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Abstract: We deduce some approximate formulas for the distance evaluation problem between a point and an
ellipse in IR2 and a point and an ellipsoid in IR3. The proposed approach is based on the analytical representation
of the distance function as a zero of an appropriate univariate algebraic equation.
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1 Introduction
The problem of finding the value of the distance from
the given point X0 to the given quadric in IRn is of
great importance for several branches of mathematics,
statistical data analysis, astronomy, particle physics
and image processing.

The existed approaches for solving this problem
can be sorted to be either numerical or analytical. The
first one consists in construction of an appropriate iter-
ative procedure for solving the nonlinear constrained
optimization problem: the aim is to generate the se-
quence converging to the nearest to X0 point in the
quadric. This might be effective for the number of
problems when the treated quadric is assumed to be
fixed, i.e. when all of its coefficients are specialized.
However, in several industrial applications, the pa-
rameters of the quadric may variate, such as, for in-
stance, when it simulates an object moving in IR3. To
solve the problem in such a statement, it is needed an
analytical expression either for the distance or for its
suitable approximation as a function of parameters.

The necessity in the analytical (symbolical) rep-
resentation is also stemmed from the problem of ap-
proximation of the scattered data known as the ellipse
(ellipsoid) fitting problem [1], [2], [3], [4]. The latter
consists in finding the coefficients of the second order
algebraic equation

G(X)
def
= XTAX + 2BTX + c = 0 (1)

providing the ellipse (or ellipsoid) closest to the given
set of test (measured) data points {Xj}Nj=1 ⊂ IRn.
The first obstacle in solving this problem consists in
evaluation of the closeness of the given point Xj to

the quadric (1) with undetermined coefficients. Since
the explicit formula for the distance function is un-
available, this closeness is usually evaluated by sim-
pler computed substitutes, like, for instance, the alge-
braic distance |G(Xj)| or G2(Xj). The effectiveness
of such substitution has been evaluated empirically;
the error analysis has never been carried out.

The authors of the present paper have succeeded
in finding the expression for the “true”, i.e. Euclidean,
distance from the point to the quadric (1) in IRn [5],
[6]. The result has been achieved via the applica-
tion of analytical (algebraic) methods of elimination
of variables from the system of equations providing
the coordinates of stationary points of the constrained
optimization objective function. Unfortunately, the
obtained analytical expression for the distance func-
tion turns out to be implicit. The value of the dis-
tance is among the positive zeros of an appropriate
univariate algebraic distance equation with the coef-
ficients depending polynomially on the coefficients of
the quadric (1) and the coordinates of X0.

The aim of the present paper is to extract from
this distance equation the explicit formulas for the dis-
tance function approximation and to estimate the tol-
erances for these approximations. Although some of
the results considered below are valid for the general
case of IRn, we will be focused mainly on the prob-
lems in IR2 and IR3.
Notation is kept to correlate with that from [5] and
[6]. We set c = −1 in (1); X0, B and X are treated
as n-column vectors from IRn, A is a symmetric sign-
definite matrix of the order n, while I is the identity
matrix of the same order. Dx denotes the discriminant
of the polynomial (subscript denotes the variable w.r.t.
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which the polynomial is treated).

Remark 1 In the rest of the paper we utilize es-
sentially some basic results from Elimination Theory
(dealing with the algebraic algorithms of elimination
the variables from a system of nonlinear algebraic
equations), including the notions of the resultant and
the discriminant. To get acquainted with this theory,
we refer the reader to the book [7] or to Section 2 of
[6].

2 Analytical Solution
In [6] the general result has been presented for finding
the distance from a point to an ellipsoid in IRn.

Theorem 2 Let the point X0 ∈ IRn not lie in the el-
lipsoid (1): G(X0) 6= 0. The square of the distance
from X0 to the ellipsoid coincides with the minimal
positive zero of the distance equation

F(δ)
def
= Dµ(Φ(µ, δ)) = 0 (2)

provided that this zero is not a multiple one. Here

Φ(µ, δ)

def
= det

([
A B
BT −1

]
+ µ

[
−I X0

XT
0 δ −XT

0 X0

])
;

Once the minimal positive zero δ∗ of (2) is eval-
uated, one can find the value for the multiple zero µ∗
for the polynomial Φ(µ, δ∗); it can be represented as
a rational function of δ∗ (with coefficients polynomi-
ally dependent on the coefficients of (1) and on coor-
dinates of X0). Then the coordinates of the nearest to
X0 point in the quadric (1) are as follows:

X∗ = −A−1B − µ∗(A− µ∗I)−1(A−1B +X0) .

We now intend to detail the above results for the
particular cases of IR2 and IR3.

Corollary 3 For the point X0 = (x0, y0) and the el-
lipse

G(x, y)
def
= x2/a2 + y2/b2 − 1 = 0 (3)

the distance equation can be constructed in the form
(2) where

Φ(µ, δ) = µ3 +A1µ
2 +A2µ+A3 .

Here

A1 = −a2b2
{
x20
a4

+
y20
b4

−
(

1

a2
+

1

b2

)
G(x0, y0) +

δ

a2b2

}
,

A2 = a2b2
{(

1

a2
+

1

b2

)
δ −G(x0, y0)

}
,

A3 = −a2b2δ .

In terms of the coefficients of Φ(µ, δ), the expres-
sion for F(δ) is as follows

F(δ) ≡ A2
1A

2
2−4A3

1A3−4A3
2+18A1A2A3−27A2

3

while its further expansion in powers of δ becomes
rather cumbersome and we restrict ourselves here by
presenting its leading and constant term

F(δ) ≡ (a2 − b2)2δ4 + . . .+ a12b12G2(x0, y0)

×
{[

x20
a4

+
y20
b4
−
(

1

a2
+

1

b2

)
G(x0, y0)

]2

+
4

a2b2
G(x0, y0)

}
.

Once the minimal positive zero δ∗ of this polynomial
is evaluated, one can express the coordinates of the
nearest to (x0, y0) point in the ellipse by:

x∗ =
a2x0
a2 − µ∗

, y∗ =
b2y0

b2 − µ∗
. (4)

Here
µ∗ =

9A3 −A1A2

2(A2
1 − 3A2)

and substitution δ = δ∗ has been made into the ex-
pressions for A1, A2, A3.

Corollary 4 For the point X0 = (x0, y0, z0) and the
ellipsoid

G(x, y, z)
def
= x2/a2 + y2/b2 + z2/c2 − 1 = 0 (5)

the distance equation can be constructed in the form
(2) where

Φ(µ, δ) = µ4 +A1µ
3 +A2µ

2 +A3µ+A4 .

Here

A1 = x20 + y20 + z20 − δ − a2 − b2 − c2,

A2 = a2b2c2
{(

1

b2c2
+

1

a2c2
+

1

a2b2

)
δ
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+

(
x20
a4

+
y20
b4

+
z20
c4

)

−
(

1

a2
+

1

b2
+

1

c2

)
G(x0, y0, z0)

}
,

A3 = a2b2c2
{
G(x0, y0, z0)

−
(

1

a2
+

1

b2
+

1

c2

)
δ

}
A4 = a2b2c2δ .

In terms of the coefficients of Φ(µ, δ), the expres-
sion for F(δ) is as follows

F(δ) ≡ 4 I32 − 27 I23

where

I2
def
= 4A4 −A1A3 +

1

3
A2

2,

I3
def
= −A2

3 −A2
1A4 +

8

3
A2A4 +

1

3
A1A2A3

− 2

27
A3

2 .

Further expansion of the distance polynomial in pow-
ers of δ is again represented by its leading and con-
stant term:

F(δ) ≡ (a2 − b2)2(a2 − c2)2(b2 − c2)2δ6 + . . .

+a4b4c4G2(x0, y0, z0)Dµ(µ3 +A1µ
2 +A2µ+A3) ,

here substitution δ = 0 has been made into the expres-
sions for A1, A2, A3. Once the minimal positive zero
δ∗ of this polynomial is evaluated, the coordinates of
the nearest to (x0, y0, z0) point in the ellipse can be
expressed as:

x∗ =
a2x0
a2 − µ∗

, y∗ =
b2y0

b2 − µ∗
, z∗ =

c2z0
c2 − µ∗

. (6)

Here

µ∗ =
2A1I

2
2 + (3A1A2 − 18A3)I3

(24A2 − 9A2
1)I3 − 8 I22

(7)

and substitution δ = δ∗ has been made into the ex-
pressions for A1, A2, A3, A4.

Remark 5 The results of the present section can be
extended to the problem of finding the farthest distance
from X0 to the point in the ellipse or ellipsoid. For
this aim, in any of the above presented results con-
nected with the distance equation and expressions for
the nearest point coordinates, one should take δ∗ to
be the greatest positive zero for the corresponding dis-
tance equation.

Example 6 Find the nearest and the farthest point in
the ellipsoid x2/4 + y2/16 + z2/49 = 1 to the point
(6,−2, 5).

Solution: Compute the distance equation via Corol-
lary 4:

19847025 δ6 − 8393808060 δ5 + 1317736785456 δ4

−103262746605120 δ3 + 4327358033988864 δ2

−91883501048862720 δ+757148717189025792 = 0 .

It has exactly two positive zeros, namely

δ1 ≈ 21.63634, δ2 ≈ 186.72961 .

Therefore the distance from the point to the ellipsoid
equals

√
δ1 ≈ 4.65149. Compute the multiple zero

for polynomial Φ(δj , µ) by formula (7):

µ1 ≈ −11.70096, µ2 ≈ 84.64247 .

Formulas (6) give one the coordinates of the nearest

X1 ≈ (1.52857,−1.15519, 4.03618),

and the farthest

X2 ≈ (−0.29761, 0.46618,−6.87382)

point in the considered ellipsoid.

3 Approximate Solution
In the previous section we have deduced an analyti-
cal solution for the distance evaluation problem. The
stated problem is reduced to that of solving the dis-
tance equations. For any specialization of the param-
eters (i.e. the given point coordinates and the coeffi-
cients of the ellipse or ellipsoid equations), this can
be done numerically. However, to resolve these equa-
tions analytically and to get an explicit expression for
the distance as a function of the parameters is not a
trivial task. One of the possible approaches for finding
the value of a zero of an algebraic equation in terms
of its coefficients consists in finding an expansion of
the zero in an appropriate power series. Let us choose
the latter to be the one in powers of the value G(X0),
since this value, in a vicinity of the considered ellipse
or ellipsoid, can be treated as a small parameter. We
restrict our treatment with the first three terms of this
expansion:

δ = A1G(X0) +A2G
2(X0) +A3G

3(X0) + . . .

To determine the coefficients A1, A2, A3, substitute
this expansion into corresponding distance equation,
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expand the result in powers of G(X0) and equate the
coefficients of G(X0), G

2(X0), G
3(X0) to zero. For

the case of the ellipsoid (5), the result is as follows:
A1 = 0,

A2 =
1

4

1(
x20/a

4 + y20/b
4 + z20/c

4
) , (8)

A3 =
1

8

x20/a
6 + y20/b

6 + z20/c
6(

x20/a
4 + y20/b

4 + z20/c
4
)3 ; (9)

while the counterparts of these formulas for the case
of planar ellipse (3) can be obtained by setting z0 = 0.

Once the two approximations for the distance are
obtained for quadric given by canonical equation, one
can extend these results to the case of a quadric repre-
sented in the form (1).

Theorem 7 The following formulas can be utilized
for the distance approximation from the point X0 6=
−A−1B to the quadric (1) in IR2 and IR3:

d(1)
def
=

|G(X0)|

2
√

(AX0 +B)T (AX0 +B)
(10)

and
d(2)

def
= d(1) (11)

×
√

1 +
(AX0 +B)TA(AX0 +B)

2 ((AX0 +B)T (AX0 +B))2
G(X0).

Proof: We restrict ourselves here with the proof of
formula (10) for the case IR3. Let us start with the case
when B = 0; thus matrix A is assumed to be positive
definite. The distance from the point X0 to the ellip-
soid XTAX = 1 is unaltered under the transforma-
tion Y = QX with an orthogonal matrix Q: it equals
to the distance from Y0 = QX0 to Y TQAQTY = 1.
Choose this transformation with the aim to reduce the
ellipsoid to canonical form:

QAQT = Adiag =

 1/a2 0 0
0 1/b2 0
0 0 1/c2

 .

Here 1/a2, 1/b2, 1/c2 stand for the eigenvalues of the
matrix A. Apply the representation (8):

d2(1) = A2(Y
T
0 AdiagY0 − 1)2 =

(Y T
0 AdiagY0 − 1)2

4Y T
0 A2

diagY0

=
(Y T

0 QAQTY0 − 1)2

4Y T
0 (QAQT )2Y0

=
(Y T

0 QAQTY0 − 1)2

4Y T
0 QA2QTY0

=
(XT

0 AX0 − 1)2

4XT
0 A

2X0
.

The case when B 6= 0 can be reduced to the pre-
vious one with the aid of transformation

X = Y +Xc, where Xc
def
= −A−1B

denotes the ellipsoid center. The equation of the ellip-
soid takes now the form

Y T ÃY = 1 with Ã
def
= − A

G(Xc)
=

A

BTA−1B + 1
.

ut
It is possible to provide the following geometric

interpretation for the approximation (10). This value
coincides with the distance from the point X0 to the
linear manifold obtained by linearization of (1) at the
point X0:

G(X0) +
DG

DX

∣∣∣∣
X=X0

(X −X0) = 0 .

Here the n-row D G/DX|X=X0 stands for the gradi-
ent of the function G(X) calculated in the point X0.
This formula was suggested in [1] for the distance ap-
proximation from a point to arbitrary algebraic curve
or surfaces in IRn. However no estimation has been
suggested since then for the accuracy of this approxi-
mation. For the case of quadric, one might definitely
expect the problems with this when the point X0 is
close to the quadric center.

4 Error Estimation
To estimate the error of the distance approximation
by formulas (10) or (11) we suggest to fix the values
of these approximations and estimate the maximal and
minimal deviations for the points in the obtained man-
ifolds from the quadric (1).

We restrict ourselves here by the planar case of
the ellipse represented in canonical form (3) and with
the distance approximation given by (10). Consider
the level curves of the function d2(1)(x, y); they can be
represented as algebraic curves:

Kh(x, y) (12)

def
=

(
x2

a2
+
y2

b2
− 1

)2

− 4h

(
x2

a4
+
y2

b4

)
= 0 ;

here the parameter h > 0 has the meaning of the
squared “approximate” distance. We will call by the
maximal (or the minimal) deviation of the curve (12)
from the ellipse (3) the maximal (or, respectively, the
minimal) distance between all the pairs of the nearest
points in these curves.
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Theorem 8 Let a 6= b. The values of the minimal and
the maximal deviation of (12) from the ellipse (3) are
either among the zeros of the equations

δ2+2 aδ±
√
h(δ+a) = 0 , δ2+2 bδ±

√
h(δ+b) = 0

(13)
or among the square roots of the positive zeros of the
equation

F(δ, h)
def
= C0δ

4 + C1δ
3 + . . .+ C4 = 0 . (14)

Here

C0 = a4b4(a2 − b2)2,
C1 = −2 a2b2(a8 + b8 − 4 a4b4)h

−2 a4b4(a2 + b2)(2 a4 − 5 a2b2 + 2 b4),

C2 = (a8 − 10 a4b4 + b8)(a2 + b2)2h2

+6 a4b4(a2 + b2)(a4 − 7 a2b2 + b4)h

−27 a8b8,

C3 = 2 a2b2h
{

2 (a2 + b2)h+ 3 a2b2
}

×
{

(a2 + b2)3h+ 9 a4b4
}
,

C4 = −a4b4h2
{

4 (a2 + b2)3h+ 27 a4b4
}
.

Proof: We set the problem of constrained optimiza-
tion: find the critical values (including the maximal
and the minimal ones) of the function

(x− x̃)2 + (y − ỹ)2

subject to

Kh(x, y) = 0, G(x̃, ỹ) = 0 .

For its solution, we utilize the Lagrange multipliers
method. We first construct the Lagrange function

(x− x̃)2 + (y − ỹ)2 − µ1Kh(x, y)− µ2G(x̃, ỹ)

and then equate to zero its derivatives with respect to
the variables x, y, x̃, ỹ, µ1, µ2 :

x− x̃ =
2µ1x

a2

(
G(x, y)− 2h/a2

)
, (15)

y − ỹ =
2µ1y

b2

(
G(x, y)− 2h/b2

)
, (16)

x− x̃ = −µ2x̃/a2, (17)
y − ỹ = −µ2ỹ/b2, (18)

Kh(x, y) = 0, (19)
G(x̃, ỹ) = 0 . (20)

Complement the obtained system with the equation

δ = (x− x̃)2 + (y − ỹ)2 (21)

which introduces a new variable responsible for the
critical values of the distance function. Our aim is to
eliminate all the variables from the system (15) – (21)
except for δ. To do this, we express x̃ and ỹ from (17)
and (18); the result is similar to (4):

x̃ =
a2x

a2 − µ2
, ỹ =

b2y

b2 − µ2
. (22)

Substitute these values into (20) and (21):

a2x2

(a2 − µ2)2
+

b2y2

(b2 − µ2)2
− 1 = 0, (23)

µ22x
2

(a2 − µ2)2
+

µ22y
2

(b2 − µ2)2
− δ = 0 (24)

Substitute next (22) into (15) and (16); the result-
ing equations can be splitted into the alternatives:

x = 0 or
µ2

µ2 − a2
=

2µ1
a2

(
G(x, y)− 2h

a2

)
;

y = 0 or
µ2

µ2 − b2
=

2µ1
b2

(
G(x, y)− 2h

b2

)
.

The first parts of these alternatives correspond to the
equations (13). From the second parts, it is possible to
eliminate the parameter µ1 and to find the expression
for µ2:

µ2 =
2h

2h/a2 + 2h/b2 −G(x, y)
. (25)

Substitute this expression into (23) and (24). The ob-
tained equations depend now on the variables x, y and
δ. Together with equation (19), these equation consti-
tutes the system in x, y and δ. Convert its equations
into algebraic form and eliminate the variables x, y via
the resultant computation. On excluding the extrane-
ous factor, the resulting equation coincides with (14).
ut

Example 9 Find the maximal and the minimal devia-
tions of the curve K1(x, y) = 0 from the ellipse

x2/196 + y2/4 = 1 .

Solution: The equation (14) is (up to the factor 214),
as follows:

1382976 δ4 − 1235618251 δ3 + 4448494192 δ2

+3563965216 δ − 1823098508 = 0

It possesses the following positive zeros:

δ1 ≈ 0.36336, δ2 ≈ 4.22071, δ3 ≈ 889.83069 .
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The minimal deviation of the considered curves
equals

√
δ1 ≈ 0.60279. The maximal deviation is

attained at the point X0 ≈ (15.76442, 1.13334) in the
curve K1(x, y) = 0 and it equals

√
δ2 ≈ 2.05443.

This means: point-to-ellipse distance approximation
(10) computed at X0 gives more than 100 % er-
ror (Fig.1). Compared with this result, the distance
approximation computed by (11) provides the curve
d(2) = 1 with the shape similar to the previous one but
with the lesser maximal deviation, namely ≈ 1.88398
(Fig.2; the ovals of the curves d(1) = 1 and d(2) = 1
lying inside the ellipse nearly coincide).

Numerical experiments show that the ob-
served growth of the approximation error is typi-
cal for the ellipses with small values of the ratio
min(a, b)/max(a, b).

5 Conclusion
We have treated the problem of finding an analytical
approximations for the point-to-ellipse and point-to-
ellipsoid distance evaluation problems. Using the an-
alytical representation of the distance values as zeros
of appropriate univariate algebraic equations (distance
equations), the procedure has been proposed for find-
ing successive approximations for the distance func-
tion and for estimation of the approximation errors.
For further investigation remains finding a counterpart
of Theorem 8 for the distance approximation given by
(11) and also the extension of the obtained results to
quadrics in multidimensional spaces.

The proposed approach seems to have nice per-
spectives in application to the problem of establishing
the solvability and localization of the set of solutions
for a system of multivariate quadric inequalities; the
latter arises in Stability and Control Theory [8], [9].
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Figure 1: Curve d(1) = 1 (in red).
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Figure 2: Curve d(2) = 1 (in blue) vs. curve d(1) = 1 (in red).
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