

Training TESSERACT Tool for Amazigh OCR

KHADIJA EL GAJOUI1, FADOUA ATAA ALLAH 2, MOHAMMED OUMSIS3
1Laboratory of research in Informatics and Telecommunications, Faculty of Sciences – Rabat,

Mohammed V University, Rabat, MOROCCO
2CEISIC, The Royal Institute of Amazigh Culture, Rabat, MOROCCO

3Department of Computer Science, School of Technology-Sale, Mohammed V University, Sale,
MOROCCO

khadija.gajoui@gmail.com, fadoua_01@yahoo.fr, oumsis@yahoo.com

Abstract: - The Optical Character Recognition is the operation of converting a text image into an editable
text file. Several tools have been developed as OCR systems. Techniques used in each system vary from
one system to another, therefore the accuracy changes. In this paper, we present an example of available
OCR tools, and we train TESSERACT tool on the Amazigh language transcribed in Latin characters.

Key-Words : OCR; Amazigh; Tesseract; Training.

1. Introduction

Over the last five decades, machine reading has
grown from a dream to reality. Optical character
recognition has become one of the most
successful applications of technology. Many
systems for performing OCR exist for a variety
of applications, although the machines are still
not able to compete with human reading
capabilities.

The Amazigh language is spoken by a
significant part of the population in North
Africa. It became official in Morocco since
2011. Yet few studies on OCR systems have
been interested in that language either written in
Tifinagh alphabet or transcribed in Arabic or
Latin letters.
With the development experienced by research
on optical character recognition, field of
research in pattern recognition, artificial
intelligence and computer vision, various tools

have been designed to achieve a conversion
from text image to editable text with a quite high
recognition rate [1]. The tools dedicated to OCR
are either open source or paid according to their
license.

In the remaining of this paper, we define, in
Section 2, the OCR system architecture and we
present different approaches developed for each
modules of the system. In Section 3, we
introduce the Amazigh language writing. In
Section 4, we present examples of OCR tools. In
Section 5, we list the training steps of Tesseract
tool for the Amazigh language. Then, we show,
in section 6, the evaluation of the system tested
on a set of documents extracted from different
books. Finally, in Section 7, we draw
conclusions and suggest further related research.

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 172

2. Optical character recognition
systems

An OCR system is a system that takes a text
image as input and applies certain treatments
through modules making up the system in order
to output editable file with the same text [2][3].
The architecture of an OCR system varies from
one system to another as needed.
Optical Character Recognition systems are
usually composed of the following phases [4]:

• Preprocessing phase: prepares the sensor
data to the next phase. It is a set of
treatments allowing image quality
increasing.

• Segmentation phase: delimits document
elements (line, word, character ...). By
applying good segmentation techniques, we
can increase the performance of OCR
systems.

• Feature extraction phase: defines features
characterizing the delimited elements of a
document.

• Feature extraction is one of the most
important steps in developing a
classification system. This step describes
the various features characterizing the
delimited elements of a document.

• Classification phase: recognizes and
identifies each element. It is performed
based on the extracted features.

• Post-processing phase: it is an optional
phase. It may be automatic or manual.

Several approaches and techniques have been
developed for each module [1].

Fig 1. Steps of OCR Systems

3. Amazigh writing

The Amazigh language, or Tamazight, is present
today in a dozen of countries across the
Maghreb-Sahel-Sahara: Morocco, Algeria,
Tunisia, Libya, Egypt, Niger, Mali, Burkina Faso
and Mauritania. But Algeria and Morocco are by
far the two countries with the largest Amazigh
population.
Since antiquity, Amazigh people have developed
their own writing system [5]. But when it comes
to write consistent documents, the Amazigh has
used language and / or script of dominant
peoples in contact: Punic, Latin or Arabic.
To transcribe Amazigh language, in Morocco,
three writing systems are used [6]:

• Tifinagh is the authentic alphabet, attested
in Libyan inscriptions since antiquity, and
the official script in Morocco since 2003.

• Arabic alphabet used since the Arab
arrival on the 6th century.

• Latin used since the end of the 19th
century by colonial scholars, and later by
national researchers.

In this work, we focus on Amazigh language
transcribed in Latin.

After exploring a set of Amazigh documents
transcribed in Latin, such as “CHOICE OF
BERBER TALK VERSION OF SOUTHWEST
MOROCCAN” by Arsène Roux [5] “MOTS ET
CHOSES BERBERES” by Emile Laoust [7] and
“THE ARGAN TREE AND ITS TASHELHIYT
BERBER LEXICON” by Harry Stroomer [8],
we found that the Latin characters used in the
transcription are represented in Latin, Extended-
A Latin and Extended Additional Latin encoding
blocks.
The figure and table below show respectively an
example of text written in Amazigh language
transcribed in Latin and an example of characters
used in this transcription. These characters are
composed of Latin alphabet and diacritics that
represent a set of marks accompanying a letter or
grapheme. Diacritics can be placed above
(superscript diacritic), below (subscribed
diacritic) or after (adscript diacritic).

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 173

Fig 2. An example of text excerpt from the book ” THE
 ARGAN TREE AND ITS TASHELHIYT BERBER

LEXICON”

Table 1. An example of characters used in Amazigh transcription
in Latin

4. OCR tools

Automatic document reading techniques have
evolved and matured over the past decade. Thus,
Test stands are commonly performed on the
latest versions of software packages showing the
new opportunities and accurate assessment of
their recognition ability in terms of confidence
levels, accuracy and speed of execution, by paper
type and typography used.

The tools available for OCR systems are either
commercial or open source. In both cases the
tool is based on the OCR’s architecture
composed of 3 phases: preprocessing, features
extraction and classification. Since the
classification is the most determined phase in the
system, several approaches have been developed,
used and tested in various tools.

2. An example of text excerpt from the book ” THE
ARGAN TREE AND ITS TASHELHIYT BERBER

1. An example of characters used in Amazigh transcription

Table 1. An example of characters used in Amazigh
transcription in Latin

Automatic document reading techniques have
evolved and matured over the past decade. Thus,
Test stands are commonly performed on the

software packages showing the
new opportunities and accurate assessment of

ty in terms of confidence
levels, accuracy and speed of execution, by paper

The tools available for OCR systems are either
commercial or open source. In both cases the
tool is based on the OCR’s architecture
composed of 3 phases: preprocessing, features
extraction and classification. Since the

phase in the
system, several approaches have been developed,

4.1. Commercial tools

Commercial systems were developed primarily
as university projects, shareware or free tools and
converted to high quality sophisticated
meeting the high expectations of today’s OCR
market.

Several commercial systems come with a rich set
of image processing utilities capable of
transforming the input images to the most
appropriate format where their ability to work on
different types of image and to adapt to various
spatial resolutions and pixel depths. The most
popular commercial tool is FineReader

This kind of Tools does not allow access to the
system code in order to modify it
performance which is very
research. Hence, the advantage of
source tools.

4.2. Open source tools

"Open source" refers to software in which the
source code is available to the general public,
and this is usually a collaborative effort in which
programmers improve all the source code and
share the changes within the community as well
as other members can contribute.

The ability to study how the program works
helps in adapting it to the
important advantage is that any potential
improvements can be discussed with developers
and added by any interested parties. Th
work done has a chance to be reused and
extended by anybody.
Below we give an example of such popular
source systems which are OCRopu
Tesseract [11].

1. An example of characters used in Amazigh

Commercial systems were developed primarily
as university projects, shareware or free tools and
converted to high quality sophisticated products
meeting the high expectations of today’s OCR

Several commercial systems come with a rich set
of image processing utilities capable of
transforming the input images to the most
appropriate format where their ability to work on

es of image and to adapt to various
spatial resolutions and pixel depths. The most
popular commercial tool is FineReader [9].

This kind of Tools does not allow access to the
it and improve its
 important for

the advantage of using open

"Open source" refers to software in which the
source code is available to the general public,
and this is usually a collaborative effort in which

the source code and
share the changes within the community as well
as other members can contribute.

ability to study how the program works

needs. Another
is that any potential

ed with developers
any interested parties. Thus, the

work done has a chance to be reused and

Below we give an example of such popular open
OCRopus [10] and

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 174

OCROPUS
OCRopus is a free document analysis and optical
character recognition (OCR) system, released
under the Apache License and currently
developed under the lead of Thomas Breuel from
the German Research Centre for Artificial
Intelligence. It is sponsored by Google.

OCRopus is becoming a powerful tool for
optical character recognition, capable of
analyzing a complex layout (containing columns
and boxes…). It does not reconstitute the page
layout after processing, but performs the
recognition in a logical order after analyzing the
layout.

Fig 3. Architecture of the OCRopus system

The overall architecture of OCROPUS consists
of three major components [12]:

• Layout analysis: OCRopus contains two
modules responsible of the layout
analysis: a simple text-image
segmentation system to separate
different regions and RAST-Based
Layout Analysis for the Column finding,
the text line modeling and the reading
order determination.

• Text line recognition: separates text line
of images into a collection of characters.
Then, performs the character recognition
based on a hypothesis graph.
OCRopus is based on a statistical
approach using multi-layer perceptrons
(MLPs) for character recognition.

• Statistical language modeling: integrates
alternative recognition hypotheses with
prior knowledge about language,
vocabulary, grammar, and the document
domain.

TESSERACT
Tesseract is an open source optical character
recognition engine for various operating systems.
It was originally developed at HP between 1984
and 1994 [13] [14]. It was modified and
improved in 1995 with greater accuracy. In late
2005, HP released Tesseract for open source.
Now it is developed and maintained by Google.
It uses a statistical approach based on the
polygonal approximation and the calculation of
distance between extracted features [13].

Tesseract is considered as one of the most
accurate free software OCR engines currently
available. A large variety of other OCR software
now uses it as a base. It is an excellent quality
OCR program, with a large amount of flexibility,
a solid codebase, and a large, engaged
community of interested people around it [15].

Fig 4. Architecture of Tesseract OCR

Tesseract OCR follows a traditional step-by-step
pipeline processing [13]. Those steps are:

• Adaptive Thresholding: It converts images
into binary images.

• Connected component analysis: It is used to
extract character outlines. This method is
very useful because it applies OCR for
images with white text and black
background. Tesseract was probably the
first to provide this kind of processing.

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 175

• At this stage, outlines are gathered together,
purely by nesting, into Blobs.

• Blobs are organized into text lines. Lines
and regions are analyzed for some fixed
pitch or proportional text. Text is divided
into words using definite spaces and fuzzy
spaces.

• Recognition proceeds as two-pass process:
� In the first pass, an attempt is made to

recognize each word in turn. Each word
that is satisfactory pass to an adaptive
classifier as training data. Then, the
adaptive classifier gets a chance to more
accurately recognize text lower down
the page.

� In the second pass, the adaptive
classifier run over the page to recognize
words that were not well enough
recognized in the first pass. A final
phase resolves fuzzy spaces, and checks
alternative hypotheses for the x-height
to locate smallcap text.

5. Training Tesseract on Amazigh
language

5.1. Why Tesseract?

Examples of tools mentioned above and many
others are good quality OCR programs, but
Tesseract has important criteria for which he was
chosen.

The first relevant criterion in Tesseract is the fact
that is free and open source (FOSS), which is an
advantage and a key point in the research
development.

Usually, whenever Tesseract is compared to
another free OCR tool, it is the best whether in
terms of recognition rate or speed [16]. Even,
when it is compared with the Finereader
commercial tool, Tesseract arrives to rub it and
managed to overtake for handwritten writing 17.

The specificity of the Amazigh language
transcribed in Latin characters is the presence of
diacritic below and above a large number of
characters. The experiments on Tesseract for

diacritical languages, such as ancient Greek [14]
and Urdu [18], have shown that it is strong
enough for this type of languages.

Hence, the interest to train this tool on Amazigh
language transcribed on Latin characters. The
process of training passes by tree steps:
generation of corpus, creation of the traineddata
file and the training [13].

5.1.1. Box generation
The first step is to generate corpus composed of
different characters used in the transcription of
Amazigh in Latin. For this purpose, we use
jTessBoxEditor.

jTessBoxEditor is a box editor and trainer
for Tesseract OCR. It provides box data editing
for both Tesseract 2.0x and 3.0x formats, and full
automation of Tesseract training. It can read
images of common image formats, including
multi-page TIFF. The program requires Java
Runtime Environment 7 or later.

This interface (Figure 5) allows adding text file
containing characters to train, define the font
desired and specify noise degree in order to
generate boxes.

Fig 5. Box generator tab from jTessBoxEditor tool

After creating our file containing the characters,
we upload it and we choose the appropriate fonts
to the characters’ type. The fonts used are Arial,
Calibri, Cambria, Charis SLI, Tahoma and
Times new roman in bold or/and italic. In total,
we have 24 different writing formats according
to font.

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 176

We define the maximum level of noise in order
to increase the recognition quality. Then, we
generate the boxes. Each box corresponds to a
specific writing format.

Figure 6 presents a box. It contains the
coordinate of each character in the created
image.

Fig 6. A box example in the box editor tab

5.1.2. Creation of traineddata file
The traineddata file allows the tool training. To
create this file, we need a set of files which are:

• BOX file: the set of box files generated
previously.

• FONT_PROPERTISES file: contain the
used fonts with their properties.
Respectively <italic>, <bold>, <fixed>,
<serif> and <fraktur> are all simple 0 or 1
flags indicating whether the font has the
named property.

• FREQUENT_WORD_LIST file
(.frequent_words_list): file containing
frequently used words in the learning
language. Such as “nna” (wich), “n” (of),
“nns”(his), “id”(it) and “Iγ” (If) in Amazigh
language.

• WORDS_LIST file (.words_list): list of
words, contain at least one word of the
language.

All files must begin with the name of the
language that was set in the box generation
phase.

The traineddata file is created in the Trainer tab
of jTessBoxEditor tool. In our case the files are:

� Amazigh.arial.exp0.box: for the “arial”
font.

� Amazigh.font_properties
� Amazigh.frequent_words_list
� Amazigh.words_list

Fig 7. The Trainer tab from jTessBoxEditor tool

5.1.3. Training Tesseract
To train Tesseract, we need to copy the
traineddata file generated after the execution of
the Trainer, and place it in the tessdata folder in
Tesseract.

6. Experiments & Results

6.1. Experiments

To test the Tesseract on our corpus, we use the
VietOcr GUI. VietOCR, is a GUI frontend for
Tesseract OCR engine, available in Java and
.NET executable.

After using the traineddata file to train the
Tesseract in VietOCR, we use a set of document
extracted from different books to evaluate the
system.

The documents used are 220 pages collected
from 4 different books [8] [19] [20] [21] written
in Amazigh language transcribed into Latin.
Part of this collection has undergone a
pretreatment to increase the image quality while
the other is kept with low quality in order to
view the system behavior in both cases.

The documents are divided into two parts:

• Doc 1: documents in good quality.
• Doc 2: documents in low quality.

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 177

6.2. Results & Analysis

Our goal is to test the system on the corpus
created for the Amazigh language transcribed
into Latin. For this, we varied two properties.
The first is the training font size and the second
is the quality of the document to recognize.
Recognition rates are given in the following
table:

 Font size variation
14 pt 36pt 48pt

Document
quality

variation

Doc 1 25% 92% 85%
Doc 2 18% 75% 70%

Table2. Recognition rates

The results show that the improved recognition
is 92% obtained on documents of good quality
with the font size 36pt.

We note that the percentage of recognition
varies remarkably between the corpus based on
size 14pt, 36pt and 48pt.

For the font size 14pt, we remarked many
classification errors. For example:
• The capital letters are confused with

lowercase.
• One single character is recognized by

several characters: "n" is recognized as "rr",
"m" as "rrr" and "a" as "zt".

• The subscribed dot is generally ignored, "ṭ"
confused with "t", "ḍ" with "d" and "ḥ" with
"h".

• Other errors such as "a" recognized as "z",
and "γ" as "Y".

For the font size 48pt, there are some
classification errors such as:
• The capital letters are confused with

lowercase.
• The subscribed dot is ignored in "ẓ" and "ṛ"
• The diacritic unrecognized, "ḫ" is confused

with "ḥ"

While, experiences for the font size 36pt show
that this size is the best for the training.
Classification errors with this font size have
been reduced to:

• The capital letters are confused with
lowercase.

• The character "ḍ" is confused with "d", "ṭ"
with "t" and "γ" with "Y".

On the other hand, the quality of the document
influences the result of recognition. We can
notice that even with a low quality, the system
reaches an important recognition of 75% but it is
even better with pretreatment. Hence, the
importance of improving the system
pretreatment phase.

7. Conclusion

 In this paper, we are interested in the optical
character recognition of documents, which is an
active area of research today. We have
introduced the OCR system and its components.
Then, we have presented the Amazigh language.
Given the success that the Tesseract tool has
approved, we chose to apply it for the Amazigh
language transcribed into Latin. This language
that has not been explored in depth on the OCR
field.

This study opens several perspectives such as
improving the preprocessing phase by applying
different treatments to increase the percentage of
recognition, and enriching the used corpus. This
enrichment consists on adding a new set of
characters and executing the training for new
fonts.

References:
[1] El Gajoui K., Ataa Allah F. Optical

Character Recognition for Multilingual
Documents: Amazighe-French, The 2nd
World Conference on Complex Systems,
Agadir, Morocco, November 2014

[2] Line Eikvil . OCR, Optical Character
Recognition, Norsk Regnesentral, 1993

[3] Belaïd A. Reconnaissance automatique de
l’écriture et du document, Campus
scientifique, Vandoeuvre-Lès-nancy, 2001

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 178

[4] Charles P., Harish V., Swathi M., Deepthi
CH. A Review on the Various Techniques
used for Optical Character Recognition,
International Journal of Engineering
Research and Applications, 2012

[5] Roux A. Choix de Version Berbères Parler
du Sud-Ouest Marocaine, France, 1951

[6] Skounti A., Lemjidi A., Nami M. Tirra aux
origines de l’écriture au Maroc, Publications
de l’Institut Royal de la Culture Amazigh,
Rabat, 2003

[7] Laoust E. Mots et Choses Berbères, Paris,
1920

[8] Stroomer H. THE ARGAN TREE AND
ITS TASHELHIYT BERBER LEXICON,
Université de Leyde, Etudes et document
berbères, 2008

[9] http://Finereader.abbyy.com
[10] https://code.google.com/p/ocropus
[11] http://code.google.com/p/tesseract-ocr
[12] Breuel T. M. The OCRopus open source

OCR system, Proc. IS&T/SPIE 20th Annu.
Symp., pp.1 -15 2008

[13] Ray S. An Overview of the Tesseract OCR
Engine, International Conference on
Document Analysis and Recognition, 2007

[14] Nick W. Training Tesseract for Ancient
Greek OCR, Google Inc “eutypon28-29”,
October 2012

[15] Patel C., Patel A., Patel D. Optical
Character Recognition by Open Source
OCR Tool Tesseract: A Case Study,
International Journal of Computer
Applications, Volume 55 – No.10, October
2012

[16] Dhiman S., Singh A. Tesseract Vs Gocr A
Comparative Study, International Journal
of Recent Technology and Engineering
(IJRTE) ISSN: 2277-3878, Volume-2,
Issue-4, September 2013

[17] Heliński M., Kmieciak M., Parkoła T.
Report on the comparison of Tesseract and
ABBYY FineReader OCR engines,
Improoving Access to Text.

[18] Qurat ul Ain A., Sarmad H, Aneeta N.,
Umair A, Faheem I. Adapting Tesseract for
Complex Scripts: An Example for Urdu
Nastalique, 11th IAPR Workshop on
Document Analysis Systems (DAS 14) 2014

[19] Justinard C. MANUEL De BERBERE
MAROCAIN (Dialecte Rifain), Librairie
Paul Geuthner, Paris 1926

[20] Lasri Amazigh B. IJAWWAN N TAYRI,
Marrakech, Imp Imal, 2008

[21] Leguil A. CONTE BEREBER GRIVOIS
DU HAUT ATLAS, L’Harmattan, Paris
2000

[22] Muaz A. Urdu Optical Character
Recognition System, Thesis, 2010

[23] Mithe R., Indalkar S., Divekar N. Ravina
Mithe, Supriya Indalkar, Nilam Divekar,
International Journal of Recent Technology
and Engineering (IJRTE) ISSN: 2277-3878,
Volume 2, Issue-1, March 2013

[24] Kinhekar S., Govilkar S. Comparative
Study of Segmentation and Recognition
Methods for Handwritten Devnagari Script,
International Journal of Computer
Applications (0975 – 8887) Volume 105 –
No. 9, November 2014

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 179

