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Abstract: - The trait of the ball mill is chaotic in nature due its complex dynamics associated during grinding. 

Grinding in ball mill generates high-intensity vibration and is too complex on account dependency of multiple 

variables. In this paper, the vibration signal is acquired using a low power ZigBee based three axes wireless 

MEMS accelerometer sensor mounted onto the mill shell. Firstly, the exact frequency bands of the mill are 

identified under variable impact loading using non synchronized and Synchronized Frequency Estimation 

method (SFE) methods. The synchronization between the mill speed and the sampling rate are put forward by 

SFE to convert the random non stationary data to quasi stationary data. The actual signal length is calculated 

using proposed SFE approach and further it is used as window size for wavelet decomposition. Further, to de-

correlate the auto-correlated and cross-correlated signal and signal spaces both PCA and Wavelet are used. 

Finally, the combination of all this techniques, i.e., Synchronized Wavelet Based Multi-Scale Principal 

Component Analysis (SWMSPCA) is used to extract the vibration feature of the ball mill in the presence of  

variable density ores i.e., iron ore and limestone. 
 

Key-Words: - Ball Mill, Accelerometer Sensor, ZigBee, Wavelet, PCA, Windowing, SFE, SWMSPCA, Fast 

Fourier Transform. 

1 Introduction 
Ball mills are used in mineral processing industries 

to ground ores to desired sizes (from mm to 

micron), and comminution in ball milling is a 

complex phenomenon. The utilization of energy for 

grinding is generally 1-2% of the supplied energy, 

so it is indispensable to effectively monitor the 

process behavior to increase the production 

efficiency. The dearth of power, as well as the 

availability of raw materials, motivates a great need 

for online monitoring of an effective grinding 

process [1]. The performance of a particular mill is 

determined by the internal dynamics, i.e., the 

motion of the balls, hardness of the ore and its 

composition, impact velocity, excitation frequency 

of impact, pulp density and the run length of the 

mill [2, 3]. The trajectory and impact statistics are 

hard to define analytically; it can only be defined 

with certain accuracy using a series of experiments 

on a particular mill with predefined milling 

conditions. In general, the impulsive force by balls 

excites the mill to different values of frequencies 

with variable intensities [4, 5]. The true analysis of 

frequency and the respective intensity are the key 

factors to monitor the process behavior of the ball 

mill [6]. 

 

Different analysis techniques have been evoked by 

many authors on diverse aspects of ball mill, i.e., 

power drawn of the mill [7, 8], acoustic [9], 

vibration [10] data analysis etc.  The power drawn 

analysis plays a least significant role as the grinding 

status of the ore is not closely connected to it. 

Specifically, the actual process behavior of the mill 

can be predicted from the acoustic and vibration 

patterns. As the acoustic and vibration data analyses 

are concerned, both have a significant impact in 

analyzing the internal behavior of the mill. But, as 

the vibration is concerned, each section of (feed, 
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midsection and discharge end) the mill along the 

axes contribute a different level of vibration, and its 

corresponding acoustic. The acoustic pattern 

estimation in the noisy industrial environment is 

quite fuzzy to intercept. To have a better insight into 

the milling condition, on shell vibration signature 

can be used to analyze the actual internal process of 

the mill. In certain cases, perception based analysis 

is used to evaluate the state of mill load by taking 

heed to the mill sound. Simply to cope with the 

variation in the milling conditions, periodic 

assessment is needed to avert any loss in the 

production flow, and it can be carried out by 

utilizing a fusion of sensor based technology and 

signal processing approach [11].  

 

In the past, a great deal of studies has been carried 

out by many researchers using sensor technology. 

The usages of sensor technology, such as vibration, 

acoustic, force and load sensors, etc. can be used to 

supervise the internal process associated in the 

milling. Vibration sensor can measure both static 

and dynamic vibration, or it can measure dynamic 

vibrations only. The sensor types, their mounting 

techniques and their behavior due to environmental 

effects must be examined carefully prior to the 

evaluation of the sensors in experimental bed [12]. 

The vibration test can be performed using a 

piezoelectric strain transducer installed midway 

along the axis of the mill shell [13 & 14], or it can 

be accomplished using sensors at the axial position 

of the mill. The difficulty with these types of 

sensors are, it call for external power supply and 

bulky systems. These can be overcome using 

ZigBee based MEMS capacitive accelerometers 

[15]. The transmission loss in wireless medium is 

high depending on the type of environment, but it is 

easily accessible for data transmission when the 

structure to be monitored is rotating in nature [16, 

17 & 18]. Once the selection and delineation of the 

senor are fluxed, suitable signal processing 

technique can be used to dispense with the chaotic 

signal produced by the mill [19]. 

  

As far as the analysis of vibration signatures are 

concerned, there are ample of signal processing 

techniques that can be applied to evoke the desired 

frequency band from the ball mill during grinding. 

The signal processing can be executed through 

different techniques, i.e., Fast Fourier Transform 

(FFT), Short Time Fourier Transform (STFT), 

Wavelet Transform (WT) [18], Hilbert Huang 

Transform (HHT) [20, 21] and Principal Component 

Analysis (PCA) [22, 23] etc. FFT can be applied to 

stationary signal and it cannot be applied to transient 

and non-stationary signals. STFT can be applied to 

examine the non-stationary signals, but selection of 

window size as per the frequency requirement is 

hard to settle for random signals (lack in the multi 

resolution analysis). The wavelet transform is a 

better option than STFT, but the selection of basis 

function affects the analysis of transient signals and 

it is not adaptive in nature. HHT can be used to 

extract information of non-linear, non stationary 

signals, but the sampling rate and the noisy 

environment may deteriorate its performance. The 

random behavior of the signal can be predicted 

using statistical techniques like PCA. In PCA, 

basically a linear transformation (it can also be non-

linear) is applied to the signals that are linearly 

dependent and it should not have significant outlier. 

A very broad understanding is required about the 

algorithm and their significance in the analysis of 

signals of varying nature and the information 

contents with or without prominent noise 

components [24]. The nature of the signal from the 

ball mill is chaotic in nature. The nature of the 

signal does not permit the use of PCA directly. 

Wavelet transformation along with PCA can be 

better fusion in the analysis of ball mill.   

The fusion of different techniques like PCA along 

with wavelet transforms [25 & 26] can be a valuable 

asset in dealing with vibration signal associated 

during grinding. These PCA-based process 

monitoring methods employ wavelet analysis to 

transform time-domain signals into the time-

frequency domain [27 & 28]. So, significant events 

can be recombined to obtain a PCA model for all 

scales together. Multi-scale PCA is useful for 

modeling data that changes over time and 

frequency, i.e. the data of chaotic nature. Since PCA 

cannot be used to de-correlate the auto-correlated 

signal, where as the wavelet can be used to de-

correlate the auto correlated function (wavelet have 

good de-correlation and localization properties) and 

PCA can be used later on to un-correlate the 

correlated variables.   

 

Many researchers have suggested different methods 

in analyzing the Vibration features of the ball mill 

[13, 14 & 29]. Generally, the features are extracted 

based on the intensity at large rather than proper 

justifiable sample length selection for proper 

analysis. The behavioral pattern sometimes lies in 

the noise floor due to damping incurred by the 

presence of balls, pulp and the associated property 

of the minerals. In this paper, the exact frequency 

and the corresponding intensity of vibration are 

identified using proposed synchronized wavelet 

based multi-scale principal component analysis 
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(SWMSPCA) and Synchronized Frequency 

Estimation method (SFE) methods for ball mill. 

Both techniques are studied briefly on their 

application point of view and their conjecture in the 

study of the mill. 

 

2 Wavelet Decomposition 
Wavelet based analysis can be used to transform a 

time domain signal into time and frequency domain. 

For multi-component analysis, original signal space 

V0 is transferred to approximation space VJ and 

detailed spaces Wj Further the signal x          
can be decomposed as follows in (1). 

 

     

                                    
 
          (1)                                                                                                

 

Where             

 

Where         &         are the scale function for VJ  

and Wj ; j is the scale factor and k is the translation 

factor; a(J, K) and b(j,k) the approximation 

coefficient and detail coefficient respectively; J is 

called the decomposition level 

  

The scale function of original and transferred signal 

space can be written as follows in (2) and (3). 

 

                                                    (2) 

                                                    (3) 

 

The approximation signal       and detailed signal 

      can be defined as in (4) and (5); 

                                                        (4) 

 

                                                         (5) 

The original signal can be formulated as in (6); 

 

                 
 
                                       (6) 

   

3 Principal Component Analysis 
Principal component analysis was introduced by 

Pearson and Hotelling to describe the variation in a 

set of multivariate data in terms of a set of 

uncorrelated variables. 

Suppose, the data matrix is X with dimension of 

(n*p). The projection matrix can be derived as in 

(7); 

 

     =                                    (7) 

 

Where Y is the output projection matrix;    
             

  is the column vector of weight  

  
    

      
    

The variance and covariance matrix can be written 

as in (8) and (9); 

 

                 ,                                          (8) 

 

         ,                                                          (9) 

 

Where C is the covariance matrix. 

 

   

                          

                              

                          

  

 

Finally, the principal component can be defined as 

in (10), 

 

                      ;                       (10)

                                                                       

Where i= 1...p;           are the weighted Eigen 

vectors. 

Finally, arrange the values of    in the decreasing 

order to get the principal components. 

 

4 Problem Formulation 
To translate the phenomena of vibration and its 

institution, the paper is streamlined as follows, 

 

Step 1: Experimental Setup: Mounting of wireless 

MEMS accelerometer sensor on mill shell and data 

transmission using ZigBee wireless protocol. 

 

Step 2: Vibration feature extraction of ball mill 

using SFE approach: This analysis is basically 

carried out to select proper sample length for the 

windowing the actual signal before wavelet is 

applied. This step also analyses the effect of 

variable impact loading (impact by one, four and ten 

balls; in the absence of ore)   in the extraction of 

mills frequency band under variable window length.  

  

Step 3:  Feature Enhancement using SWMSPCA. 

 

Step 4:  The synchronized data samples for variable 

density ores i.e., iron ore and lime stone are 

analyzed using proposed synchronized wavelet 

based multi-scale principal component analysis 

(SWMSPCA) method. This method uses both SFE 

and WMSPCA for feature extraction of the mill 

during grinding. 
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5 Experimental Setup 
These experiments are performed on a batch ball 

mill using a low cost, low power Zigbee based 

wireless accelerometer sensor. ZigBee based three 

axes wireless accelerometer sensor of ±10g with 

sensitivity 100 mV/g is used to acquire the vibration 

signature of the mill. To acquire signal the sensor is 

mounted on the mill shell as shown in Fig. 1 (a). 

Specifically, the three axes are chosen to detect the 

propagation of wave vectors in different directions 

of the mill and their significant involvement in the 

grinding. The phenomena of grinding depends on 

some prime factors such as impact, attrition and 

retention time or run length of the mill. Each of 

these factors contributes significant modulated 

vibration signal in the three dimensional vector 

spaces. The MEMS capacitive wireless 

accelerometer is mounted (adhesive mounting) on 

the mill shell to acquire the vibration signature 

along radial (Z, channel (CH)) and tangential (X, 

CH) vector directions for a sampling rate of 2000 

samples/Sec/channel as shown in Fig. 1(a).  

  

At first, the natural frequency response of the mill is 

tested using variable impact loading in the absence 

of materials. Firstly, the data analysis under variable 

impact loading are carried out using non-

synchronized actual signal processing technique (to 

study the effect of random sample length on the 

vibration response) and, further, it is compared with  

SFE analysis techniques. 

 

   
 

(a)                                                     (b) 

Fig. 1 (a). Position of accelerometer sensors on laboratory ball 
mill (b) Direction of three axes of accelerometer sensor during rotation  

6 Frequency Identification Using SFE 

Approach  
These experiments are performed to differentiate the 

frequencies generated due to the impacting balls and 

their forcing function in the excitation of the mill's 

natural frequency. It is very difficult to pick up the 

range of frequencies build up due to impulsive 

forces exerted by the balls on the mill shell. To 

extract the actual frequency band of the empty mill 

(in the absence of materials, with balls only), a 

series of experiments are performed using three 

different impact states (IS), i.e., with a single ball, 

with four balls and with ten balls rotating at a rated 

critical speed.  

The vibration signatures are acquired along the 

tangential and radial direction of the mill for a 

sampling rate of 2000 samples/sec/channel. Further, 

the vibration signatures are analyzed using non 

synchronized and SFE methods. The synchronized 

and non-synchronized (without SFE) sample length 

selection methods are related to the angular rotation 

of the mill and sampling rate of the sensor. The 

vibration feature obtained for data sample length of 

6000 is as shown in the Fig. 2 (a). The intensity and 

frequency variation for non synchronized sample 

length of 6000 samples is tabulated in Table 1. As 

the excitation force increases from one ball to ten 

balls, the energy level at lower bandwidth (LBW) 

shifted to Higher Bandwidth (HBW) and is 

observed for channel Z. The phenomenon of energy 

shifting at HBW is more along the radial vector 

component of the mill rather than for the tangential 

component. The HBW results for channel Z shows 

that, there is a change in the intensity value from 

0.01-0.015 g to 0.015-0.03 g as the excitation 

increases. But, the validation fails for channel X, as 

the intensity imparted by for four balls is more than 

that of ten balls i.e., the vibration intensity drops 

down from 0.01g to 0.006g. But, in general, the 

reciprocal is true. It is observed that the random 

sample length selection affect the signal analysis 

and results in a   wrong extraction of the vibration 

features. 

 During data acquisition the analog data are sampled 

at every second by the ADC, whereas the mill takes 

1.47 Sec/revolutions to complete one entire 

revolution. It is very difficult to locate the position 

of the sensor at any point of time. In brief, the 

sensor position changes at every second and the data 

acquired by the sensor may be under high or low 

impact state. To segregate the actual milling 

condition; the angular velocity of the mill and the 

acquisition rate of the sensor must be synchronized 

to differentiate between the actual and faux 

frequency. SFE technique is formulated to avoid 

impact dead zone present in the ball mill. The SFE 

length for the exact extraction of the faithful 

frequency component along the three directions of 

the sensor can be calculated using eq. (11); 

 

MEMS Accelerometer 

Sensor Used for 

Vibration Acquisition 

Y 
X 

Z 
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                                                           (11) 

 

Where I, is an integer and I≠0, w is the angular 

velocity of ball mill in RPM and    is the sampling 

rate of the sensors for each individual channels,      

is actual window length and 
   

 
 , must be an integer 

to properly validate the        
The modified actual Windowed signal constructed 

using the SFE approach is stated in (12), 

  

                               
                  (12) 

                                           

Where x1(n) is SFE signal constructed from the total 

set of x(n) data and m is an integer, and is used to 

change the position of the window or the sliding 

window. 

 

The FFT for the discrete sampled vibration signal 

x1(n) is defined in (13); 

                     
           

   
       (13)                                                                                                                                                     

 

Where sample length N is 49980 for 17 revolutions. 

 

The validation of the SFE method in analyzing 

actual vibration signal is as shown in Fig. 2(b), and 

the observations are in table 1. It is observed that the 

intensity of vibration for tangential vector for HBW 

increases with increase in impact forces as contrast 

to the case without SFE.  LBW intensities for 

tangential vector component are almost constant 

with little deviation. As far as impact analysis is 

concerned, the Z channel of the sensor is best suited 

for analysis as the impact force is more along the 

radius of the mill (Refer Fig. 1 (b)). It is also 

observed from the radial vector component that, the 

intensities at LBW decreases as the impact forces 

increases i.e., as the impact forces increases, the 

energy of the LBW shift toward the HBW, and the 

intensity at LBW decreases from 0.007-0.013g to 

0.009g. From the HBW, it is observed that the 

intensity increased from 0.0075-0.01g to 0.018g. So, 

a lot more can be presumed from the tangential 

vector component i.e., it is the impulsive force 

strength that decides the frequency spreading and 

elevation in the intensities.  

It can be clearly observed from both SFE and 

without SFE method that in the absence of material 

only balls can be used to identify the exact 

frequency of vibration of the mill using the SFE 

approach rather than selecting random data length 

for the calculation of mill frequency. This method 

has tremendous impact in the identification of mill 

phenomena from the vibration intensities i.e., during 

grinding the signal may damp at the desired 

frequency of 660-680Hz and the practitioner may 

miss interpret the highest intensity at 100 Hz to be 

the actual frequency of oscillation of the mill.   

 

(a) 

 

(b) 

Fig. 2. Frequency response of channels, X tangential (top) & Z 

radial (bottom) for different impacting balls (a) without SFE approach 
(b) using SFE approach 

Table 1 Vibration signal intensity variation with number of balls 

 

VSL IS CH LBW HBW 

Without 
SFE 

(6000 

samples) 

  
 

f, Hz g, m/sec2 f, Hz g, m/sec2  

1 

 

 

X 25-120 0.030-.045 660-

680 

 

0.005 

Z 80-120 0.015-.025 0.01-.015 

4 X 20-120 0.028-.046 0.01 

Z 80-120 0.013-.018 0.01-.025 

10 X 25-120 0.025-.035 0.006 

Z 25-120 0.015-.02 0.015-.03 

With 

SFE 
(49980 

samples) 

1 X 25-120 0.015-.03  

 
660-

680 

 

0.0025 

Z 80-120 0.007-.013 0.0075-.01 

4 X 27-120 0.015-.025 0.003 

Z 90-120 0.008-.017 0.01 

10 
 

X 23-120 0.023-.027 0.005 

Z 70-90 0.009 0.018 
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7 Proposed Method 
The analysis of vibration signature of ball mill 

becomes more complex in the presence of materials. 

SFE approach is good in extracting the information 

content of the empty ball mill. But in presence of 

ore, the feature of the ball mill is analyzed using 

SWMSPCA, because it uses the auto- correlation 

and cross-correlation property of both Wavelet and 

PCA. This feature can delimit the presence of noise, 

as it has high correlation property as they get 

modulated with the actual signal along the three 

axes of the sensor. The process flow of the proposed 

algorithm for ball mill vibration signature analysis is 

as shown in Fig. 3. The main objective is to validate 

the proposed algorithm to extract feature of ball mill 

during grinding. The experiments are performed on 

a batch process mill for a total time span of 25 and 

20 minutes for iron ore and limestone respectively. 

The process is carried out till to get a finer product 

size of 150 microns The vibration signatures are 

acquired using the three axes wireless sensor to 

validate the process behavior. The discrete sample 

data from the sensor for the three axes are initially 

synchronized using equation (12), and further 

processed using WMSPCA algorithm to extract the 

useful content of the signal from the noise. 

The objective of using SFE and WMSPCA are 

detailed as follows; 

 

1.  The presence of impact dead zone in ball mill 

randomizes the signal behavior and it can be 

rectified using SFE as in (14).  

 

2. After synchronization, the signals in all three 

dimensions are decomposed using Symlets four 

wavelet decomposition technique for five levels. 

 

3. Wavelet decomposition is applied to the signals 

to segregate the low and high frequency signals.  

 

4. PCA is applied to the signal at each levels of the 

wavelet to decompose the correlated signal present 

along the radial, tangential and axial direction of the 

mill and threshold is applied using Kaiser's rule.  

5. The un-correlated data matrix is further 

decomposed using same wavelet coefficient to re-

construct the signals. 

 

6. Finally, the appropriate thresholding technique 

using Kaiser's rule is applied to the reconstructed 

signal.     

 

               
                                   

              (14) 

 

Where                are the synchronized data 

samples acquired along the three directions of the 

ball mill. 

 

Fig. 3. Flowchart for Synchronized Wavelet Based Multi-scale Principal 

Component Analysis 

7.1 Experimental results and analysis for 

iron ore 
 

7.1.1 Signature extraction using SFE and 

SWMSPCA approach 

 

The experiments are carried out with iron ore and 

limestone weighting each of 10kg and particle sizes 

below 50 mm [30]. To grind the ores, 28 kg of iron 

balls are used as a media in the process. The 

experiments are performed till to get a finer product 

size of 150 microns. The vibration signature 

obtained from the three axes wireless accelerometer 

sensors are processed using SFE and WMSPCA 

approach. The SFE approach synchronizes the mill 

speed with the data acquisition rate of the sensor, 

further; the synchronized data are processed using 

WMSPCA. This modified approach is renamed as 

synchronized wavelet based multistage principal 

component analysis (SWMSPCA). The feature can 

be extracted directly using FFT, with SFE as shown 

in Fig. 2(b). Generally natural frequency response of 

the industrial ball mill is difficult to identify. If the 

mill gets loaded then the frequency will get shifted 

to different values. The presence of material will 

damp the signature and mislead the information 

content. The same observation can be put in the 

cases of intensity variation due to impacting force as 

shown in Fig. 2(b). When the material is loaded in 

the ball mill with huge quantity of balls, the balls 

taking part in the impact processes would be lesser 
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that present at the bottom of the mill at any point of 

time. Even though the impact is high by the number 

of balls falling on the materials but due to damping 

the contribution will be accounted for the lesser 

number of balls rather than the actual number of 

balls imparting force.  

 

SWMSPCA is used to reduce the effect of noise and 

de-correlate the presence of frequency components 

present along the three different axes that are closely 

related at each levels of decomposition. SFE 

technique is used to extract the actual signal feature 

of the mill under no load condition. But, as the mill 

gets loaded with materials, the noise will increase 

drastically and also the desired signal will get 

damped.  

At the initial grinding state when the particles are 

about 50 mm size (coarse) the frequency of the three 

channels are observed to be 90-110 Hz with 

intensity of 0.02g as shown in Fig. 4 (a). But, the 

frequency and intensity at higher frequency band 

fall in the range of 550-640Hz with intensity below 

0.01-0.03g for Z channel. The observational 

frequency of Y and X channels gets damped, even 

though the feature exists along all three direction of 

the mill. SFE can predict the exact frequency at 

initial run only from the radial component of the 

mill as the impact is high along the Z direction. As 

the intensity is high at 90-110 Hz band and it is 

effective for all the three channels, the possible 

analysis may go around this band. The perplexity in 

the band identification to observe the materials 

grinding can be analyzed using SWMSPCA; that 

combine the feature of SFE, wavelet and PCA 

simultaneously. To extract the actual signal from the 

noisy signal, a proposed SWMSPCA technique is 

used to extract the vibration feature as shown in Fig. 

4 (c). It is observed that the intensity of vibration for 

all the channels are higher significant at 610-630Hz 

as compared to only SFE method. This result can 

also be compared with the mill test performed 

without material as in Fig. 2 (b). The analysis 

process is repeated till the ore obtained the desired 

finer size of 150 microns. The vibration signature 

obtained are processed using SFE and SWMSPCA 

approach as shown in the Figs. 4 (b) & 4 (d). It is 

observed from the Fig. 4 (d) that SWMSPCA 

method can extract the actual feature of vibration of 

the mill even when the ore qualify the desired finer 

size of 150 microns as contrast to Fig. 4 (b). The 

quantitative analysis shows that the signal behavior 

is amplified by the proposed method for channel Y 

and Z, where as the feature got degraded for X 

channel. So there is significant possibility to modify 

the algorithm for ball mill. The mill achieves the 

observation frequency band at 600-640 Hz with the 

intensity decreased from 0.03 g to 0.02 g. It can be 

observed as the ore get finer the signal get damped 

and it may be buried under the noise if not extracted 

properly using well advance signal feature 

extraction algorithm. SFE has its own significance 

in extracting the feature during grinding by close 

observation of the radial vector component. SFE can 

be used for online monitoring as it require less 

computational time as compared to SWMSPCA 

approach. But for practical selection of frequency 

offline for an observational model WSMPCA is a 

better choice. The iron ore before and after grinding 

is as shown in the Fig. 5 and it can be compared 

with [31] for the relative change in the damping 

during grinding. 

 

                                 (a)                                                (b) 

 

                                    (c)                                                         (d) 

Fig. 4. Frequency detection for iron ore using (a) SA for  particle 
size of  50 mm (b) SA for  particle size of 150 microns (c) SWMSPCA 

for  particle size of 50 mm (d) SWMSPCA for  particle size of 150 

microns 
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7.1.2 Grinding status prediction using intensity 

variation and spectral spreading 

The grinding status of the iron ore is predicted from 

two phenomena, i.e., spectral spreading and 

damping. It is observed from Fig. 4(c), that the 

intensity of vibration for Y and Z channels are 

0.0006 and 0.03g respectively. As the ore reaches to 

a final product size of 150 microns, the frequency 

started spreading to a higher range from 600-640 

Hz, with an intensity decreased to a level below 

0.03 g. it can be concluded that, as the material gets 

finer, the energy will be distributed among all the 

particles and the signal strength will reduce. The 

ratio between peaks at HBW to LBW decreases as 

compared ratio between HBW to LBW in case of 

coarse particle and can be observed from Figs. 4 (c) 

and (d). Further, the axial component damping can 

be used for the prediction of mill grinding status, but 

the same can be observed from the radial component 

also. The same analysis can be inferred from [32] by 

Bryce L et. al. The effect of damping on material 

size is clearly matched to the analysis performed by 

Bryce through cantilever experiment. Further, to 

visualize more insight of the mill phenomena 

experiments are performed using limestone. 

 

 
 

                 (a)                                              (b)                                                                                                              

Fig. 5. Iron ore particle size (a) before grinding (50mm), (b) after 

grinding (150 micron) 

7.2 Experimental results and analysis for 

limestone 
7.2.1 Signature extraction using SFE and 

SWMSPCA approach 

The process is repeated to analyze the variation in 

the vibration signature in the presence of limestone. 

At initial run, when the limestone is of 50 mm size 

(coarse), the frequency of the three channels are at 

90-110 Hz with intensity level close to 0.02g using 

the SFE approach as shown in Fig. 6 (a). But, the 

frequency and intensity of vibration at higher 

frequency band fall in the range of 550-640Hz with 

intensity below 0.01-0.02g. It can be observed from 

Fig. 6 (c) that the intensity of vibration for all the 

channels are at 610-640 Hz band, with significant 

damping for channel X and the frequency get shifted 

from 550-640Hz to 610-640 Hz band. Finally, when 

the ore size reaches to 150 microns; vibration 

signatures are obtained and processed using SFE 

and SWMSPCA approach as shown in the Figs. 6 

(b) & 6 (d). But as fineness increases, the intensities 

at the frequency band 90-100Hz dominate over that 

of 600-650 Hz band as contrast to the case for the 

iron ore as shown in Fig. 4(d). The algorithm even 

though tries to extract the information content; the 

increase in damping in limestone does not allow the 

signal to be extracted significantly. But, the relative 

intensity extraction using SWMSPCA in Fig. 6 (d) 

is better than that of the SFE in Fig. 6 (b). So, more 

modified approach can be proposed to analyze the 

vibration signature of the mill for variable materials 

types. 

 

                            (a)                                                (b) 

 

                             (c)                                             (d) 

 Fig. 6. Frequency detection for limestone using (a) SFE for  

particle size of  50 mm (b) SFE for  particle size of 150 microns (c) 
SWMSPCA for  particle size of 50 mm (d) SWMSPCA for  particle size 

of 150 microns 

200 400 600

0.01

0.02

0.03

FFT of SA signal X

200 400 600
0

0.01

0.02

FFT of SA signal X

M
a
g

n
it

u
d

e
 g

( 
m

/s
e
c

2
)

200 400 600
0

0.01

0.02

FFT of SA signal Y

200 400 600

0.005

0.01

0.015

0.02

FFT of SA signal Y

Frequency (Hz)

M
a
g

n
it

u
d

e
 g

( 
m

/s
e
c

2
)

200 400 600

0.005

0.01

0.015

0.02

FFT of SA signal Z

200 400 600

0.005

0.01

0.015

0.02

FFT of SA signal Z

Frequency (Hz)

100 200 300 400 500 600

5

10

15

x 10
-3 FFT of SWMSPCA signal X

100 200 300 400 500 600

2
4
6
8

10

12
14

x 10
-3 FFT of SWMSPCA signal X

Frequency (Hz)

M
a
g

n
it

u
d

e
 g

( 
m

/s
e
c

2
)

100 200 300 400 500 600

5

10

15
x 10

-4 FFT of SWMSPCA signal Y

100 200 300 400 500 600

5

10

15

x 10
-4 FFT of SWMSPCA signal Y

100 200 300 400 500 600

0.005

0.01

0.015

0.02

0.025

FFT of SWMSPCA signal Z

100 200 300 400 500 600

0.005

0.01

0.015

0.02

FFT of SWMSPCA signal Z

Frequency (Hz)

M
a
g

n
it

u
d

e
 g

( 
m

/s
e
c

2
)

damping due 
to fineness of 

ore 

Advances in Circuits, Systems, Signal Processing and Telecommunications

ISBN: 978-1-61804-271-2 134



7.2 Comparative study of vibration for iron 

ore and limestone 
The proposed SWMSPCA can be used to extract the 

information content of the mill during grinding from 

the noisy signal as it has combinational feature of 

SFE, wavelet and PCA. The extraction of frequency 

and intensity is better at initial level of grinding 

(when ore is coarse) for iron ore and limestone. But, 

the feature extraction at the finer particle size for 

iron ore is found to be better than that of limestone. 

As the enhancement is better in case of iron ore than 

that of limestone; it means the damping associated 

with limestone is higher than that of iron ore. 

Further, the algorithms will be verified in future for 

different types of materials and mills under variable 

milling conditions.  

 

8 Conclusion 
The vibration signature of the empty ball mill 

depends on the impacting force and contact time of 

the balls with the mill at each successive impact. 

The random selection of data length for vibration 

signal analysis is not faithful in the extraction of the 

true analogy of the mill. The SFE approach is 

having great potential in extracting the frequency of 

the empty ball mill, and can be used to calculate the 

actual length of the window for proper signal feature 

extraction. It is also observed from the variable 

impact loading and SFE technique that as the 

excitation increases the energy will shifts from 

lower to higher frequency band. This study put 

forward the analysis and extraction of signature that 

generally gets damped during different state of 

grinding. This analysis technique for signal feature 

extraction from the embed noise is carried out using 

SWMSPCA approach for two variable density ores 

i.e., iron ore and limestone. The algorithm is used to 

extract the actual information content as the noise 

gets de-correlated by simultaneous application of 

auto and cross-correlation operation performed by 

wavelet and PCA. The frequency of vibration of the 

mill during grinding of variable density ores are 

validated using SFE and SWMSPCA approach. The 

proposed SWMSPCA method enhances the 

vibration signature as compared to SFE approach. 

SWMSPCA can be used to extract the actual 

grinding information content of the mill as the 

energy can be distributed from the LBW to HBW. 

The fineness and coarse nature of the particles are 

also obtained from the change in the intensity level 

between 100Hz to 630Hz band. As the particles 

become finer, relative energy is distributed among 

each individual particle and the signal gets damped 

as the frequency band started spreading at HBW 

(600-630 Hz). Finally, SFE and SWMSPCA 

algorithms can be studied extensively in the study of 

vibration signature of dynamic system under 

variable impact loading and to check the grinding 

status of the ore and their relative vibration 

signature.   
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