

Hermeneutics Framework: Integration of Design Rationale and
Optimizing Software Modules

Mehmet Aksit

University of Twente
Enschede, the Netherlands

m.aksit@utwente.nl
and

Somayeh Malakuti
Software Technology group

Technical University of Dresden, Germany
somayeh.malakuti@tu-dresden.de

Abstract: - To tackle the evolution challenges of adaptive systems, this paper argues on the necessity of
hermeneutic approaches that help to avoid too early elimination of design alternatives. This visionary paper
proposes the Hermeneutics Framework, which computationally integrates a design rationale management
system, an auto-adaptive control system and a reflective and modular event-driven language runtime together.
The Hermeneutics Framework is, among others, suitable for implementing dynamic adaptive software systems
that undergo intensive evolution cycles.

Key-Words: - hermeneutics, hermeneutics framework, design rationale, software evolution, self-adaptation,
design alternatives, event-based languages

1 Introduction
Despite the abundant availability of design methods
and programming languages, the quality of software
still largely depends on the experiences and skills of
software engineers; creating bug-free software while
satisfying the desired non-functional requirements is
considered as an extremely hard task, if ever
possible.

Since several decades, a large amount of research
has been carried out in many disciplines of software
engineering, in requirement analysis, architecture
design, design rationale management, patterns and
styles, domain specific and general purpose
languages, formalization of software from different
viewpoints, automated testing and debugging etc.
Although in each of these areas much have been
accomplished, due to the lack of holistic
approaches, the obtained benefits of the new
technologies have remained limited.

These enormous challenges are somewhat
understandable. First, the underlying theories show
that the required algorithms for creating
computational solutions to tackle many of software
engineering challenges cannot be practical for
general cases. For example, to satisfy arbitrary
requirements within the following problem areas,
automated program synthesis, allocation and
clustering of computational elements, resolution of
certain logical equations, satisfying multi-criteria

constraints are either undecidable and/or show
exponential time/space characteristics with respect
to the number of parameters [12]. Second, the
application domains of software systems are
growing since software is now applied in many
different disciplines. Third, the ever increasing
speed of processors, parallel architectures, memory
capacities and growing trends in different kinds of
networked solutions, enable software engineers to
realize increasingly powerful and complex software
systems. Last but not least, the fragmentation of the
software engineering topics into many sub-domains
has made it extremely difficult for the researchers to
propose holistic solutions; it is a challenge to gain
an overview of the relevant disciplines and to make
scientific publications which incorporate techniques
from different sub-domains.

Nevertheless, in each sub-domain, there is a
convergence in the proposed solutions; separation of
concerns, proper modelling, and computable
evaluation of models have become important.
Furthermore, for most practical cases, the
complexity of the required algorithms can be
managed by restricting the design spaces with
domain-specific semantic information and
heuristics.

Based on our extensive research in various sub-
domains of software engineering, this paper
proposes a novel framework termed as

Advances in Software Engineering and Systems

ISBN: 978-1-61804-277-4 58

Hermeneutics Framework, for the holistic
integration of design rationale management system,
an auto-adaptive control system and a reflective and
modular event-driven language runtime together.

This paper is organized as follows: Section 2
explains the problem with current software design
processes; Section 3 explains the Hermeneutics
Framework, and Section 4 outlines the discussions.

2 Problem Statement
The principle of separation of concerns is
considered important in achieving the desired
quality attributes in software [3]. Separation of
concerns starts at the semantic level; semantics
determine the elements that constitute the meaning
of programs and specify the relationships among
them. One may not expect software engineers to
separate concerns at the programming language
level any better than their understanding of the
separation of concerns at the semantics level.

Consider for example, the specification of a
program as shown in Fig. 1; the parts (a) and (b)
depict the control-flow and data-flow of a simple
program, respectively. f1, f2 and f3 are the functions
and d1 and d2 and d3 are the data values exchanged
between the functions. The function f1 initializes d1
with x, and the functions f1 and f2 increment this
data value by 1, consequently. Depending on the
interest, in principle every element in Fig. 1 can be
considered as a concern: functions, data values,
relationships among these and the implementation
of the functions.

While implementing the semantics of the
program shown in Fig. 1, software engineers must
map the elements of the semantic model to the
elements of the adopted programming language.
However, there may be many factors that play a role
in this context, such as the availability of the tools,
experience of software engineers, efficiency of the
generated code, etc. Even if the implementation
language is fixed, there are still many mapping
possibilities.

Fig. 1 a) Control-flow and b) data-flow diagrams of

the illustrative example

Consider for example, some possible object-
oriented implementations of our illustrative example
as shown in Fig. 2.

Fig. 2 Various object-oriented implementation
possibilities of the program specified in Fig. 1

Although all these implementations have the

same functional semantics, they have different
quality characteristics. The implementation shown
in (a) is expected to be faster because all the
functions are in-lined. On the other hand, the
concerns are not separated and therefore they are not
separately reusable. In b), the functions are
separated but tangled in one class. The relationship
between the functions is realized through self-calls.
Nevertheless, each of these functions can be
overridden through inheritance. For example, it is
assumed that in (c), the functions in classes B and C
are implemented by invoking the corresponding
function in their super class and incrementing the
results by 1; in (d), each function is defined as a
method in a separate class. This provides a clear
separation as such enables each function be reused
separately.

Due to time performance, memory performance
or portability reasons, sometimes the
implementation of a function may be replaced at
runtime, although its semantics remain the same. In
this case, the Strategy pattern [5] can be used. In (e),
the function f3 is realized in this way.

There are several important issues in expressing
the semantics of programs. First of all, there may
not be even an explicit semantic model, making it
very difficult to identify what the essential concerns
are. Secondly, in practice, mapping the elements of
a semantic model to the adopted language model is
carried out informally, based on the intuition of
software engineers and possibly some informal
heuristics of a design method. Since there are many

Advances in Software Engineering and Systems

ISBN: 978-1-61804-277-4 59

alternatives in a mapping process, it is very hard to
find out the best alternative. Thirdly, binding the
elements of a semantic model to the elements of a
programming language is in general carried out too
early in the design process. Most methods start with
the ’object identification’ process where the
decomposition of a program is determined more or
less right in the beginning of the design process.

As shown by several publications [6], too early
binding does not only hinder considering alternative
mappings in later stages, but also results in
information loss. Fourthly, the deterministic nature
of the design models (such as the UML) and the
computation model of the programming languages,
force software engineers to resolve all the possible
ambiguities before the design model and/or program
is constructed. This is also the reason why software
engineers are forced to make too early decisions
along the software development process. Finally,
due to changes in the context of the application or
requirements, even a perfect mapping from a
semantics model to a language realization may
cease to become imperfect in the follow-up releases
of program.

3 Hermeneutics Framework

To overcome the previously mentioned
problems, we have been researching on a software
engineering development environment called the
Hermeneutics Framework, which facilitates holistic
integration of three important stages in software
design: design process, software
construction/programming process, and the quality
optimization process.

In traditional computer science, software is
interpreted by a processor and/or transformed by a
compiler to a form that is interpretable by a
processor. Inspired from the hermeneutics
philosophy [17], in this paper the term hermeneutics
software is defined as the interpretation of software
within the intentions of its creator(s). The
conceptual architecture of the Hermeneutics
Framework is shown in Fig. 3.

The Hermeneutics Framework system is a fuzzy-
probabilistic reasoning system, which receives
application requirements, design heuristics
expressed as fuzzy-probabilistic rules, contextual
rules, and the model of the target language as input.
Here, the fuzzy-probabilistic heuristics refer to
various application-specific and general-purpose
rule libraries which can be extended, if necessary.

Due to the fuzzy probabilistic nature, the rules can
cope with logical and time related uncertainties.

Fig. 3 Conceptual architecture of the
Hermeneutics Framework

The contextual rules refers to the design rationale

about the application context of the software to be
designed; these rules can be, for example,
assumptions about the users, deployment context
and the related non-functional qualities. The model
of the target language specifies the first-class
abstractions of the language, which can be adopted
to implement the application requirements.

As its output, the design system generates a
fuzzy-probabilistic design model of the software
solution, which is termed as Language Bindings
model. This model is an instance of the target
language model, in which each language element is
augmented with a dedicated specification consisting
of a when and a how part. The when part is
expressed in a fuzzy-logic based notation and
determines the relevancy of the element in the
generated design. The how part specifies the way of
realizing that element. For example, in the rule
depicted in Fig. 4, RELEVANCE defines a fuzzy
set, the IF and the THEN parts define the when and
how parts of the specification, respectively.

Fig. 4 An example fuzzy-logic based mapping

model

To derive the fuzzy quantifiers of the rules, the

Hermeneutics design system gathers information
about the desired quality requirements of the
application and evaluates the relevance values of the
rules accordingly. As such depending on the
requirements, the relevancy of some rules can be
increased or decreased. For example, if performance
is important, all rules that refer to efficient
implementations (such as in-lining) can be
emphasized by increasing the relevance values of
these rules. To simplify the binding process, a

Advances in Software Engineering and Systems

ISBN: 978-1-61804-277-4 60

threshold can be set if necessary; in such a case, if
relevance drops under a certain value, it can be
removed.

4 The Language Model
Depending on the adopted language paradigm, at the
realization level, the concerns are represented and
separated by one or more modules or by the
elements that constitute to the modules of the
programming language. Modules are assumed to be
the first-class abstractions of a given language. For
example, in object-oriented, functional and logical
languages, first class abstractions are objects,
functions or predicates.

While realizing the semantics model, software
engineers should decide which element of the
language model should represent a particular
concern in a semantic model. This implies that the
target element must be expressive enough to
represent the intended semantics of the concern.

Currently, we are investigating event-driven
language models that are expressive and flexible
enough to represent a large category of semantics
concerns.

The Language Optimizer system is an adaptive
feedback control loop, which can be applied at
design time or at runtime. In case of design time
optimization, the system receives the Language
Bindings model and the application requirements
input, undertakes a defuzzification step, and
generates an optimal design that fulfills the
requirements. Since usually multiple quality
attributes, such as performance and reusability are
desired to be fulfilled, the system undertakes a
multi-objective optimization technique to derive the
design.

In case of runtime optimization, the optimizer
system keeps the Language Bindings model and
applies the optimization and defuzzification steps at
runtime as incremental control steps.

5 Discussion
The proposed framework helps to avoid too early
elimination of the design alternatives, because the
design rationale system has a fuzzy-probabilistic
nature and is computationally integrated with the
design/programming models. The Language model
provides the necessary adaptability through event-
driven modular reflection. The language
environment is tailored to couple it with the design
rationale system and the optimizer. The optimizer is

a multi-objective optimization system with the
necessary defuzzification algorithms.

The paper published by [18] proposes a similar
approach as ours. This paper presents a framework
that aims to discover the optimum architecture
solutions within design space. This framework
adopts Object Process Methodology (OPM),
Colored Petri Net (CPN) and feature model. Our
approach is different from the presented approach in
the following ways: First, we propose a fuzzy-
probabilistic design and optimization system which
can cope with uncertainties, as such it eliminates too
early elimination of the alternative designs. Second,
our optimizer supports design time and run-time
optimization techniques, whereas the system
proposed by [18] is restricted by design time
optimization. Finally, our language system is based
on modular reflective language which is capable of
implementing event-driven, object-oriented and
aspect-oriented solutions. Whereas in [18], solution
are limited to component architectures.

The Hermeneutics Framework is, among others,
suitable to implement self-adaptive software
systems [1]. Such software systems must adapt
themselves to the changes in the application
requirements and/or contextual rules; multi-
objective optimization is usually required to achieve
a design that fulfills multiple quality requirements.

During past years, we have been investigating
various underlying techniques and models for the
Hermeneutics Framework. We have developed a
design rationale system [15, 13, 7, 16], event-driven
language system [8, 9, 10, 12], and the optimization
system [14, 4]. We are currently investigating this
framework as a means to holistically integrate these
techniques.

References:
[1] M. Aksit and Z. Choukair. Dynamic Adaptive

and Reconfigurable Systems Overview and
Prospective Vision. In Workshop on Distributed
Auto-adaptive Reconfigurable Systems
(DARES). IEEE Computer Society, 2003.

[2] L. M. J. Bergmans, W. K. Havinga, and M.
Aksit First-Class Compositions–Defining and
Composing Object and Aspect Compositions
with First-Class Operators. TAOSD, 2012.

[3] E. W. Dijkstra. EWD 447: On the role of
scientific thought. Selected Writings on
Computing: A Personal Perspective, pages 60–
66, 1982.

[4] A. J. de Roo, H. Sözer, and M. Aksit.
Composing Domain-Specific Physical Models

Advances in Software Engineering and Systems

ISBN: 978-1-61804-277-4 61

with General-Purpose Software Modules in
Embedded Control Software. Software and
Systems Modeling, online pre-publication,
2013.

[5] Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1994.

[6] F. Marcelloni and M. Aksit. Automating
Software Development Process using Fuzzy
Logic. In E. Damiani, C. L. Jain, and M.
Madravio, editors, Soft Computing in Software
Engineering Series: Studies in Fuzziness and
Soft Computing, volume 159. Springer,2004.

[7] F. Marcelloni and M. Aksit. Fuzzy Logic-based
Object-Oriented Methods to Reduce
Quantization Error and Contextual Bias
Problems in Software Development. Fuzzy Sets
and Systems, 145(1), 2004.

[8] S. Malakuti and M. Aksit. Event Modules:
Modularizing Domain-Specific Crosscutting RV
Concerns. In TAOSD, Lecture Notes in
Computer Science, Volume 8400, 2014, pp 27-
69.

[9] S. Malakuti and Mehmet Aksit. Event-Based
Modularization of Reactive Systems. In
Concurrent Objects and Beyond, Volume 8665,
2014, pp 367-407.

[10] S. Malakuti and Mehmet Aksit. Emergent
Gummy Modules: Modular Representation of
Emergent Behavior. In 13th Generative
Programming: Concepts and Experiences
(GPCE), ACM, 2014 .

[11] S. Malakuti. Specification of the
GummyModule Language. Technical Report
TR-CTIT-12-31, December 2012.

[12] O. Maimon and D. Braha. On the complexity of
the design synthesis problem. Systems, Man
and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 26(1):142–151, 1996.

[13] J. A. R. Noppen, P. M. van den Broek, and M.
Aksit. Software Development with Imperfect
Information. Soft Computing - A Fusion of
Foundations, Methodologies and Applications,
12(1), 2008.

[14] H. Sözer, B. Tekinerdogan, and M. Aksit.
Optimizing Decomposition of Software
Architecture for Local Recovery. Software
Quality Journal, 21(2), 2013.

[15] B. Tekinerdogan and M. Aksit. Synthesis-
Based Software Architecture Design. In M.
Aksit, editor, Software Architectures and
Component Technology. Kluwer Academic
Publishers, 2001.

[16] B. Tekinerdogan and M. Aksit. A Comparative
Analysis of Software Engineering with Mature
Engineering Disciplines Using a Problem-
Solving Perspective. In A. H. Dogru and V.
Bicer, editors, Modern Software Engineering
Concepts and Practices: Advanced Approaches.
Information Science Reference, Hershey, 2011.

[17] R. William L. Dictionary of Philosophy and
Religion. Sussex: Harvester Press. p. 221. ISBN
0855271477, 1980.

[18] Renzhong Wang and Cihan H. Dagli.
Computational system architecture
development using a holistic modeling
approach. Procedia Computer Science, 12(0),
2012.

Advances in Software Engineering and Systems

ISBN: 978-1-61804-277-4 62

