges are derived from Heyman’s 

theories and from the fundamental theorems of the 

Plastic Analysis. They are: i) the thrust line analysis 

method; ii) the mechanism method. 

The Thrust Line Analysis Method is based on the 

lower bound theorem or “safe” theorem and defines 

the limits for the thrust line location. It uses a static 

approach and defines the limit load that ensures the 

equilibrium of the arch bridge analyzed. On the 

contrary, the Mechanism Method is based on the 

upper bound theorem and studies the number of 

plastic hinges needed to transform the arch in a 

mechanism. In this case, the stability of the arch is 

analyzed with regards to a kinematic approach. Both 

the methods are valuable: due to their different 

bases, the first one underestimates the structure 

strength, while the second overestimates it. 

 

 

3.1 Thrust Line Analysis Method 
This general method analyzes the arch stability, 

evaluating the location of the thrust line inside the 

cross section. The thrust line represents the locus of 

points along the arch through which the resultant 

forces pass. If all the arch voussoirs have the same 

size, the line of thrust has almost the shape of an 

inverted catenary. 

“As hangs the flexible, so but inverted will stand the 

rigid arch.” wrote Robert Hooke in 1675. “None but 

the catenaria is the figure of a true and legitimate 

arch.” completed Gregory twenty years later, in 
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1697. These quotes describe the mechanics of the 

arch in a brief, but precise way. Fig.8  shows a 

simple example used by Heyman  to explain this 

concept: a weightless string subjected to three 

forces. The funicular polygon inverted represents 

the thrust line. 

 

 
 

 
Fig.8 Inverted funicular polygon and the Thrust 

Line 

 

 

 

 

 

 
 

Fig.9 The eccentricity e 

 

The thrust line may be located at the middle. The 

thrust line may be located at the middle of the 

section or very close to the edge. It depends from 

the resultant of inertial forces in a given cross 

section. If no moment and transverse force occur 

into the arch, the thrust line coincides with the 

centre-line of the section. In the other cases, the 

thrust line departs from the arch centre-line and so it 

is important to define the distance between the 

thrust line and the center of the mass, i.e. the 

eccentricity e (Fig.9). 

The thrust line method analyzes the location and the 

slope of the thrust line inside the cross section 

through two parameters. The first one is the 

eccentricity of the forces resultant that describes the 

location of the thrust line in the cross section. The 

eccentricity is easy to calculate because it is a 

function of the normal force N and the bending 

moment M acting in the considered cross-section. 

The second important parameter is the relation 

between normal force N and shear force T that 

defines the slope of the thrust line. 

Calculation of thrust line location can be performed 

using the equilibrium equation or by solving a linear 

programming problem.  
So every thrust line is a possible equilibrium 

solution. Unfortunately the masonry arch is not a 

statically determinate structure and this solution is 

not unique. There are infinite possible lines of 

thrust. The equilibrium equations are not sufficient 

to obtain the inner forces. 

The thrust line analysis method defines the load 

carrying capacity by limiting the zone where the 

resultant force can be positioned. This method 

presents some variants which differ from each other 

by the size of the limits. The limits depend on the 

theory and the material model assumed. The main 

approaches will be described below. 

The first variant of this method is also the most 

ancient. The Middle Third Rule was anticipated by 

Thomas Young in 1817, worked out by Claude-

Louis Navier in 1826 and applied to masonry arch 

by William Rankine in 1858. This rule states that 

the thrust line must lay within the middle third of 

the cross section that is it must lie within the kern to 

avoid any tensile stresses.  

This criterion is based on the elastic theory. Until 

the forces resultant remains within the kern, there 

are only compressive stresses. When the force 

passes the middle third, the section undergoes also 

tensile stresses (Fig.9). However it is assumed that 

the masonry has not tensile strength, so in this case 

the section is not contributing entirely. Cracks may 

occur and this is wanted to avoid. 

The middle third rule is an extremely safe approach 

for the determination of the collapse load. It is very 

difficult to satisfy because of this rigorous limit. It 

can be reach only: i) if it is considered in the design 

phase; ii) if the dead loads dominate considerably 

over live loads. 

The difficulty to satisfy the previous criteria has led 

to apply a less conservative version of this method 

that is the middle half rule. This approach increases 

 

Recent Advances in Civil Engineering and Mechanics

ISBN: 978-960-474-403-9 164



 

 
 

Fig.9 A pile of stone subjected to a compressive 

moving force. 

 

the limits for the thrust line. In this case, the thrust 

line should lie within the central half of the arch 

section (Fig.10).  

 

 
Fig.10 Middle Half Rule 

 

Another variant of the thrust analysis method is 

proposed by Jacques Heyman. By employing the 

safe theorem, he assumes that an arch is safe simply 

if a thrust line can be drawn inside his thickness. An 

arch will collapse only if the thrust line reaches the 

arch edge at least in four points, converting the arch 

into a mechanism. This rule is surely the less 

conservative than the others because the whole cross 

section becomes the allowed zone for the thrust line.  

This approach includes an important assumption 

concerning the masonry behavior. Infinite 

compression strength is attributed to the masonry 

material. This enables the thrust line to stay at the 

edge of the cross section. The assumption is not 

realistic, but this method can be considered a good 

method to use because in the majority of the 

masonry arch bridges the stress level is quite low 

respect to the masonry compressive strength. 

All the variant of the thrust analysis method can be 

summarized by the Heyman’s concept of “geometric 

safety factor”. For example the masonry arches that 

satisfy the middle third rule have a geometric safety 

factor equal to three. 

 

 

3.1.1 Computer Based Application: Archie-M 

Thrust line analysis together with Heyman’s safe 

theorem can be used to elaborate computational 

strategies for the structural analysis of masonry arch 

bridges. For example, in 2006 Philip Block [10]  

developed an interactive computational procedure 

that uses the thrust lines to clearly visualize the 

forces within the masonry and to predict possible 

collapse modes. 

The program lets the user to change the arch 

geometry, analyzing the different locations that can 

be assumed by the thrust line. 

Between the specialized analysis programs based on 

this method, there is also Archie-M developed by 

Harvey and OBVIS Ltd12 in 2001. Archie-M is a 

computer program that analyzes multi-span arch 

bridges together with supports and backfill. It 

carries out a form of equilibrium analysis. That is to 

say it determines whether an arch will remain stable, 

without first considering how it will deform under 

load. In fact the software uses the thrust line 

analysis combined with a thrust zone to model the 

masonry finite crushing strength. In practice the 

program is based on the thrust zone analysis 

method. Calculations are carried out on a static 

scheme of a three hinges arch. The hinge positions 

are chosen as the most likely for the given load 

pattern. The program is easy to use because it shows 

graphically the position of a potential thrust-line and 

the formed hinges for any given loading regime. 

Until the thrust zone is within the cross section of 

the arch at every point, the structure is safe. When 

the thrust zone begins to touch the arch edge in a 

fourth point, a mechanism is created and the 

collapse state is reached. 

Although the aim of Archie-M is to demonstrate 

whether an arch bridge can withstand a given load 

or not, the collapse load can be estimate by varying 

the load value until a sufficient number of hinges is 

formed.The program provides also the internal 

forces and the thrust zone position for each arch 

segment. The live load is distributed through the fill 

with a sine shape. The backfill is modeled as a 

continuous body that spreads the load and provides 

both active and passive soil pressure. 

 

 

3.2 Mechanism Method 
The Mechanism Method is a kinematical method, 

based on the upper bound approach. This method 
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belongs to the plasticity theory and was firstly used 

for steel structures. Later Heyman has applied it to 

masonry arch. The term mechanism refers to the 

possibility of structure to move in accordance to 

internal and external constraints. This Method 

assumes that a masonry arch becomes a mechanism 

when at least four plastic hinges open. Many 

experimental tests confirm this hypothesis. However 

position of hinges is unknown. First step is to 

assume the possible position of four hinges. In a 

simplified analysis with only a concentrated force 

on the arch, the first three hinges can be assumed to 

be located under the load and at the springing. It’s 

reasonable to hypothesize hinges A and C on the 

intrados and hinges B and D on the extrados 

(Fig.11). The concentrated force W is applied on the 

arch with no dispersion through the fill. Self weights 

Vi include the weights of the backfill blocks and of 

the corresponding arch segment. The four unknowns 

are the reaction forces of the two abutments H, Va, 

Vb and the failure load W. The problem can be 

solved with the moment equilibrium equations at the 

hinges or with the equations of virtual works. In the 

first case, four equilibrium equations can be derived 

around the hinges and solved, giving the four 

unknowns.In the second case, the structure collapses 

if the total virtual work for at least one of the 

mechanisms allowable is positive.In order to find 

the best mechanism, it is necessary to repeat the 

analysis for each 

 
 

Fig.11 Arch with assumed hinges. Reproduced from 

Institution of Civil Engineers ICE (2008) 

 

 

3.2.1 Rigid Blocks 

This theory simplifies the masonry arch as an 

assemblage of plane blocks that are infinitely rigid 

and have an infinite strength [11]. 

The division into these blocks is regular, but doesn’t 

respect necessarily the actual number of units of the 

original arch. Usually the blocks are slightly larger 

than the physical ones because the mortar joints are 

not explicitly modeled. The blocks can be also 

extremely larger than the actual ones in order to 

reduce the computational effort. In this case it must 

be careful that the discretization does not affect the 

expected mode of response. As checked 

experimentally, the number of blocks to obtain a 

sufficiently exact solution is about forty. 

At the collapse, the blocks can either slide or rotate. 

The blocks movement can be calculated using the 

minimal energy for global deformation. 

 

3.2.2 Rigid-Plastic Blocks 

An important extension of  rigid block analysis has 

been made by Gilbert [12 ]. As no real material can 

sustain infinite compressive stresses, this variant of 

the mechanism method assumes a finite 

compressive strength, redefining the failure domain 

of normal stress and moment . Also in this case, the 

failures are modeled in the contacts between the 

blocks, but the explained assumption constrains the 

hinges not to stay on the arch edges. In this way, the 

rotation point is brought back inside the arch that 

behaves as it would have a lower thickness. In the 

proximity of the hinges, the compressive force is 

carried by a rectangular stress block lying at the 

edge of masonry.  

 The passage to a finite compressive strength 

complicates the computation. In fact it transforms a 

linear problem to a non linear one. Gilbert solves the 

question applying an iterative solution that uses a 

Linear Programming solver. In this way it is 

possible to obtain a solution to the global problem 

and to approximate the constraints as a series of 

linear constraints. The rigid-plastic block analysis 

can be considered the basic model for understanding 

the fundamental behavior of the masonry arches. 

 

 

3.2.3 Computer Based Application: Ring 

The two-dimensional rigid-plastic analysis has been 

inserted by Gilbert and Melbourne into a software 

called RING, developed by the University of 

Sheffield spin-off company, LimitState Ltd. The 

program is able to analyze multi-span masonry arch 

bridges, built of arch barrels, supports and backfill. 

A particular feature of this software is the capacity 

to analyze multi-ring arches enabling separations 

between the various rings [13]. 

The program employs an efficient linear 

programming technique for the solution of virtual 

works equations. This mathematical optimization 

allows identifying the ultimate limit state, 

determining the percentage of live load that will 

lead to the collapse. As a result of the analysis, the 

minimum adequacy factor for live load is obtained, 

together with a graphic representation of the thrust 

line and the failure mode. Exact location of hinges is 
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indicated. The live load is distributed through a 

Boussinesq distribution with a maximum spread 

angle. The passive pressure is the only lateral 

pressure used. 

 

 

3.3 Finite Element Method 
Another method frequently used to describe the 

structural behavior of the masonry arch bridges is 

the Finite Element Method.  

It starts from a completely different approach. 

Adopting different strategies of discretization, as 

micro-modeling or macro-modeling, the structure 

can be divided in a series of finite elements. Non 

linear analysis can be performed, assigning 

particular constitutive laws to the material. The 

results include the maximum stress and 

deformability analysis.  

The Finite Element Method represents the most 

versatile tool for the numerical analysis of structural 

problems. However in the case of historic masonry, 

the peculiar nature of material leads to pay 

particular attention to the application of this method. 

 

 

3.4  Elasto-Plastic Model 
The last method presented in this paper deals with a 

particular closed-form approach developed by some 

Belgian researchers in the last years. 

 This method is based on the fundamental theorems 

of limit analysis and is used to determine the critical 

points with a relatively small modeling effort. To 

assure the stability of the masonry arch bridges, a 

model based on equilibrium equations and 

compatibility conditions is first developed. Next, the 

material properties are added to determine the 

formation of the hinges. 

 

 

4 Conclusion 
The methods for assessing historical masonry arches 

are mainly three: i) the Thrust Line Analysis 

Method; ii) the Mechanism Method; iii) the Finite 

Element Methods. The Thrust Line Analysis 

Method and the Mechanism Method are analytical 

methods and derived from two of the fundamental 

theorems of the Plastic Analysis, while the Finite 

Element Method is a numerical method, that uses 

different strategies of discretization to analyze the 

structure. 

 In the future, the next analysis step will be the  

comparison of  the results obtained by these three 

methods applied to a case study. 
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