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Abstract: - The Optical Character Recognition is the operation of converting a text image into an editable 
text file. Several tools have been developed as OCR systems. Techniques used in each system vary from 
one system to another, therefore the accuracy changes. In this paper, we present an example of available 
OCR tools, and we train TESSERACT tool on the Amazigh language transcribed in Latin characters. 
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1. Introduction 

Over the last five decades, machine reading has 
grown from a dream to reality. Optical character 
recognition has become one of the most 
successful applications of technology. Many 
systems for performing OCR exist for a variety 
of applications, although the machines are still 
not able to compete with human reading 
capabilities.  

The Amazigh language is spoken by a 
significant part of the population in North 
Africa. It became official in Morocco since 
2011. Yet few studies on OCR systems have 
been interested in that language either written in 
Tifinagh alphabet or transcribed in Arabic or 
Latin letters. 
With the development experienced by research 
on optical character recognition, field of 
research in pattern recognition, artificial 
intelligence and computer vision, various tools 

have been designed to achieve a conversion 
from text image to editable text with a quite high 
recognition rate [1]. The tools dedicated to OCR 
are either open source or paid according to their 
license. 
 
In the remaining of this paper, we define, in 
Section 2, the OCR system architecture and we 
present different approaches developed for each 
modules of the system. In Section 3, we 
introduce the Amazigh language writing. In 
Section 4, we present examples of OCR tools. In 
Section 5, we list the training steps of Tesseract 
tool for the Amazigh language. Then, we show, 
in section 6, the evaluation of the system tested 
on a set of documents extracted from different 
books. Finally, in Section 7, we draw 
conclusions and suggest further related research. 
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2. Optical character recognition 
systems 

An OCR system is a system that takes a text 
image as input and applies certain treatments 
through modules making up the system in order 
to output editable file with the same text [2][3]. 
The architecture of an OCR system varies from 
one system to another as needed.  
Optical Character Recognition systems are 
usually composed of the following phases [4]: 

• Preprocessing phase: prepares the sensor 
data to the next phase. It is a set of 
treatments allowing image quality 
increasing. 

• Segmentation phase: delimits document 
elements (line, word, character ...). By 
applying good segmentation techniques, we 
can increase the performance of OCR 
systems. 

• Feature extraction phase: defines features 
characterizing the delimited elements of a 
document.  

• Feature extraction is one of the most 
important steps in developing a 
classification system. This step describes 
the various features characterizing the 
delimited elements of a document.  

• Classification phase: recognizes and 
identifies each element. It is performed 
based on the extracted features. 

• Post-processing phase: it is an optional 
phase. It may be automatic or manual. 

 
Several approaches and techniques have been 
developed for each module [1]. 
 

 
 

Fig 1.  Steps of OCR Systems 
 

3. Amazigh writing 

The Amazigh language, or Tamazight, is present 
today in a dozen of countries across the 
Maghreb-Sahel-Sahara: Morocco, Algeria, 
Tunisia, Libya, Egypt, Niger, Mali, Burkina Faso 
and Mauritania. But Algeria and Morocco are by 
far the two countries with the largest Amazigh 
population.  
Since antiquity, Amazigh people have developed 
their own writing system [5]. But when it comes 
to write consistent documents, the Amazigh has 
used language and / or script of dominant 
peoples in contact: Punic, Latin or Arabic. 
To transcribe Amazigh language, in Morocco, 
three writing systems are used [6]: 

• Tifinagh is the authentic alphabet, attested 
in Libyan inscriptions since antiquity, and 
the official script in Morocco since 2003. 

• Arabic alphabet used since the Arab 
arrival on the 6th century. 

• Latin used since the end of the 19th 
century by colonial scholars, and later by 
national researchers. 

In this work, we focus on Amazigh language 
transcribed in Latin. 
 
After exploring a set of Amazigh documents 
transcribed in Latin, such as “CHOICE OF 
BERBER TALK VERSION OF SOUTHWEST 
MOROCCAN” by Arsène Roux [5] “MOTS ET 
CHOSES BERBERES” by Emile Laoust [7] and 
“THE ARGAN TREE AND ITS TASHELHIYT 
BERBER LEXICON” by Harry Stroomer [8], 
we found that the Latin characters used in the 
transcription are represented in Latin, Extended-
A Latin and Extended Additional Latin encoding 
blocks. 
The figure and table below show respectively an 
example of text written in Amazigh language 
transcribed in Latin and an example of characters 
used in this transcription. These characters are 
composed of Latin alphabet and diacritics that 
represent a set of marks accompanying a letter or 
grapheme. Diacritics can be placed above 
(superscript diacritic), below (subscribed 
diacritic) or after (adscript diacritic).  
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Fig 2. An example of text excerpt from the book ” THE
   ARGAN TREE AND ITS TASHELHIYT BERBER 

LEXICON” 
 

Table 1.  An example of characters used in Amazigh transcription 
in Latin 

 

4. OCR tools 

Automatic document reading techniques have 
evolved and matured over the past decade. Thus, 
Test stands are commonly performed on the 
latest versions of software packages showing the 
new opportunities and accurate assessment of 
their recognition ability in terms of confidence 
levels, accuracy and speed of execution, by paper 
type and typography used.  
 
The tools available for OCR systems are either 
commercial or open source. In both cases the 
tool is based on the OCR’s architecture 
composed of 3 phases: preprocessing, features 
extraction and classification. Since the 
classification is the most determined phase in the 
system, several approaches have been developed, 
used and tested in various tools.  
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ARGAN TREE AND ITS TASHELHIYT BERBER 

 

1.  An example of characters used in Amazigh transcription 

Table 1.  An example of characters used in Amazigh 
transcription in Latin 
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The tools available for OCR systems are either 
commercial or open source. In both cases the 
tool is based on the OCR’s architecture 
composed of 3 phases: preprocessing, features 
extraction and classification. Since the 

phase in the 
system, several approaches have been developed, 

4.1. Commercial tools 

Commercial systems were developed primarily 
as university projects, shareware or free tools and 
converted to high quality sophisticated 
meeting the high expectations of today’s OCR 
market. 
 
Several commercial systems come with a rich set 
of image processing utilities capable of 
transforming the input images to the most 
appropriate format where their ability to work on 
different types of image and to adapt to various 
spatial resolutions and pixel depths. The most 
popular commercial tool is FineReader
 
This kind of Tools does not allow access to the 
system code in order to modify it 
performance which is very 
research. Hence, the advantage of
source tools. 
 

4.2. Open source tools 

"Open source" refers to software in which the 
source code is available to the general public, 
and this is usually a collaborative effort in which 
programmers improve all the source code and 
share the changes within the community as well 
as other members can contribute.

The ability to study how the program works
helps in adapting it to the 
important advantage is that any potential 
improvements can be discussed with developers
and added by any interested parties. Th
work done has a chance to be reused and 
extended by anybody. 
Below we give an example of such popular 
source systems which are OCRopu
Tesseract [11]. 
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Below we give an example of such popular open 
OCRopus [10] and 
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OCROPUS 
OCRopus is a free document analysis and optical 
character recognition (OCR) system, released 
under the Apache License and currently 
developed under the lead of Thomas Breuel from 
the German Research Centre for Artificial 
Intelligence. It is sponsored by Google. 

OCRopus is becoming a powerful tool for 
optical character recognition, capable of 
analyzing a complex layout (containing columns 
and boxes…). It does not reconstitute the page 
layout after processing, but performs the 
recognition in a logical order after analyzing the 
layout.  

 
 

Fig 3. Architecture of the OCRopus system 
 
 

The overall architecture of OCROPUS consists 
of three major components [12]: 

• Layout analysis: OCRopus contains two 
modules responsible of the layout 
analysis: a simple text-image 
segmentation system to separate 
different regions and RAST-Based 
Layout Analysis for the Column finding, 
the text line modeling and the reading 
order determination. 

• Text line recognition: separates text line 
of images into a collection of characters. 
Then, performs the character recognition 
based on a hypothesis graph. 
OCRopus is based on a statistical 
approach using multi-layer perceptrons 
(MLPs) for character recognition. 

• Statistical language modeling: integrates 
alternative recognition hypotheses with 
prior knowledge about language, 
vocabulary, grammar, and the document 
domain. 

TESSERACT 
Tesseract is an open source optical character 
recognition engine for various operating systems. 
It was originally developed at HP between 1984 
and 1994 [13] [14]. It was modified and 
improved in 1995 with greater accuracy. In late 
2005, HP released Tesseract for open source. 
Now it is developed and maintained by Google. 
It uses a statistical approach based on the 
polygonal approximation and the calculation of 
distance between extracted features [13]. 

Tesseract is considered as one of the most 
accurate free software OCR engines currently 
available. A large variety of other OCR software 
now uses it as a base. It is an excellent quality 
OCR program, with a large amount of flexibility, 
a solid codebase, and a large, engaged 
community of interested people around it [15]. 

 

Fig 4. Architecture of Tesseract OCR 
 
 

Tesseract OCR follows a traditional step-by-step 
pipeline processing [13]. Those steps are: 

• Adaptive Thresholding: It converts images 
into binary images.  

• Connected component analysis: It is used to 
extract character outlines. This method is 
very useful because it applies OCR for 
images with white text and black 
background. Tesseract was probably the 
first to provide this kind of processing.  
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• At this stage, outlines are gathered together, 
purely by nesting, into Blobs.  

• Blobs are organized into text lines.  Lines 
and regions are analyzed for some fixed 
pitch or proportional text. Text is divided 
into words using definite spaces and fuzzy 
spaces. 

• Recognition proceeds as two-pass process: 
� In the first pass, an attempt is made to 

recognize each word in turn. Each word 
that is satisfactory pass to an adaptive 
classifier as training data. Then, the 
adaptive classifier gets a chance to more 
accurately recognize text lower down 
the page.  

� In the second pass, the adaptive 
classifier run over the page to recognize 
words that were not well enough 
recognized in the first pass. A final 
phase resolves fuzzy spaces, and checks 
alternative hypotheses for the x-height 
to locate smallcap text. 

 

5. Training Tesseract on Amazigh 
language 

5.1. Why Tesseract? 

Examples of tools mentioned above and many 
others are good quality OCR programs, but 
Tesseract has important criteria for which he was 
chosen. 
 
The first relevant criterion in Tesseract is the fact 
that is free and open source (FOSS), which is an 
advantage and a key point in the research 
development. 
 
Usually, whenever Tesseract is compared to 
another free OCR tool, it is the best whether in 
terms of recognition rate or speed [16]. Even, 
when it is compared with the Finereader 
commercial tool, Tesseract arrives to rub it and 
managed to overtake for handwritten writing 17.  
 
The specificity of the Amazigh language 
transcribed in Latin characters is the presence of 
diacritic below and above a large number of 
characters. The experiments on Tesseract for 

diacritical languages, such as ancient Greek [14] 
and Urdu [18], have shown that it is strong 
enough for this type of languages. 
 
Hence, the interest to train this tool on Amazigh 
language transcribed on Latin characters. The 
process of training passes by tree steps: 
generation of corpus, creation of the traineddata 
file and the training [13]. 

5.1.1. Box generation 
The first step is to generate corpus composed of 
different characters used in the transcription of 
Amazigh in Latin. For this purpose, we use 
jTessBoxEditor. 
 
jTessBoxEditor is a box editor and trainer 
for Tesseract OCR. It provides box data editing 
for both Tesseract 2.0x and 3.0x formats, and full 
automation of Tesseract training. It can read 
images of common image formats, including 
multi-page TIFF. The program requires Java 
Runtime Environment 7 or later. 
 
This interface (Figure 5) allows adding text file 
containing characters to train, define the font 
desired and specify noise degree in order to 
generate boxes. 
 

 
 

Fig 5. Box generator tab from jTessBoxEditor tool      
 
After creating our file containing the characters, 
we upload it and we choose the appropriate fonts 
to the characters’ type. The fonts used are Arial, 
Calibri, Cambria, Charis SLI, Tahoma and 
Times new roman in bold or/and italic. In total, 
we have 24 different writing formats according 
to font. 
 

Recent Researches in Applied Computer Science

ISBN: 978-1-61804-307-8 176



We define the maximum level of noise in order 
to increase the recognition quality. Then, we 
generate the boxes. Each box corresponds to a 
specific writing format. 
 
Figure 6 presents a box. It contains the 
coordinate of each character in the created 
image. 

 

 
 

Fig 6. A box example in the box editor tab 

5.1.2. Creation of traineddata file 
The traineddata file allows the tool training. To 
create this file, we need a set of files which are: 

• BOX file: the set of box files generated 
previously. 

• FONT_PROPERTISES file: contain the 
used fonts with their properties. 
Respectively <italic>, <bold>, <fixed>, 
<serif> and <fraktur> are all simple 0 or 1 
flags indicating whether the font has the 
named property. 

• FREQUENT_WORD_LIST file 
(.frequent_words_list): file containing 
frequently used words in the learning 
language. Such as “nna” (wich), “n” (of), 
“nns”(his), “id”(it) and “Iγ” (If) in Amazigh 
language. 

• WORDS_LIST file (.words_list): list of 
words, contain at least one word of the 
language.  

 
All files must begin with the name of the 
language that was set in the box generation 
phase. 
 
The traineddata file is created in the Trainer tab 
of jTessBoxEditor tool. In our case the files are: 

� Amazigh.arial.exp0.box: for the “arial” 
font. 

� Amazigh.font_properties 
� Amazigh.frequent_words_list 
� Amazigh.words_list 

 

 
 

Fig 7. The Trainer tab from jTessBoxEditor tool 

5.1.3. Training Tesseract 
To train Tesseract, we need to copy the 
traineddata file generated after the execution of 
the Trainer, and place it in the tessdata folder in 
Tesseract. 
 

6. Experiments & Results 

6.1. Experiments 

To test the Tesseract on our corpus, we use the 
VietOcr GUI. VietOCR, is a GUI frontend for 
Tesseract OCR engine, available in Java and 
.NET executable.  
 
After using the traineddata file to train the 
Tesseract in VietOCR, we use a set of document 
extracted from different books to evaluate the 
system. 
 
The documents used are 220 pages collected 
from 4 different books [8] [19] [20] [21] written 
in Amazigh language transcribed into Latin. 
Part of this collection has undergone a 
pretreatment to increase the image quality while 
the other is kept with low quality in order to 
view the system behavior in both cases. 
 
The documents are divided into two parts: 

• Doc 1: documents in good quality. 
• Doc 2: documents in low quality. 
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6.2. Results & Analysis 

Our goal is to test the system on the corpus 
created for the Amazigh language transcribed 
into Latin. For this, we varied two properties. 
The first is the training font size and the second 
is the quality of the document to recognize. 
Recognition rates are given in the following 
table: 
 
            

 Font size variation 
14 pt 36pt 48pt 

Document 
quality 

variation 

Doc 1 25% 92% 85% 
Doc 2 18% 75% 70% 

Table2.  Recognition rates 
 

The results show that the improved recognition 
is 92% obtained on documents of good quality 
with the font size 36pt. 
 
We note that the percentage of recognition 
varies remarkably between the corpus based on 
size 14pt, 36pt and 48pt.  
 
For the font size 14pt, we remarked many 
classification errors. For example:  
• The capital letters are confused with 

lowercase. 
• One single character is recognized by 

several characters: "n" is recognized as "rr", 
"m" as "rrr" and "a" as "zt".  

• The subscribed dot is generally ignored, "ṭ" 
confused with "t", "ḍ" with "d" and "ḥ" with 
"h". 

• Other errors such as "a" recognized as "z", 
and "γ" as "Y". 

For the font size 48pt, there are some 
classification errors such as: 
• The capital letters are confused with 

lowercase.  
• The subscribed dot is ignored in "ẓ" and "ṛ" 
• The diacritic unrecognized, "ḫ" is confused 

with "ḥ"  

While, experiences for the font size 36pt show 
that this size is the best for the training. 
Classification errors with this font size have 
been reduced to: 

• The capital letters are confused with 
lowercase. 

• The character "ḍ" is confused with "d", "ṭ" 
with "t" and "γ" with "Y". 

On the other hand, the quality of the document 
influences the result of recognition. We can 
notice that even with a low quality, the system 
reaches an important recognition of 75% but it is 
even better with pretreatment. Hence, the 
importance of improving the system 
pretreatment phase. 
 
 

7. Conclusion 

 In this paper, we are interested in the optical 
character recognition of documents, which is an 
active area of research today. We have 
introduced the OCR system and its components. 
Then, we have presented the Amazigh language. 
Given the success that the Tesseract tool has 
approved, we chose to apply it for the Amazigh 
language transcribed into Latin. This language 
that has not been explored in depth on the OCR 
field. 
 
This study opens several perspectives such as 
improving the preprocessing phase by applying 
different treatments to increase the percentage of 
recognition, and enriching the used corpus. This 
enrichment consists on adding a new set of 
characters and executing the training for new 
fonts.   
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