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Abstract: In this work, we propose a two layer depth-averaged model to describe the propagation up to the 
deposition of granular avalanches. The model is derived in Cartesian coordinates under the assumption of long 
wave approximation. The two layers are supposed to follow to different flow regimes. A friction-collisional 
beaviour is assumed in the upper layer, while a purely frictional behaviour holds in the lower one. The model is 
numerically integrated through using a finite volume scheme. Since the resulting PDE system is only 
conditionally hyperbolic, a special treatment, involving the addition of an extra momentum flux across the 
interface between the layers, is implemented in the numerical scheme. The key features of this approach are 
illustrated by some numerical tests. 
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1 Introduction 
Granular avalanches and debris flows are hazardous 
phenomena, characterized by the fast motion of 
granular matter embedded in an ambient fluid. A 
proper description of the propagation stages of these 
events, from the onset to the deposit, is crucial to 
predict run-out distances and properly delimit the 
endangered areas. Recently, several efforts have 
been made to better understand the dynamics of 
granular flows and solid-liquid mixtures from both 
theoretical and experimental viewpoints (e.g. 
[4,5,13,21,23,24,26,33]). Yet, the dynamics of 
granular matter is found to exhibit different regimes 
that are difficult to be described by a unique 
constitutive law. An effective approach to describe 
the propagation of granular flows is represented by 
depth-averaged hydrodynamic models, that treat the 
granular material as a continuum and allow a 

straightforward and fast numerical integration. A 
popular model of this kind is represented by the 
Savage-Hutter (SH) model [29], in which a Mohr-
Coulomb behavior is used for internal and basal 
stresses. Several laboratory experiments have 
showed its capability to capture the main features of 
granular avalanches over relatively smooth beds 
(e.g. [12]). However, in the case of no-slip bottom 
boundary condition, the reliability of the SH theory 
is limited by the constant distribution assumed for 
both flow velocity and bulk density profiles (e.g. 
[22,26]). In the presence of no-slip bottom boundary 
condition, some works [1,9] experimentally reported 
the existence of two distinct regions with different 
velocity and volume fraction profiles in the same 
cross section. These findings suggest that two 
different flow regimes take place. In the lower zone 
of the flow, the momentum transfer is expected to 
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be only due to grain friction, while in the upper one 
also momentum collision mechanisms occur. In case 
of rough bottom surface, a slow creeping flow is 
found in the lower zone below a surface flow zone 
[14]. Similarly, collapses of granular columns, 
experimentally studied in [16,18], exhibit a slow 
lower layer that reaches a state of rest in advance 
with respect to the upper surface flow. Discrete 
element numerical simulations (DEM) have been 
employed to increase the insight into collapses of 
granular columns (e.g. [15,30]) and bring further 
evidence of the aforementioned flow regime 
stratification. Mangeney et al. [20] tried to describe 
the collapse of granular material through using a 
minimal depth-averaged model with basal Coulomb 
friction. The degree of agreement with experimental 
data is very good for small initial aspect ratios of the 
granular column but the model is found to be less 
reliable in case of high initial aspect ratios, where 
the run-out distances are noticeably overestimated. 
These findings suggest that more information is 
needed to properly describe the propagation of 
granular flows in case of no-slip bottom boundary 
conditions and classical depth-averaged models 
seem to be less suitable. Aside from fully three-
dimensional models, an alternative approach is 
represented by multi-layer depth-averaged models 
(e.g. [2]). Such models exhibit a good numerical 
efficiency and give a better insight into the velocity 
distribution along the flow depth with respect to 
classical depth-averaged models. Recently, the 
employment of these models in the contexts of fluid 
mechanics and hydraulic engineering has been 
noticeably increased (e.g. [3,6,8,19]). Nevertheless, 
this kind of models show an important mathematical 
issue, as they are only conditionally hyperbolic. As 
a result, numerical methods are not yet mature as in 
classical depth-averaged models. 
By following the approach proposed by [25], in this 
work we present a one-dimensional two-layer 
model, written in Cartesian coordinates, to describe 
the propagation of granular avalanches on rough 
beds. Particular attention is paid to the 
implementation and description of the numerical 
scheme. A slight modification of the source terms, 
with an extra momentum flux at the interface 
between the layers, to be added if necessary, is 
proposed in order to guarantee the hyperbolicity of 
the model. Some numerical tests are performed to 
show the key features of the model. The numerical 
results of the two-layer approach are directly 
compared with a single-layer depth-averaged model 
with basal Coulomb friction and isotropy of normal 
stresses. Significant differences in the run-out 
distances are found and are carefully discussed. 

 
 
2. Model equations 
In this section, we derive the depth-averaged two-
layer model in one dimension, similarly to what 
done in [25] and [27]. With reference to a 
channelized flow, an orthonormal Cartesian frame 
of reference is considered, where x-axis is parallel to 
the channel bed and z-axis points upwards (Fig. 1). 

 
Fig.1 Sketch of the two-layer flow structure. 
 
We regard the dry granular flow as composed of 
two superimposed flowing layers of depths 1h  and 

2h , separated by a sharp interface,  , with equation 
   2, , , 0F x z t z h x t    . By indicating the 

physical quantities in the upper and lower layer with 
the subscripts "1" and "2", the mass and momentum 
conservation equations are written as follows 

 div 0t      v , (1) 

     div , 1,2 ,T
t              v v v T g  (2) 

in which  represents the bulk density, v is the flow 
velocity, T  is the stress tensor and g is the gravity 
vector. It is assumed that mass exchanges, fluxM , 
take place between the two layers and, hence, the 
interface is a non-material surface. 
Several experiments showed that the bulk density, 
 , typically increases with distance from free 
surface (e.g. [9]). In the proposed model we assume, 
for simplicity, that   is constant within each layer 
and 1 2  . By following [10], the flow velocity, 
v , and T  are supposed to be continuous functions 
within each layer and exhibit a discontinuity across 
 . By using the notation 1

2 1, 2,[[ ]]f f f    with 

2
1, lim

z h
f f  

 , 
2

2, lim
z h

f f  
  and f is any given 

function, the Rankine-Hugoniot jump conditions for 
the local mass and momentum conservation read as 
follows 

  1
int 2[[ ]] 0   v v n , (3) 

1
int 2[[( ( ) ) ]]T   v v v T n 0 , (4) 
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in which intv is the interface velocity and n  is the 
unit normal vector of  . After defining the volume 
flux across  , 

   int , 1, 2fluxE M       v v n , (5) 
and some algebraic manipulations Eq. (3) reduces to 

1
1 2
2

1 2

[[ ]][[ ]] .fluxM
 

  v n  (6) 

Eq. (6) relates flow velocity and bulk density jumps. 
Similarly, the momentum jump condition, Eq. (4), is 
recast to 
   1 2 1 2 ,fluxM  v v nT T  (7) 
The x-component of Eq. (7) will be used hereafter as 
closure equation to calculate fluxM . The advantage 
of using the Rankine-Hugoniot jump condition as 
closure equation is that it only depends on the 
constitutive laws of the flowing layers and, thus, no 
ad-hoc calibration of additional parameters is 
needed. By projecting Eq. (7) on n  direction and 
with the help of Eq. (6), we get the following 
expression of the normal stress jump at the 
interface, 

   21 2
1 2

1 2

.fluxM 
 


   T T n n  (8) 

 
 
2.1  Depth-averaging 
Before depth-averaging the balance equations Eqs. 
(1)-(2), it is required to define the kinematic and 
dynamic boundary conditions (KBC and DBC). The 
KBC at the free 
surface,  , 0fF z h x t   with 1 2h h h  , can be 
written as 

1, 1, 0,t x x zh v h v      (9) 
where 1,xv and 1,zv  are the x and z-component of flow 
velocity. Since  is a non-material surface, the KBC 
there reads 

   2 , 2 , int , 1, 2 .t x x zh v h v F          v v  (10) 
Henceforth, we use the over-barred notation to 
indicate the mean value of a given function f  over 
the flow thickness, viz. for the upper layer 

1 2

2
11

h h

h
f h f dz


  . 

By using Eqs. (9)-(10) and with help of Eq. (6), the 
mass balance equation, depth-integrated in the upper 
layer, reads  

 1 1, 1 1 .t x x fluxh v h M F       (11) 
The bottom surface is supposed to be rigid and 
plain, so that the KBC there is simply given by 

2, 0.zv   (12) 
By using KBCs (10)-(12), the depth-integrated mass 
balance equation of the lower layer reads 

 2 2, 2 2 .t x x fluxh v h M F        (13) 
By assuming a traction-free condition at the free 
surface, the DBC there reads 

1 .nT 0  (14) 
Analogously to the SH model [29], we assume that 
the lower layer has a Coulomb-like frictional 
behavior. Thus, the DBC at the bottom surface can 
be written as follows 

     2 2 2, 2sgn tant B    T n T n n n v T n n  (15) 
where  2, 2 2t   v v v n n  represents the tangential to 
the bed component of the flow velocity and B  is 
the basal angle of friction. At the interface, two 
different constitutive relations are defined, as limits 
from the upper and lower sides of  . The shear 
stress, as limit from the lower side of  , is 
supposed to be purely frictional 

     2 2 2 intsgn tant      T n T n n n v T n n , (16) 
in which nti  is the angle of internal friction and 

   1 2 1 2t       v v v v v n n . At the upper side of 
 , the regime is assumed to be friction-collisional. 
The shear stress is assumed to be of Voellmy type 
[34] and can be written as sum of a friction term and 
a rate-dependent term, 

      2
1 1 1 int 2sgn tant k c          T n T n n n v T n n v

 (17) 
where k  and c  are dimensionless parameters. The 
parameter 1k   is to take into account the decrease 
of friction due to the density jump across the 
interface. Substituting (16)-(17) into Eq. (7), the 
closure equation for calculating the mass flux is 
fully defined. 
With the help of the KBCs, DBCs and the Leibniz 
rule, the integrated x-component momentum balance 
equation of the upper layer reads [27] 

  1,2
1, 1 1, 1 1

1

1, , 1, ,
1, , 2 1

1 1 1

,

xx
t x x x

flux xx xz
x x x

t
v h v h h

M t t
v F h h g



  
 

 

 
      

 

    

 (18) 

where the subscript   means that the term is 
evaluated at the interface. Analogously, we obtain 
the depth-integrated x-momentum balance equation 
for the lower layer 

  2,2
2, 2 2, 2 2

2

2, , 2, , 2, ,0
2, , 2 2

2 2 2 2

,

xx
t x x x

flux xx xz xz
x x x

t
v h v h h

M t t t
v F h h g



   
 

 

 
     

 

      

 (19) 
where the subscript 0 means that the term is 
evaluated at the bottom surface. 
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2.2  Simplifications 
Geophysical granular flows are typically thin and 
long, so that the long-wave approximation can be 
used to leave non-significant physical quantities out 
of the model equations [29]. A more rigorous 
scaling simplification, leading to the same final 
equations, can be found in [27] where scalings 
similar to those ones proposed in [32] are employed. 
Owing to these assumptions, a hydrostatic normal 
pressure distribution in both layers is derived from 
the z-component momentum balance equation 

   1, 1zz zz g h zt     (20) 
     2, 1, 2 2 .zz zz i zt z t z g h z    (21) 

It can be shown that the normal stress jump 
predicted by Eq. (8) is negligible under these 
assumptions [27]. Differently from the SH theory, 
we adopt an isotropic pressure distribution, i.e. 

   , ,xx zzt z t z  , for sake of simplicity. Following 
the same assumptions, the DBCs at  , (16)-(17), 
are recast as 

     2
1, , 1, int 2 1, 2,sgn tanxz x zz x xt v k t c v v 

     
 

(22) 

   2, , 2, intsgn tanxz x zzt v t     . (23) 
Besides, the assumption of shallowness leads to 

1F  . Thanks to the above-mentioned 
hypotheses and by assuming also that the velocity 
distribution is blunt within each layer, we obtain the 
following hyperbolic partial differential equation 
(PDE) system 

 

 

 

 

1 1, 1
1

2 2
1, 1 1, 1 1

1, ,
1 1 2 1,

1 1

2 2, 2
2

2 2
2, 2 2, 2 2

2, , 2, ,01
2 2 1 2,

2 2 2 2

,

1
2

,

,

1
2

,

flux
t x x

t x x x z

flux xz
x z x x

flux
t x x

t x x x z

flux xz xz
x z x x

M
h v h

v h v h g h

M t
g h g h h v

M
h v h

v h v h g h

M t t
g h g h h v



 




   






  

      
 

   


    

      
 

    



















(24) 

that is equipped with the following closure equation, 
   1, 2, 1, 2,flux xz xz x xM t t v v   . (25) 

The vector of unknowns is  1 1 1, 2 2 2,, , ,
T

x xh h v h h vq , 
while the advective flux vector can be written as 

   2 22 2
1 1, 1 1 1, 2 2, 2 2 2,, 2 , , 2

T

x z x x z xh v g h h v h v g h h v  f q

It is well-known that non-conservative terms in 
Syst. (24), 1 2z xg h h  and  1 2 2 1z xg h h   , influence 
the wave celerities and make the System be only 
conditionally hyperbolic. The loss of hyperbolicity 
typically occurs in presence of large relative 
velocity between the layers (e.g. [6]). The source 
terms are composed of two parts: the mass flux 
term, Ms , plus a remaining term due to momentum 
fluxes, Rs , 

 1 2,0, ,0 ,
T

M flux fluxM M  s  (26) 

1 1, 1 1, , 1 2

2, 2 2, , 2 2, ,0 2

0, ,0,
T

x x flux xz x
R

x flux xz xz

g h v M t g h

v M t t

 

  





  
 
    

s . (27) 

Thus, Syst. (24) can be rewritten in the following 
compact quasi-linear form 

*
t x M R     qq f q s s , (28) 

where *q f  represents a pseudo-Jacobian matrix of 
the flux vector that also takes into account the non-
conservative terms (e.g. [27]). 
 
 
4. Numerical scheme 
The PDE system (24) together with the closure Eq. 
(25) is numerically integrated by a finite volume 
scheme. Since the PDE system exhibits non-null 
source terms, the operator splitting technique (e.g. 
[17]) is used for taking into account separately the 
effects of source terms. The numerical algorithm is 
composed of several stages. At the first stage, to 
calculate the effect of advection terms, the 
associated homogeneous PDE system, 

*
t x    qq f q 0 , (29) 

is numerically solved by using the scheme proposed 
by Fraccarollo et al. [11], featuring a lateralized 
version of the HLL approximate Riemann solver. 
Then, the following ordinary differential system 
(ODE), 

 , 0 PDE
M Rd dt   q s s q q , (30) 

is solved, by using as initial condition the solution 
coming from the first stage (29), detonated by the 
superscript PDE . By following the same approach 
of [8], two sub-steps are carried out to solve 
numerically Eq. (30). In the first sub-step, denoted 
with superscript ', the effects of the mass flux on the 
flow depth are explicitly calculated through the 
following formula, 
       ' 1 , 1, 2PDE

fluxi i
h h t M
       , (31) 

where the subscript i  represents the i-th discretized 
cell of the spatial domain and t  is the time step. In 
Eq. (31) fluxM  is properly limited to avoid 
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overshooting the equilibrium flow depths or 
negative values of flow depths [27]. The second 
sub-step, denoted by the superscript '', is for 
calculating the effects due the momentum 
exchanges, Rs . As friction terms in Rs  may be very 
large, it is convenient to treat them in an implicit 
fashion (backward Euler scheme). We use as initial 
condition the solution obtained from the previous 
sub-step. The updating formula reads as follows 

'' ' ''
,i i R it  q q s . (32) 

A third stage consists of checking the system 
hyperbolicity by calculating numerically the 
eigenvalues of *q f . If the two inner eigenvalues, 

2 and 3 , are complex conjugate numbers, which 
means a local loss of hyperbolicity, an additional 
computation stage is carried out, consisting of 
modifying the source terms of the momentum 
equations. Such a treatment is conceptually similar 
to the approach proposed by [7]. In particular, the 
algorithm comes back iteratively to the previous 
stage, with the following modification of the source 
terms 

 '' ' ''
, 1 20, ,0, T

i i R i extra extrat t F F      q q s . (33) 

extraF  serves as correcting momentum flux for 
ensuring the numerical solution within the 
hyperbolicity domain. Once the new solution ''q is 
obtained, the hyperbolicity check is further 
performed. The amount of extraF  is iteratively 
adjusted until the solution fulfills the hyperbolicity 
condition. As a convergence criterion, the following 
expression, depending on the inner eigenvalues of 

*q f , is used 

3 2 w   , (34) 
where w  is a small threshold value. At the end of 
this step, the variables are finally updated. Because 
the advective step of the numerical scheme is of 
explicit kind, the only constraint for time advancing 
is that the Courant-Friedrichs-Levy (CFL) number is 
smaller than 1. The proposed correction for ensuring 
hyperbolicity should not be regarded as a merely 
numerical expedient, as it locally modifies the 
source terms of the mathematical PDE model. 
Moreover, this treatment is found to have a very 
good stability and nice properties. A first advantage 
is that the correction only acts locally in space and 
time. Moreover, the correction does not modify the 
momentum balance of the layers as a whole, since it 
only reduces the relative velocity difference 
between two layers at the prediction stage. 
 
 
 

5. Tests 
 
 
5.1  Dam-break flow 
Firstly, a dam-break flow of dry granular material is 
here reproduced by the two-layer model. The 
purpose of this test is to show the main features of 
the proposed two-layer model and its advantages 
over classical single layer models. The geometry of 
initial deposit is rectangular with a longitudinal 
span, 0L , equal to 1m and an initial height, 

0 2mH  . The channel slope is null. 
The numerical results by the two-layer model are 
compared with those ones obtained by the single 
layer model, employed in [20] and featuring a 
purely Coulomb friction basal stress and isotropy of 
normal stresses. The single layer model is 
numerically integrated by using a finite volume 
scheme with the HLL approximate Riemann solver 
and the basal angle of friction in it is set equal to 
30°. 
The initial distribution of the flow depths in the two-
layer model is chosen so that the lower layer 
consists of a wedge with an angle of int4   (i.e. 
the angle of Rankine active state) with the 
horizontal. This assumption for the initial flow 
depth of the surface flow is quite common in 
Literature (e.g. [31]). The initial distributions of 
flow depths in both models are reported in Fig. 2. 
For comparison purposes, the internal angle of 
friction in the two-layer model is chosen equal to 
30°. All the model parameters are reported in Table 
1. The supposed density ratio between the layers, 

1 2 0.67   , is reasonable in dense-collisional 
granular flows [27]. A study on the sensitivity of the 
model parameters, which is beyond the scope of this 
short paper, is reported in [25] and [27]. Both 
numerical simulations are performed over a spatial 
domain spanning 7m with a discretization, 

0.05mx  . The Courant-Friedrichs-Levy (CFL) 
number is set equal to 0.3 for determining the time 
interval at each time advancing. 
 
Table 1 

B  int  k  c 1  2  
40° 30° 0.97 0.1 0.4 0.6 
 
The evolution of flow depths and flow velocities, 
together with the extra momentum correction, extraF , 
at the interface, are reported in Figs. 3-4-5-6. As one 
can see from Figs. 3-4, while the initial spreading of 
granular mass is quite similar in both models up to 
t=0.25s, in short time the flow velocity at the front 
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of the dam-break wave in the single layer model 
becomes noticeably larger than the ones of the two-
layer model. This causes a growing discrepancy 
between the two models as regards the positions of 
the front waves (see Figs. 5-6). As one can see from 
Fig. 7, where the final deposits are reported, the run-
out distances are different with a significant 
overestimation by the single layer model. This result 
is very interesting, whereas both models employ the 
same angle of internal friction. As regards the 
dynamics of the two-layer model, it should be noted 
that the two layers exhibit very different dynamical 
behaviours. In particular, the lower layer presents 
significantly smaller flow velocities and reaches a 
state of rest at around t=0.7s while the upper surface 
flow is still moving and stops just before t=1.5s. 
This behaviour is qualitatively congruent with 
several experimental findings (e.g., [14,15]), where 
an upper highly sheared surface flow is 
superimposed upon a lower creep flow. The fact that 
such a lower wedge of granular material moves 
noticeably slower than the upper surface flow could 
explain why classical depth-averaged models are not 
capable to correctly predict the run-out distances of 
granular collapses at different initial aspect ratios, if 
employing a unique basal friction angle [20,28]. 
 

 
Fig.2 Initial condition for the dam-break test. 
 
Another important aspect of the two-layer model is 
the capability to reproduce, at least qualitatively, the 
progressivity of the deposition process experienced 
by the granular material. Indeed, a continuous mass 
flux from the upper layer to the lower one takes 
place during the whole deposition process, thanks to 
the assumptions made on the non-material interface. 
As regards the momentum correction to preserve 
hyperbolicity, it should be noted from Figs. 3-6 that 

extraF  mainly acts near the front of the lower layer 
wave, while is null in all the other computational 
cells. The normalized momentum correction, 

1extraF  , is found to be always smaller than 2 22 m s  
and, thus, of the same order of the interface 
Coulomb friction shear stress (cf Eq. (23)), if we 
consider that the upper layer flow depth ranges 

between 0.2m and 1m during almost the whole 
simulation. 
 

 
Fig.3 Evolution of flow depths (upper panel), flow 
velocities (middle panel) and extra momentum 
correction (lower panel) at t =0.1s. Black lines in the 
flow depth and flow velocity plots refer to the single 
layer model. 
 

 
Fig.4 Evolution of flow depths (upper panel), flow 
velocities (middle panel) and extra momentum 
correction (lower panel) at t =0.25s. 
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Fig.5 Evolution of flow depths (upper panel), flow 
velocities (middle panel) and extra momentum 
correction (lower panel) at t =0.4s. 
 

 
Fig.6 Evolution of flow depths (upper panel), flow 
velocities (middle panel) and extra momentum 
correction (lower panel) at t =0.7s. 
 

 
Fig.7 Final deposit at t =1.5s. 
 
 
5.2  2D collapse of granular material at 
different initial aspect ratios 
Lacaze et al. [15] reproduced two-dimensional 
collapses of granular columns with different initial 
aspect ratios, through using discrete element 
simulations (DEM). An interesting advantage of 
DEM models consists of gaining insight into 
phenomena impossible to be observed in real 
experimental cases. For instance, dam-break flows 
and two-dimensional collapses in real channels are 
always more or less influenced by the side wall 
friction. For this reason, a direct comparison with 
mathematical models would be very difficult 
without calibrating additional friction parameters 
through back-analysis. In the case of no side wall 
friction, Lacaze et al. [15] found that the normalized 
run-out distance  0 0R L L  , scales as follows 

  0.83 0.03
0 0r R L L a 

    , (35) 
with R  being the final run-out distance, 0L  the 
longitudinal span and 0 0a H L  the initial aspect 
ratio of the granular column. Here, we compare the 
run-out distances obtained by the proposed two-
layer model with those obtained by the single layer 
model in case of different initial aspect ratios. The 
initial span of granular column is set equal to 

0 0.1mL   for all simulations, while the initial height 
0H  is let vary between 0.2m and 3m. All numerical 

simulations are performed on a spatial domain with 
a discretization equal to 0.01mx  . The basal 
friction angle in the single layer model has been 
chosen equal to 30°. The model parameters for the 
two-layer model are the same of the previous 
numerical test (cf. Table 1). 
The plots of the normalized run-out distances, r , as 
function of the initial aspect ratio, a , are reported in 
logarithmic scale in Fig. 8. As one can see from Fig. 
8, the single-layer is capable to reproduce quite well 
the run-out distances for low values of initial aspect 
ratios. Nevertheless, the model exhibits an almost 
linear dependence between r  and a  with a fitting 
curve, 1.062.25r a  , that causes an increasing 
disagreement with run-out distances predicted by 
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DEM simulations in [15]. Conversely, the two-layer 
model yields a good agreement with the scaling 
obtained by [15], Eq. (35), with a fitting curve 

0.841.61r a  . It should be noted that friction angles 
in the mathematical model have not been calibrated 
on this particular dataset and, thus, the run-out 
distances are overall slightly underestimated. 
Similar scalings for the run-out distances are found 
by varying the friction angles. 
 

 
Fig.8 Normalized run-out distances r  as function 
of the initial aspect ratio a . The fitting curves are 

1.062.25r a   and 0.841.61r a   for single- and two-
layer model, respectively. 
 
 
6. Conclusion 
A two-layer depth-averaged approach is proposed in 
order to better describe the dynamics of granular 
avalanches over rough bed. The flow is regarded as 
composed of two flowing layers, sharply separated 
by a non-material surface across which mass 
exchanges are allowed. The upper layer rheology is 
supposed to be of Voellmy type and, thus, exhibits a 
shear stress at the interface, composed of a friction 
term and a collisional term. Conversely, the lower 
layer is supposed to be purely frictional. These 
modelling choices are supported by several 
experimental investigations, where a fast surface 
flow is found to be superimposed on a lower creep 
flow. The closure equation to calculate the mass 
exchange between the layers is directly derived by 
the Rankine-Hugoniot jump conditions. The 
advantage of this kind of closure equation is that it 
uniquely depends on the rheology chosen for the 
flowing layers and, thus, no ad-hoc calibration of 
additional parameters is needed. The numerical 
finite volume scheme to solve the two-layer model 
uses an HLL approximate Riemann solver for 
accounting the advective effects and treats the 
source terms in a splitted fashion. Since the PDE 

system is conditionally hyperbolic, an additional 
stage, consisting of injecting an extra momentum 
flux at the interface is added to the numerical code. 
This correction is found to be very robust and yields 
reliable results, as shown in numerical tests. The 
numerical investigation on the two-layer model 
showed that it has several advantages over classical 
single layer models. At first, a better insight in the 
flow velocity distribution is possible thanks to 
intrinsically increased level of accuracy. Secondly, 
the two-layer approach allows to realistically 
describe the progressivity of the deposition stages. 
A further comparison with the run-out distances 
predicted by some DEM numerical simulations 
showed the capability of the two-layer model to 
capture the power law, describing the run-out 
distances as function of initial aspect ratio, in two-
dimensional collapses of granular material. This 
represents another interesting advantage over since 
single layer models. 
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