
Computer Software Technologies for Intelligent Robot

VLADIMIR PAVLOVSKY
KIAM RAS

Department of Mechatronics
Miusskaya sq., 4 Moscow

RUSSIA
vlpavl@keldysh.ru

ANTON ALISEYCHIK
KIAM RAS

Department of Mechatronics
Miusskaya sq., 4 Moscow

RUSSIA
aliseychik@keldysh.ru

IGOR ORLOV
KIAM RAS

Department of Mechatronics
Miusskaya sq., 4 Moscow

RUSSIA
i.orlov@keldysh.ru

Abstract: Nowadays new computer techniques for intelligent robots are the important point of investigations.
Technologies for the intelligent manipulators capable to make decisions automatically is convenient to develop
using laboratory tasks, like games with the objects manipulation. As examples of such tasks a) the game “Gomoku”
and b) the game “Go” are considered. A set of problem-oriented technologies were investigated from the point of
view of the manipulator ManGo robot, namely its dynamic model and control system in Matlab Simulink. The
logical move choice program in the game “Gomoku” is designed in Prolog and C languages. Vision system as
supporting technology will be demonstrated as important part of the presentation. It is important to note, different
algorithms can be implemented as manipulator software and hardware technologies. Besides classical algorithms
utilization, considerable attention has been given to the application of neural network paradigms for manipulators
control. Addressing the problem the neural software for ManGo robot will be presented as well. The created robots
passed experimental working off which allowed to draw conclusions about the created software and hardware
effectiveness in the implementation of various manipulators control algorithms.

Key–Words: Robotics, computer vision, neural networks

1 Introduction
Nowadays one of the most important tasks in robotics
is creating intellectual robots. Among them creation
of intellectual manipulator robots, able to automatically
make decisions during their work, is being widely ex-
plored. It is convenient to research such systems on lab
tasks such as different games, requiring to manipulate
different objects. In this work, hardware and software
means of intellectual manipulator robots realization are
considered, besides, two tasks and systems solving them
are described. The first one is ManGo robot, developed
for solving some intellectual gaming tasks for robots,
such as logical table games. Initially ManGo was cre-
ated to play “Go” game with a human, but as the first
and easier application “Tic-Tac-Toe” game on a big, po-
tentially unlimited field, is being considered. On this
game, controlling the manipulator is being developed.

2 Logic Games Playing Robot
In an ancient Chinese game with a Japanese name
“Gomoku” also known as Tic-Tac-Toe or “five-in-a-

row”, two player place symbols on an infinite desk, or a
desk of m×n size by turns , until any of them places five
of his symbols in a row vertically, horizontally, diago-
nally, or until the desk is fully covered by symbols, if it
is finite. In this case, neither of the players win. In case
of infinite desk the number of turns is limited. Each
player uses symbols of only one type: either “cross”,
or “zero”. Each field of the desk can contain only one
symbol. Instead of “crosses” and “zeroes” in the origi-
nal version stones of different colors (white and black)
are used. In “Gomoku” game players place symbols
on line intersections instead of fields. The desk size is
usually limited by the size of cross-section paper sheet.
For “Gomoku” game 15× 15 or 19× 19 (like in “Go”
game) desk size is used. In the robot turn realizing pro-
gram 20×20 desk is used. It is easy to prove that if the
first player plays well enough, he can play draw at least.
It is harder to prove that he can win but it is still obvi-
ous. The first player has an advantage, for this reason
he is given a handicap, restricting some moves. Partic-
ularly it happens in “Renju” — one of the analogues
of “Gomoku”. It is known that professional “Renju”
players, who move first gain an advantage at 10th and

Advances in Computer Science

ISBN: 978-1-61804-344-3 152

win the game “Gomoku” at 15th move. [8] Presents a
program Victoria that always wins the game on desk
15×15 if it moves first.

In computer applications, realizing the game “Five
in a Row” the move of computer player is often made
with the help of estimation function. For each empty
field with indexes (i, j) its estimation (a real number) is
calculated, considering both profit of the player, and the
profit of an opponent that he could gain after making
this move on field.

As the estimation function, for instance, the func-
tion like ev(i, j) = evx(i, j) + aev0(i, j) Is used, where
ev(i, j) — is an estimation of the players move in this
field, and ev0(i, j) — is an estimation of his opponents
move. Coefficient a is inverted ratio to aggressive-
ness of the player. With its high value the strategy of
the player has a defensive character and with its low
value — offensive. The program for the robot is writ-
ten in Prolog language. The steps of a computer player
in games, written in Prolog are often realized with pro-
duction rules. In the system both rules and estimating
function are used.

At the input of the program the array, consisting
of numbers 0,1,2, that stand for empty and occupied
with stones of dark and light colors respectively. The
program returns the number of a row and the number of
a column of a field that robot moves to.

The application in Visual Prolog 7.4, one of the
most developed realizations of Prolog language was cre-
ated for debugging the strategy of the computer player.
A fast complier enables to ignore the details of algo-
rithm and to formulate rules by declarative way, so it
increases the speed of coding the program. The user
can choose the player that makes the first move. If it is
a computer, the window is opened with a move already
made. The first step is made randomly on a field that is
less than 3 rows away from the center of the board. The
users move is made by a click of a mouse on the field.

The players move rules are represented in the fol-
lowing way:

• to put own sign fifth in a row;

• not to allow the opponent to put his sign fifth in a
row (to perform “block”);

• not to allow the opponent to put his fourth sign in
a row;

• to put own sign fourth in a row;

• to create a “fork”;

• not to allow the enemy to create a “fork”;

• to put a sign in the field that is located near the
most of opponents three-sign rows and at least one
empty field;

• to put a sign in the field, the estimation of which
has the highest value.

Among the fields with the maximum value of the es-
timation function the fields that border with the max-
imum number of cells, occupied by the opponent are
collected. The field among the collected ones is chosen
at random. For the move search the estimation func-
tion, described above is used. As the row estimation
the function ev(s,k) = 4k+1 is taken, where s is a sign,
k — number of signs s in a row, parameter a is assumed
to be equal to 1. For position storage, the program uses
lists; in order to lower the searching, only occupied slots
are stored. List in Prolog language is a persistent data
type, it allows backtrack. Unlike it in modifiable data
types, in arrays of C language for instance, the changes
are made in computer memory, so backtrack is unable
for them. The usage of lists allows the simplest situation
modelling, for instance, checking if the critical situation
exists after placing on one field own and the opponents
sign.

3 Manipulator and Control System
Mango manipulator (Fig. 1) has a SCARA-like kine-
matic, that mostly suits object manipulation tasks on a
plane, including desk games [6]. The first steps in cin-
ematic analysis were carried out during the creation of
robots design in CAR soft complex, the pneumatics of
Italian company “Pneumax” was used as the executing
motor. Optimal lengths of parts and attachment points
of pneumatics were calculated to cover workspace of
500 x 500 cm size, which is enough to work with al-
most every knowledge-based logical desk game.

Due to simple two-section cinematic scheme the so-
lution of inverse cinematic problem for robot control is
trivial. Therefore, the most reliable in this case trajec-
tory cinematic control with inverse link in the angles of
joint rotation. The usage of pneumatics involves both
ad-vantages (cheapness, higher speeds of motion, great
efforts, etc.) and drawbacks, the main of which is the
difficulty of accurate control. In order to solve this prob-
lem the riveted PWM-control of the cylinders was real-
ized. The control system of the manipulator ManGo for

Advances in Computer Science

ISBN: 978-1-61804-344-3 153

Figure 1: ManGo robot

the “Gomoky” game was realized on the pair microcon-
troller Stm32F4 – PC with Windows OS, and the control
system – on the pair microcontroller Stm32F4 – smart-
phone with Android OS.

3.1 Machine vision
Desk recognition on a picture can be divided into sev-
eral steps:

• Picture preparation (converting into binary matrix)

• Searching for intersections and edges of the board

• Searching for neighbors and beginning of the grid
building

• Completing the grid

The main steps of desk recognition algorithm on a
certain example is described further.

3.1.1 Pattern Recognition
Since lines on the board are thin and therefore poorly
discernible (especially because of desk bent relatively
to camera, natural non monotonous wood texture of the
board surface and occasional glints), high quality of the

picture is required. Using of camera with resolution of
no less than 3 megapixels is recommended.

Figure 2: The original picture (on the left), picture after
adaptive threshold (on the right)

To get a binary picture with sharp outlines, with-
out noise, Adaptive Threshold [7]–[10] is applied to the
original picture(Fig. 2). Operations of dilatation and
erosion follow next to smooth and clean the image.

3.1.2 Searching for Line Intersections
Now it is time to get to the next step, which is pat-
terns usage. Before anything else, the edges of the desk
must be found. It is very important to find the bottom
edge (the top is hard to find due to desk bent, it is of-
ten the same color as the surroundings), and at least
one of the side edges, to define the position of the desk
on the picture. Patterns describe how line intersections
should look like in binary picture. All that is need to be
done is to apply these patterns during hit-or-miss trans-
form [16]. However, because of image flaws (noise and
discontinuous lines), some edge points are missed and
some detected points don’t belong to the edge. Next
step is to detect an line. OpenCV library offers methods
of fitting line in array of points, but their accuracy is not
sufficient. The only option is to run through all near-
est to each other pairs of points, chose those with more
probable angle (since possible range is known for each
edge). Associated with pair of points line is added to
vector with one “vote” or, if a line with similar param-
eters has already been added, count of votes of latter
increments. Line with biggest count is the one.

Intersections inside the grid are found in the same
way, through patterns.

3.1.3 Grid Building
FLANN (Fast Library for Approximate Nearest Neigh-
bors) [11] is a library, that implement nearest neigh-
bor search method (interface for the library is con-
tained in OpenCV). It uses point array in matrix form

Advances in Computer Science

ISBN: 978-1-61804-344-3 154

as input, and the result is k-dimensional tree, data
structure, dividing the space for sorting points in k-
dimensional space. In this case, the space is obviously
two-dimensional. Each point of the desk has no more
than four direct neighbors. In process of searching of
four nearest for each point, restrictions are placed ac-
cording to situation:

• Little distance between points, the distances be-
tween the point and each one of the neighbors
shouldn’t differ too much from each other;

• Right and left neighbors must lie on the same hor-
izontal line;

• Top and bottom neighbors must lie on the same
line, which is bent from the main vertical to no
more than 30 degrees.

Point becomes a part of the grid if it has no less than
two neighbors.

During this part of the algorithm, vector of 6-slot
arrays is created, each array associated with the single
point. The first four slots contain neighbor indexes (or
−1, if there is no neighbor in a certain direction), and
the other two contain horizontal and vertical line num-
bers, to which the point belongs. Fig. 3 shows how the
points and their relations were found. The points on the
top werent found either because the distances between
them were too small or detected points in the area were
to scarce to find any relations. Next picture shows the
found lines as well. Next step is completing the grid

Figure 3: Lines and relations found

to a bounding rectangle. It can be done by calculating
intersections of found lines, if there is any. Thats why
further actions take place:

1. If the point doesnt have one neighbor, it is calcu-
lated due to the coordinates of the point and the opposite
neighbor. Afterwards, the new point is added to a vec-
tor of new possible points, and the counter of current is
assigned 1. 2. Before adding the coordinate to the vec-
tor, it’s important to check whether there is a point with

close coordinates. If so, the counter increments, and the
coordinates are changed to the average between the old
and the new one, if not, a new point is added. 3. In the
end, the point is added to the grid, if the counter value
is at least two.

The process continues until there is no more points
to add. As a result is supposed to be a matrix N (width)
x M (height) size.

3.1.4 Finishing the Grid

As can be seen on Fig. 4, points lies on intersections of
found lines and edges.

Figure 4: Intersection points are found

Number of missing points between the edges and
rectangle can be calculated due to the grid that makes it
possible to find average distance between points on each
horizontal line. This way grid is expanded to zones L,
R and B (Fig. 4, left).

To find the rest of the points the following actions
are performed: 1. Diagonals, and their intersections
with vertical lines are found, as shown on Fig. 5, left.
2. Now we can find the rest of horizontal lines. 3. Find
the rest of the points as intersections of vertical and hor-
izontal lines. Point search completed (Fig. 5, right).

Figure 5: Looking for diagonals, horizontal lines, inter-
sections of diagonals and horizontal lines, points found
on the desk (respectively)

Advances in Computer Science

ISBN: 978-1-61804-344-3 155

3.2 Black and White Stones Recognition
The idea of the algorithm is based upon the fact that il-
lumination doesnt change during the game. The initial
picture of empty desk is saved. The new picture (with
stones on the desk) and the old one (without) are con-
verted to HSV (Hue, Saturation, Value) format. Once
the matrix of desk points on the picture is already found,
the average value of brightness (Value), and intensity
(Saturation) in the point surroundings are compared be-
tween two images. The less the Saturation is, the more
“grayer” is the color. It means that black and white
(stone colors) will have the lowest Saturation value. The
part of the image, where the white stones are, will have
the higher Value, and the black stones will have lower
Value. To remove the flecks off the stones, the picture
is corrected by Gaussian blur.

3.3 User Interface
An application for Android is a user interface, where it
is possible to set rules of the game and start it. Once
play has began, it automatically tries to connect to robot
via Bluetooth, after succeeding, if you choose to start a
game, it enables you to “calibrate” the desk, recognize
it with internal camera of the device. The internal tools
of the application include GNU Go engine [12], desk
and stones recognition algorithms, and Bluetooth con-
nection between ManGo robot and the device. GNU Go
is a free Go playing program. It doesnt have a graphi-
cal interface, but it supports two protocols to “commu-
nicate” To other programs: Go Modem Protocol and
Go Text Protocol (GTP). In this application GTP is
used. The program is realized on C++ programming
language. Image processing is realized on C++ lan-
guage with usage of OpenCV (Open Computer Vision)
library. The application interface, Bluetooth connection
and camera treatment is realized on Java, with usage of
Android features for developers (Android SDK), which
enables us to control Android API.

4 Neural Network based Control
All functions of manipulator control can be realized by
means of neural network models. But before replacing
control elements it is worth considering advantages and
shortcomings of neural network models in contrast with
traditional approaches.

The main convenience of neural network models
is the capability of self-organization. Primary idea is

just to remember some basic interrelations between in-
put and output vector signals Xi → Yi and make some
kind of interpolations of Y for X 6= Xi ∈ {X} Neu-
ral network shouldnt remember all input signals, but the
set of remembered {Xi} ought to represent correspon-
dence {X} → {Y}. The conventional structure of for-
mal neuron ” j”: X , Y , M j and L j are vectors. X and
Y are representing activity of input and output neurons
and M j and L j are weights of input and output connec-
tions. The formal neuron ” j” activity a j is calculated
like some monotone increasing function of X ∗M j dot
product. Model of formal neuron can be considered as
a memory cell. Weights of connections are responsible
for data storage. Input weights M j are the ”address”
of the cell. When X is close enough to M j to make
a j = f (X ∗M j) > 0, neuron ” j” plays back the data,
stored by weights L j. The contribution of neuron ” j” to
output layer activity Y is proportional to a j. As a rule
several neurons a j can add up to output neurons activity
vector Y . All formal neurons and connections are con-
similar. But functions of layers X , A and Y are different.
Layer X represents input signal, A is mapping the input
signal space of states and Y should represent Y in cor-
respondence {X} → {Y}. Also the rules for M and L
connections weights learning must be dissimilar. Inter-
connected layers pairs XA and AY only look alike. Pair
XA has to remember the states of input layer X , while
pair AY must memorize desirable states of output layer
Y . Neuron ” j” from layer A should remember the mean
activity X while a j > 0 and neuron ”k” from layer Y —
vary weights Lk to get suitable activity yk for different
Xi (and corresponding Ai). Learning rules for vectors
M j and Lk should be like

∆M j = η1(X−M j)a j∆t (1)

∆Lk = η2(ys
k− yk)A∆t (2)

where ys
k — specified activity of yk and η1, η2 are coef-

ficients, and limt→∞ η = 0, limt→∞ ∑η = ∞.
Both learning rules are designed to minimize the

distinction in parentheses, but the directions of vectors
M j and Lk changes (with reference to vectors Xi and Ai)
are quite different. The task of converting {X} → {Y}
allows to choose arbitrary activity level for hidden layer
A. Both learning rules (1) and (2) are changing weights
only for connections with active neurons of layer A. The
more layer A neurons are active simultaneously, the less
resolution of the input signal space of states we can get
(in the sense of difference between vectors M j). So it is
better to limit the number of active layer A neurons by
few units.

Advances in Computer Science

ISBN: 978-1-61804-344-3 156

The question about remembering output signals Y
is not so obvious. If there are N neurons in layer A and
the activity limit is 1 neuron, there are N different states
of layer A activity. If limit is 2 there are N(N−1)/2 dif-
ferent states of activity, if 3 there are N(N−1)(N−2)/6
states and so on. One can think, that high activity is bet-
ter. But if we want to memorize more than one indepen-
dent signal Y , we should be able to solve the system of
p equations (p pairs Xi → Yi with corresponding inner
layer activity Ai = {aTi

1 j}):

N

∑
j=1

l jka1
j = y1

k ,
N

∑
j=1

l jkap
j = yp

k . (3)

The system is solvable for p ≤ N and activity limit
doesnt change the number of independent output sig-
nals Y , that can be memorized on N elements of hidden
layer A. It means that there is no reason for choosing
high activity level. Self-organizing maps (SOM) elab-
orated by T. Kohonen [13], [14] can solve the mapping
task for the input signal space of states. Originally SOM
answer is the activity of only one neuron of inner layer,
”winner takes all (WTA)”. For the Y interpolation pur-
poses better to have several active neurons. SOM with
WTA can be easily expanded to SOM with activity cen-
ter (AC). It is worth mentioning, that SOM learning rule
is exactly (1). Learning rule (2) is used in backpropaga-
tion paradigm [15], [16]. Backpropagation technic was
successfully implemented for solving different tasks.
But the tendency to use purely rule (2) (without rule
(1)) resulted in various problems while learning and in
some measure useful attempts to solve these problems
by means of randomization, normalization, orthogonal-
ization, using multiple layers (deep learning) and so on.
Both rules (1) and (2) are used in counterpropagation
network [17]. It was developed in 1986 by R. Hecht-
Nielsen. It is guaranteed to find the correct weights, un-
like regular back propagation networks that can become
trapped in local minimums during training. Amazingly
counterpropagation is less popular, then backpropaga-
tion model. Perhaps its easier to implement pure rule
(2), then think about cooperation of rules (1) and (2).
Also, original counterpropagation use WTA competi-
tive network (like original SOM), while for purposes of
smooth converting {X} → {Y} its better to apply CA.
Different counterpropagation network extensions were
used for manipulation tasks control. The general idea
was to convert some data about actual and specified ma-
nipulator states X into control signal Y , as shown on
Fig. 6. Two-link manipulator arm is moving in horizon-

Figure 6: Neural network manipulator control

tal plane. Two pneumocylinders operate the arm move-
ments. Each pneumocylinder position is controlled by
sending pulse-width modulation (PWM) to valves V3
and V4 (Fig. 7). Valve 4 should be opened to move the
piston rod to the right. If valves V1 and V2 are switched
to the opposite position, short PWM impulses to V3 will
cause the slow motion of piston rod leftwards.

Figure 7: Pneumocontrol structure. 1 — air pressure
source; 2 — pneumocylinder ; V1 – V4 —electrically
controlled valves; C1 — air flow constrictor

Unpretentiousness of manipulator structure, tasks
and control functions was very helpful for detail study
and main ideas understanding of neural network manip-
ulator control. It gave possibility to start the work from
very simple tasks for neural net and then gradually in-
crease the complexity of the tasks.

First the quasistatic tasks were examined. The sim-
plest task is to control only one manipulator arm link
and to be able to stop at specified φ s starting from ar-

Advances in Computer Science

ISBN: 978-1-61804-344-3 157

bitrary φ . This task can be easily solved by the instru-
mentality of standard calculations. The φ2 angle is con-
trolled by y2 position. The traditional control formula
for ∆y2 to reach specified φ s

2 starting from arbitrary φ2
is (see Fig. 6 for designations):

∆y2 =
√

a2 +b2−2abcosφ s
2−

√
a2 +b2−2abcosφ2

(4)
And ∆y2 is proportional to valves V3 or V4 opening
time, T = k∆y2, which can be transformed to PWM pa-
rameters (frequency, width and number of pulses and
valve number (V3 or V4)). In experiments the mean mis-
match of single movement was not very high, with min-
imum about 5% of ∆φ2 at φ s

2 = π/2. But the displace-
ment could be repeated from closer position and 2−−3
movements usually allowed to reach desirable error of
link end position less than 2 mm. Can the results of task
solution be improved by means of neural net implemen-
tation? Equation (4) gives ideal solution for ideal arm
link control model. Real arm link and its control can
slightly differ from ideal model. During traditional con-
trol installation and tuning only a, b, φ and multipliers
of transformation ∆φ2 to PWM parameters could be ad-
justed, while the function (1) and direct proportionality
T = k∆y2 to PWM parameters are unalterable. Neural
nets are representing transformation function in tabular
form and are capable for functions form fine tuning dur-
ing adjustments to real control conditions.

Only one net unit was used in the first experiment.
Two angles of the arm link position (actual π/2 and
specified φ s

2) were forming X for neural net and Y was
composed of four PWM parameters. The initial values
for vectors M j and Lk were calculated by (4) and law
of transformation ∆y2 to PWM parameters. 1000 in-
put signals X (formed of random φ s

2 and previous φ2)
and learning rules (1) and (2) application resulted in im-
provement of minimum mean mismatch to 3,6% for 80
neurons of inner layer. 40 neurons net reached 4,7% af-
ter 350 steps of learning. 20 neurons started from 9%
of minimum mean mismatch and reached reduction to
only 7,6%. So 20 neurons arent enough for good tabu-
lar representation of function (4).

More than 80 neurons of inner layer make the learn-
ing time longer (proportionally to N2), but do not lead
to sufficient mismatch decrease. 200 and 400 neurons
make minimum mean mismatch equal to 3,4% and 3,3%
respectively. Its meaning, that 3,3% mismatch is based
on unpredicted random errors. Second experiment was
based on dividing transformation {X}→ {Y} into three
stages. On the first stage nonlinear transfers actual φ2

and specified φ s
2 to y2 and ys

2 was performed separately
on the same net with 15 neurons of inner layer. On the
second stage ∆y2 = ys

2− y2 and abs(∆y2) were calcu-
lated. And on the third stage ∆y2 was converted into
four PWM parameters (7 neurons for frequency, 10 for
width, 10 for number of pulses and 4 for valve num-
ber (V3 or V4). This configuration demonstrated min-
imum mean mismatch 3,5%. The advantage of three
stage approach is that all of three stages are simpler,
than conversion in one stage. The single transformation
was two-dimensional and start working good from 80
inner layers neurons, while three stages transformations
are one-dimensional and need less neurons. The sec-
ond stage (of three stages) was not realized on neural
net, but for these linear transformations 10 neurons are
more than enough. The main benefit of neurons num-
ber reducing is acceleration of learning process. For
three stage approach minimum mean mismatch 3,5%
was reached after processing of 70 input signals. For
small simple tasks the difference between one and sev-
eral stages transformation isnt sufficient. But for more
difficult tasks with dimensionality more than 10 good
tabular representation of functions becomes impracti-
cal. Too many neurons are needed and the learning time
grows unreasonably. The way of solving this problem is
to split the complex task into several simpler tasks with
dimensionality less than 6–7, 2–3 is desirable and 1 is
the best. After solving the single link quasistatic con-
trol task its time to consider two-link quasistatic control
task. The positions of links are defined by angles and,
since the dynamic of the process is not analysed, can
be controlled independently. The only difference with
training single link quasistatic control task is that the
goals arent angles φ s

1 , φ s
2 , but coordinates xs

1, xs
2. The

task of conversion coordinates to angles can be eas-
ily solved geometrically, but also it can be solved by
means of neural net. Anyway specified coordinates xs

1,
xs

2 should be transferred to φ s
1 , φ s

2 . Angles φ1 and φ2 are
measured by angle sensors. So pairs φ s

1 , φ1 and φ s
2 , φ2

can be transformed to operating pneumocylinders posi-
tions PWM parameters. The traditional control formula
(4) or one of two neural nets approaches can be used
for fulfilling the conversions. Mismatches of all three
methods for two-link arm are proportional to results for
one link with multiplier 1,41. Learning times for neu-
ral nets approaches are approximately four times longer.
The best results for two-link arm also showed the three
stage transformations method. Minimum mean mis-
match 4,8% of ∆X was reached after processing of 300
input signals. 1–2 movements were necessary to reach

Advances in Computer Science

ISBN: 978-1-61804-344-3 158

desirable less than 2 mm error of two-link arm end po-
sition in the center of desk and 2–3 movements at the
desk edge. There are some important questions left to
investigate in the quasistatic manipulator control task:
balancing of learning rules coefficients, emphasizing of
sufficient variables, quick tuning without changing the
shape of nonlinear transformations and others. The next
step is considering dynamic manipulator control tasks
in order to reach the specified points by one movement,
without additional correcting movements. The correc-
tions must be made during the movement. These tasks
have higher complexity, because except main variables
their time derivatives should be taken in account. Also,
in contrast to quasistatic control, high transformations
performance is needed to have time to make several cor-
rections during quick movement. But any solutions of
dynamic manipulator control tasks by neural net means
will greatly extend the manipulators application area.

5 Conclusion
The performed experiments have proven the effec-
tiveness of software and hardware tools of intelligent
robotics and their correspondence to the tasks. De-
tailed development of these instruments will provide
shorter (faster) worktime of the robots, and improved
logical features of the robots. Future plans are devel-
oping fully “assembled” intelligent robot-manipulator
with planning and playing games abilities based on vi-
sual system and neural “nervous” system. The computer
technologies that have been developed will be the uni-
versal tools for this activity.

Acknowledgements: The research was supported by
the Keldysh Institute of Applied Mathematics and in the
case of the second author, it was also supported by the
Grant Agency of RFBR (grant No. 15-08-08769).

References:

[1] M. Ghallab, D. Nau, P. Traverso, Automated Plan-
ning: Theory and Practice. Morgan Kaufmann
Publishers. San Francisco. 2004.

[2] S. M. LaValle, Planning Algorithms. Cambridge
University Press. 2006.

[3] Q. Yang, Intelligent Planning. A Decomposition
and Abstraction Based Approach. Springer Verlag.
1997.

[4] D. Y. Pogorelov, On Numerical Methods of Mod-
elling Large Multibody Systems. Mechanism and
Machine Theory. 34. pp. 791-800. 1999.

[5] L. V. Allis, H. J. van den Herik, M. P. H. Huntjens,
GoMoku and Threat-Space Search. CS-report,
Univ. of Limburg. 1992.

[6] I. A. Orlov, Synthesis of Motions for Manipula-
tion Systems for Spaces With Complex Relation-
ships and Constraints. PhD dissertation. Keldysh
Institute of Applied Mathematics, Moscow. 2013.
[In Russian]

[7] G. Borgefors, Distance transformations in digital
images. Comput. Vision Graph. Image Process. 34
(3). pp. 344371. 1986.

[8] P. F. Felzenszwalb, D. P. Huttenlocher, Dis-
tance Transforms of Sampled Functions. Theory
of Computing. 8 (1). pp. 415-428. 2012.

[9] F. Meyer, Color Image Segmentation. Interna-
tional Conference on Image Processing and its Ap-
plications. pp. 303-306. 1992.

[10] A. Telea, An Image Inpainting Technique Based
on the Fast Marching Method. Journal of Graph-
ics, GPU, and Game Tools. 9 (1). pp. 23-34. 2004.

[11] M. Muja, D. G. Lowe, Fast Approximate Nearest
Neighbors with Automatic Algorithm Configura-
tion. VISAPP (1). pp. 331-340. INSTICC Press.
2009.

[12] Free Software Foundation, http://www.gnu.org/
[13] T. Kohonen, Self-organized formation of topologi-

cally correct feature maps. Biological Cybernetics.
43. pp. 59-69. 1982.

[14] T. Kohonen, Self-Organizing Maps (Third Edi-
tion). New York. 2001.

[15] D. E. Rumelhart, G. E. Hinton, R. J. Williams,
Learning representations by back-propagating er-
rors. Nature 323 (6088). pp. 533536. October 8.
1986.

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.
Sainath, B. Kingsbury, Deep Neural Networks for
Acoustic Modeling in Speech Recognition — The
shared views of four research groups. IEEE Sig-
nal Processing Magazine. vol. 29. no. 6. pp. 82-97.
2012.

[17] R. Hecht-Nielsen, Counterpropagation networks.
Applied Optics. 26. pp. 4979-4984. 1987.

[18] Hit-or-miss transform in OpenCV, http://opencv-
code.com/tutorials/hit-or-miss-transform-in-
opencv/

Advances in Computer Science

ISBN: 978-1-61804-344-3 159

