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Abstract: -  The monitoring of polluting agents and the prediction of their behaviour is a very important 

issue in urban areas. Inhabitants of those environments are bound to be exposed to air pollution, noise, 

electromagnetic fields, among other types of hazardous elements. Therefore, with high probability those 

inhabitants may suffer some damage to their health. Acoustical noise produced by human activities has been 

largely studied in literature, especially concerning the complexity of predicting its behaviour. The models 

usually adopted, in fact, are often barely efficient. In this paper, the noise problem is approached by means of 

time series analysis of a noise levels dataset (sound level meter measurements). The model considered here 

assumes that measurements form a time series that can be decomposed into three parts: trend (long term 

behaviour), seasonality (periodic component) and irregularity (random variations). Observing the data set, a 

multiple seasonality is evidenced. In particular, a short range (weekly) and a long term (125 days, i.e., about 4 

months) periodicities are highlighted and implemented in the seasonal component, validating the resulting 

model on a 44 days dataset. 
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1 Introduction 
Population of large urban areas have their health 

often affected by several adverse effects caused by 

various forms of pollution [1-3]. The constant 

monitoring of these pollutants is generally 

expensive and not always easy to be implemented 

[4]. In addition, mitigation actions on the sources 

are usually consequential to periods in which the 

level of pollution has been particularly high and 

therefore has already affected the citizens’ health. 

These considerations point out the need to 

implement predictive models that can provide a 

reliable assessment of pollution levels (see for 

instance [5-28]). These models can induce possible 

mitigation measures, acting also on the sources, 

before the pollution begins to affect the population.  

In this paper, the focus is on the prediction of 

acoustical noise in urban areas, that is mainly 

generated by anthropogenic activities, in particular 

vehicular traffic and other transport infrastructures. 

Most of the existing forecasting models used to 

estimate pollution levels are based on the study of 

correlations or causal effects derived from the 

sources. However, regarding the acoustical noise, it 

is very difficult to predict the effects in a limited 

area by studying only the sources because of the 

nature of the physical phenomenon. That can be 

heavily influenced either by the architecture of the 

area where measurements are taken or by other 

environmental interferences highly variable over 

time. 

The forecasting model considered here is based 

on Time Series Analysis (TSA) [29-32], applied to 

sound level measurements. The model can predict 

the evolution of noise levels for a certain time 

interval, in a specific area of interest, i.e. the area, in 

which the data used for the estimation of the 

parameters (tuning) of the forecasting function, have 

been collected. This function is known in its general 

form, but it can be adapted to the specific data to get 

more accurate forecasted values. In particular, the 

simplest functional forms of the model can be used 

with success when there are few measurements 

available to estimate the parameters. Moreover, if  a 
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large tuning data set is available, it is possible to 

implement more complex models to reduce the 

forecast error.  

In particular, in this study a set of noise 

measurements recorded at night in the city of 

Messina, in South Italy, is used. These data consist 

of equivalent sound pressure levels (LA,eq), averaged 

on the eight night hours (from 10pm to 6am), and 

they are defined as follows: 
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where Te is the exposition time (from 10pm to 6am), 

ti is the single period of the series, i.e. the single 

day, LA,eq,i is the equivalent level measured in the ith 

period. The “A” index means that the A-weighting 

curve has been applied to the data, as required by 

European regulations [33]. 

The first step consists in constructing a simple 

but useful model working on the first 321 

measurements available. Then, with this model, a 26 

missing measurements are filled with forecasted 

values. That is made in order to have a time series 

without missing values. This series of 500 data may 

be used to produce a more sophisticated model. 

Finally, in order to validate the model, a comparison 

between actual and forecasted data is performed on 

the last 44 available measurements. Let us call 

attention to the fact that the measurements used in 

the validation have not been used to estimate the 

parameters. A detailed description on this kind of 

approach and on the sensibility of the model to the 

tuning data set, is reported in [34]. 

 

 

2 Methods 
The procedure adopted to build the model is 

based on general Time Series Analysis (TSA) 

approach. This procedure is used in several research 

areas, such as Economics, Physics, Engineering, 

Mathematics, among others (see for instance [35-

37]). 

TSA models reproduce the slope, as a function of 

time, of a given data series and may be used to 

predict its values on a certain future time interval. 

The width of the prediction interval depends on the 

reliability of the model and on the variability of the 

series. 

The basic assumption of these models is that a 

time series may be decomposed into three parts: a 

trend and a seasonality, that are predictable, and an 

irregular component, not foreseeable, which 

generates the prediction error: 

            ,      (2) 

 

where Ft represents the forecasted value at a certain 

time t, and et is the irregular component. 

The ways these parts are composed, for instance 

by multiplying or adding the components, represent 

the different types of models. In this paper, the 

multiplicative approach has been pursued, resulting 

in the following formula: 

 

        ̅   ,  (3) 

 

where Ft represents the point forecast, Tt the trend 

(with t varying over the total number of periods) and 

  ̅ the seasonal effect (with i varying from 1 to k) at 

a given time t, averaged on the ith periods. In 

particular, for a given t, if t<k, the value i is the 

remainder of the ratio between t+k and k; if t=k, 

then i=k; if t>k, the value i is the remainder of the 

ratio between t and k.   

The trend component can be evaluated by means 

of regression techniques, for instance linear 

regression on the actual data or, after having 

removed the seasonality by moving average method. 

In this paper, a linear regression on actual data has 

been used to calculate the trend. The width of the 

interval on which the centred moving average is 

evaluated, depends on the periodicity of the data, 

also known as lag. This lag is strongly related to the 

phenomenon under study and its features. In some 

cases, a multiple periodicity can be highlighted.  

In the following sections, it is shown how a TSA 

model performance improves when a multiple lag is 

detected and implemented to calculate the 

forecasted values. 

The seasonality is evaluated as the mean, 

calculated on all the homologous periods, of the 

ratio between the actual value and the centred 

moving average in a given period t.  

If more than one periodicity is detected, the 

forecast is affected by another component of 

seasonality: 

 

          ̅     ̅     .         (4) 

 

In order to remove the effects of short period 

seasonality from the data, a centred moving average 

with width k1 (first lag detected) can be used. Then, 

it is possible to evaluate the recurring effect on the 

single day by the ratio between the actual data at 

time t and the centred moving average at the same t. 

Finally, evaluating the mean of these effects S1,t on 

m1,i homologous periods, the seasonal coefficient 

  ̅   is obtained, i.e., for 
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where  (  )  is the centred moving average with 

width k1 , at the period t. 

At this point, it is possible to clean up the values 

of the first moving average from the effect of the 

second seasonality with lag k2. That is done using a 

second centred moving average process, with width 

k2 (second lag detected). As in the previous step, the 

effect of the second seasonality for each period (S2,t) 

can be calculated, and a second seasonal coefficient 

can be evaluated with a mean on m2,,j homologous 

periods: 
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where  (  )  is the centred moving average with 

width k2 , at the period t. 

Having assumed the presence of an irregular 

component, indicated by et , its evaluation is given 

by the difference between actual data and point 

forecast:  

 

            .    (9) 

 

This procedure is possible when the actual data 

are available, thus it may be performed in the 

calibration phase. Once the “error” distribution is 

obtained, its mean (me) can be used in the final 

forecast of the model and the standard deviation can 

be related to the width of a prediction interval ([32], 

[34]). Thus the point forecast can be evaluated 

improving formula (4) as follows: 

 

                       ̅     ̅        .                  (10) 

 

A validation process may be performed, 

comparing actual data with model forecasted values, 

in a data range not used in the calibration phase. 

To evaluate the effectiveness of the model is 

useful to implement a statistical analysis of the 

errors. This test is performed both in the calibration 

phase described above and in the validation process. 

A relevant goal, in order to optimize the model, is to 

minimize both the absolute value of the mean and 

the standard deviation of the error distribution. 

2.1 Detection of the presence of a lag 

In order to detect the presence of a periodicity in 

the series, the Ljung-Box (LB) or the Box-Pierce 

(BP) test can be adopted ([38], [39]). These tests 

verify if the data have an autocorrelation and they 

may exclude the presence of fully random data 

fluctuations. Both tests adopt the autocorrelation 

coefficient that may be evaluated according to the 

following formula: 
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where xt is the data in each period t,  ̅ is the mean of 

all the data, n is the total number of periods, k is the 

lag hypothesis under test. Using this coefficient, the 

LB test can be performed according to the following 

formula: 
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       ,          (12) 

 

where h is a chosen integer, related to the number of 

autocorrelation coefficients under test, which varies 

according to the assumed lag.  

If the null hypothesis is true (absence of 

autocorrelation), the LB statistics is distributed 

according to a random variable χ
2
, with h degree of 

freedom. 

The BP test, instead, is based on the following 

formula: 

 

   
 ( )   ∑   ( ) 

     ,                   (13) 

 

where, again, n is the total number of periods, k is 

the assumed lag and h is a chosen integer, related to 

the number of autocorrelation coefficients under 

test. The two tests differ only in the different 

weighting systems adopted, but asymptotically 

converge to the same distribution.  

 

2.2 Selection of the lag coefficient 

Once the presence of a periodicity is detected, 

the choice of the lag may be performed according to 

the maximum data autocorrelation coefficient.  

A very useful tool to detect the periodicity and to 

evaluate the autocorrelation as a function of the lag, 

is the autocorrelation plot, also called correlogram. 

This plot reports the k value on the horizontal axis 

and the correspondent autocorrelation coefficient on 

the vertical axis. In this paper, since the correlogram 

has been plotted in the “R” software framework, the 

autocorrelation coefficients are evaluated according 

to formula (11). 
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Let us remind that formula (11) adopts an unique 

mean calculated on the whole range of data. It may 

be useful, however, when the time series has not a 

constant mean, to adopt the following formula: 
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where xt is the measurement value at time t, n is the 

number of periods, k is the lag and: 
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These two means are calculated excluding 

respectively the first and the last k periods. 

In addition, when the lag is particularly high, 

another possible approach is to evaluate the 

correlation coefficient between a subset of data and 

the same data shifted by k periods: 
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where yi is equal to xi + k .  

 

2.3 Error metrics 

A measurement of model performance can be 

obtained by  “Mean Percentage Error” (MPE) and 

“Error Variation Coefficient” (CVE). The first 

quantitative metric gives a measurement of the error 

distortion, i.e. MPE is able to describe if the model 

overestimates or underestimates actual data. CVE 

considers the variation from the reality in absolute 

value, in other words it provides the error 

dispersion. Those metrics are evaluated according to 

the following formulas: 
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and 
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where  ̅  is the mean value of the actual data in the 

considered time range. 

 

 

3 Data Analysis and Results 
The basic data set used in this paper is related to 

the Messina’s long term field measurements used in 

[34] and in [40]. The local government of Messina, 

a city in the South of Italy of about 240000 

inhabitants, adopted a continuous monitoring of 

noise in certain critical areas, in particular in 

proximity of the commercial dock, where a very 

high traffic flow and several industrial settlements 

occur. These data have been made available on a 

web platform [41] . 

In [34] the measurements taken during day time 

in "Viale Boccetta" street, were used. In this paper, 

the authors adopt the night measurements taken in 

the same site and, partially, in the same months. In 

particular, four data sets have been chosen. The first 

one goes from the 11
th
 of May 2007 to the 26

th
 of 

March 2008 (321 days). The second one goes from 

the 27
th
 of March 2008 to the 21

st
 of April 2008 (26 

days; these data are missing in the data set). The 

third data set goes from the 22
nd

 of April 2008 to the 

21
st
 of September 2008 (153 days). Finally, the 

fourth data set, used in the validation phase, goes 

from the 22
nd

 of September to the 4
th
 of November 

2008 (44 days). 

The night level is the equivalent level, with A 

weighting [33], evaluated in the time range T , that 

goes from 10pm to 6am (8 hours), defined as 

follows: 
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The first aim of the analysis is to use a 

forecasting model, tuned on the first series of 321 

measurements, to calculate the 26 missing data of 

the second data set defined above. Then, once the 

“data hole” has been filled, the same model is tuned 

on a data set of size 500, composed by the first 321 

measurements, plus the 26 reconstructed ones, plus 

the next 153 measurements. In this way, the last 44 

data (from the 501
st
 observed measurement to the 

544
th
) have been left for the validation of the model. 

The choice of this data set allows the 

implementation of a multiplicative model with a 

double seasonal component, that will exploit, in 

addition to the weekly seasonality (k1 = 7), a second 

“long term” periodicity (k2 = 125).  

The summary statistics of the entire data set are 

given in Tab. 1. 

Tab. 1: Summary of statistic main parameters of the first 

321 days of the data set (in dBA). 
Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

68.77 1.19 69.0 66.0 72.0 

 

 

3.1 Seasonality detection and data set filling 

In order to evaluate the presence and the value of 

the periodicity, the first step was the application of 

Ljung-Box (LB) and Box-Pierce (BP) tests, defined 
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in formulas (12) and (13). These tests highlight the 

presence of autocorrelation in the data. The tests 

have been implemented in the “R” software 

framework and the results are given in Table 2. 

 
Tab. 2: Ljung-Box and Box-Pierce tests performed on 

the first 321 measurements of the dataset. 
Tipe of test    h p-value 

Ljung-Box 584.749 10 < 2.2e-16 

Box-Pierce 1514.589 50 < 2.2e-16 

 

The small p-value in both tests, i.e. the very 

small probability to observe the sample if the null 

hypothesis is true, indicates that the hypothesis of 

absence of autocorrelation in the data must be 

rejected.  

In a first approach, the periodicity has been 

investigated in the first 321 days, by means of the 

autocorrelation plot approach, implemented in “R” 

software. The correlogram is reported in Fig.1. 

 

 
Fig. 1: Correlogram plot for the first 321 days. The value 

of autocorrelation is plotted as a function of the lag. 

 

The highest autocorrelation value is obtained for 

a lag of 7 and its value, calculated by means of 

formula (11), is 0.79 . Thus, it is evident that there is 

a weekly periodicity in the noise data. This result is 

reasonable, because the data are strongly related to 

traffic flows, typically increasing during the 

working days and decreasing during the weekend.  

At this point, a first toy model (Single 

Seasonality Model, SSM) has been implemented 

considering this lag, using the procedure described 

in section 2 (see also [34]), i.e. centred moving 

average for the trend and seasonal coefficient 

according to a periodicity 7. This model allowed to 

fill the hole in the data set, from day 322 to 348, 

making available a data set of 500 measurements. In 

Fig. 2 is possible to notice how the data hole has 

been filled and how the model roughly approximate 

the actual observed time series.  

On this larger dataset (500 days), a second 

seasonality, with a frequency smaller than the 

previous one, is hidden and can be highlighted. The 

autocorrelation of the centred moving average 

values (with lag 7) has been studied by means of 

correlogram plot (Fig. 3).   

 

 
Fig. 2: Comparison between the forecasts, obtained by 

the Single Seasonality Model (SSM), and the 500 

calibration data. 

 

 
Fig. 3: Correlogram plot for the centred moving average 

data. The value of autocorrelation coefficient is plotted as 

a function of the lag. 

 

The correlogram highlights a statistically 

significant positive autocorrelation, for a lag of 125. 

This autocorrelation has been evaluated according to 

formula (14), giving a result of 0.20. In the “R” 

framework, according to formula (11), the results is 

0.19. Formula (16) has also been implemented, 

since it has the advantage of using differences from 

the mean of the data in a subset whose width is the 

considered range. In this case, a correlation between 
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the first 50 days and the ones between the 125
th
 and 

the 175
th
, has been calculated. The result is 0.55. 

In Fig. 4 the auto dispersion plot is reported, 

considering a lag of 125. The cluster of data along 

the bisector seems to confirm the presence of 

autocorrelation in the data. 

 

 
Fig. 4: Auto dispersion plot. The moving average with 

span 7 is plotted as a function of the same moving 

average considering each data shifted by 125 days. 

 

 

3.2 Double seasonality model design and 

results 

After having established the presence of two 

seasonal effects, it is possible to remove these 

periodicities from the data and to evaluate two 

different seasonal coefficients. Thus, the improved 

model takes into account the effects of the high 

frequency seasonality, with a lag of 7 days, but also 

of the low frequency one, with a lag of 125 days. 

In Fig. 5, three curves are reported: the actual 

data (in black), in red the first moving average (span  

7 ), in blue the second moving average (span 125). 

In this figure, it is possible to appreciate the 

combination of the two centred moving averages, 

that eliminates the double seasonality effects. 

The first moving average curve (red curve) 

highlights the presence of four peaks and valleys. 

This is an empirical confirmation of the presence of 

a seasonality of about 500 measurements over 4 

peaks/valleys, which is exactly 125. 

In Fig. 6, a comparison between the actual data 

(black line) and the forecasted values of the Double 

Seasonality Model (DSM) (red line) is presented.  

 
Fig. 5: Graph of the two centred moving averages 

combination. In black the actual data, in red the first 

moving average (span 7), in blue the second moving 

average (span 125). 

 

 
Fig. 6: Comparison between the forecasted values, 

obtained by DSM model, and the 500 calibration data. 

 

 

3.3 Models validation 

Both the SSM and the DSM have been validated 

on the 44 days data set, from the 501
st
 to the 544

th
 

observations. A graphical comparison has been 

performed in Fig. 7 and Fig. 8, respectively 

comparing the SSM and the DSM results with actual 

data. 

 

 
Fig. 7: Comparison between the forecasted values, 

obtained by SSM model, and the validation with the 

actual data. 
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Fig. 8: Comparison between the forecasted values 

obtained by DSM model, and the validation with the 

actual data. 
 

A quantitative validation analysis of the models 

performance has been pursued calculating the 

difference between actual data and forecasts of the 

SSM and the DSM. In addition, the distortion and 

dispersion, measured by the MPE and CVE (see 

section 2), have also been evaluated. 

The statistics of the error distribution, reported in 

Tables 3 and 4, show a relevant improvement in the 

forecasts obtained with the DSM, with respect to 

SSM results. The absolute values of the mean error 

strongly decreases, even if the standard deviation is 

practically the same. In addition, the DSM error 

distribution better approximate a normal 

distribution, considering the decreasing (in absolute 

value) of skewness and kurtosis.  

The MPE and CVE results, reported in Table 5, 

confirm the better performance of DSM. Recall that 

the calibration error metrics have been evaluated 

excluding the 26 data obtained by the application of 

the first model, and considering only the days in 

which the actual data were available.  

Both the graphical and quantitative comparisons 

between the models show that the DSM has a better 

performance on the considered set of data, with 

respect to the SSM. 

 
Tab. 3: Model SSM, summary statistics of the error 

distribution (in dBA) evaluated on the validation. 
Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

-0.49 0.62 -0.44 -1.53 1.07 0.29 -0.25 

 
Tab. 4: Model DSM, summary statistics of the error 

distribution (in dBA) evaluated on the validation. 
Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

-0.07 0.64 -0.01 -1.31 1.55 0.21 -0.18 

 

Tab. 5: MPE and CVE (error metrics) values, calculated 

in the tuning and validation phases, for the two different 

models. 
Type of model Dataset MPE CVE 

SSM tuning 0.0 0.013 

SSM  validation -0.7 0.009 

DSM  tuning 0.0 0.011 

DSM  validation -0.1 0.012 

 

 

4 Conclusions 
In this paper, the attention was focused on the 

noise pollution monitoring and prediction problem 

in urban areas. The statistical analysis of a noise 

levels dataset, obtained from a measuring station in 

Messina (South Italy), has been performed. These 

measurements have been adopted for the 

implementation and validation of a time series 

analysis model. The aim was to predict noise level 

exposure. This method assumes that measurements 

are the results of the composition of three parts: a 

long term behaviour (trend), that is function of time 

and is obtained by smoothing the raw data, a 

seasonal component (seasonality), that describes the 

periodicities in the phenomenon, and an irregularity, 

that is not deterministic, but can be probabilistically 

evaluated. The adopted model is multiplicative 

between trend and seasonality, and additive when 

considering the irregularity. 

A first set of 321 data has been considered, and, 

thanks to the application of statistical tests, the 

presence of periodic fluctuations has been 

evidenced. Then, a toy model has been implemented 

on this dataset, considering a weekly periodicity, 

highlighted by a strong autocorrelation 

corresponding to a value 7 for the lag. 

With the application of this model, a subset of 26 

missing measurements has been filled and a 500 

data set has been obtained and analysed. The 

evaluation of the correlogram on this enlarged 

dataset confirmed the weekly periodicity (k1 = 7). 

Once the trend has been evaluated, by means of 

centred moving average (with span equal to 7), the 

correlogram has been computed on the moving 

average dataset and a second periodicity has been 

evidenced. This time, the periodicity is related to a 

longer term period (k2 = 125, i.e., about 4 months). 

Thus, the “Single Seasonality Model” (SSM) has 

been improved, considering this multiple periodicity 

evidenced on the entire large dataset, resulting in the 

“Double Seasonality Model” (DSM). Both SSM and 

DSM have been validated by comparing their 

forecasted values with a 44 actual measurement 

dataset (not used in the calibration phase). These 

validation data have been also used for a 
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quantitative comparison between the performance of 

the two models, by means of error (difference 

between actual value and forecast) distributions. 

The Double Seasonality Model showed better 

performance, in terms of lower standard deviation 

and closer to zero mean value of the error 

distribution. 
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