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Abstract: We analyze the variational problem associated to a total curvature type energy when acting on suitable
spaces of curves in Riemannian manifolds with constant sectional curvatures, paying special attention to closed
critical curves. According to a recent mathematical model for the primary visual cortex V1, minimizers of this
energy are linked to subriemannian geodesics in the unit tangent bundle of R2. A few numerical experiments
concerning these geodesic are made by using a numerical approach which is based on a gradient descent method.
The experiments are extended to the case in which the determining functional is the elastic energy.
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1 Introduction

Regular curves in Riemannian n-manifolds Mn

which are critical points of the elastic energy
∫
γ κ

2

(κ being the curvature of the curve γ) have been in-
tensively investigated under various points of view.
Extremals of this energy correspond to the model for
classical elasticae proposed by D. Bernoulli around
1740 which have been widely studied (see for in-
stance, [12, 20, 21, 22, 23]). If the Riemannian
manifold is R3 they can be used also to model stiff
rods, stiff polymers, vortices in fluids, superconduc-
tors, membranes and mechanical properties of DNA
molecules (for more details see [7, 28] and the refer-
ences therein). If Mn(ρ) is a real space form of con-
stant sectional curvature ρ it can be proved that elas-
tic curves must lie in a totally geodesic 3-dimensional
submanifold of Mn(ρ). In particular, if Mn(ρ) = R2

their possible shapes where discovered by L. Euler.
There are no closed plane free elasticae. Closed cla-
ssical elasticae in 2-dimensional round spheres and in
the hyperbolic plane have been classified in [21]. U-
sing a Lagrange multiplier argument, extremals of the
bending energy among curves with the same length
can be considered as critical curves of

∫
γ κ

2 + λ,
λ ∈ R. Only two types of closed extremals in R2

appear in this case: circles and Bernoulli’s eight figu-
re. Moreover, closed extremals of

∫
γ κ

2 in R2 among
curves with same length and enclosed area have appli-
cations in material science [29]. Closed classical elas-
tic curves in R3 and in the 3-sphere S3 have been an-
alyzed in [22].

On the other hand, curve optimization plays a ma-
jor role in imaging and visual perception. Mostly
these optimal curve models rely on Euler’s elas-
tica, but this approach has two important problems;
first, there are many local minimizers which are not
global and, while local stationarity can be reaso-
nably checked, global optimality is much more di-
fficult to deal with; and second, the boundary value
problem for elastica is very hard to solve analytically.
To overcome these problems another approach based
on subriemannian geodesics has been raised recently
[11, 17]. A version of the subriemannian geodesic ap-
proach is explained in the following section and leads
to minimization of

∫
γ(κ

2 + a2)
1
2 in R2. Thus a na-

tural extension is to consider the variational problem
associated to the energy defined on suitable spaces of
immersed curves in Riemannian manifolds by

Fa(γ) =

∫
γ

(
κ2 + a2

) 1
2 ds, (1)

where, a ∈ R, s is the arclength parameter and κ(s)
is the geodesic curvature of γ(s).

If a = 0, then Fa is nothing but the total cur-
vature functional which has been associated to cer-
tain models of massless particles with rigidity [27].
From the mathematical point of view, this is a trivial
variational problem in R2 due to the classical Whitney
and Grauestein’s result. Moreover, as a consequence
of another classical result due to Fenchel, the mini-
mum of the total curvature action over simple closed
curves in the Euclidean 3-space is 2π and it is reached
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precisely on convex plane curves. In a more gene-
ral setting, one may want to consider the total cur-
vature functional acting on suitable spaces of curves
of a Riemannian space, and then to study the asso-
ciated variational problem. Although the study of the
total curvature of curves in Riemannian spaces has
been intensively considered along the literature (see
[16] and references therein), the systematic study of
the associated variational approach was initiated in
[2, 3]. In fact, the variational approach for the to-
tal curvature in surfaces was first considered in [2],
where it was shown that extremals of the total cur-
vature are reached by curves consisting of parabolic
points. Stability of extremals was also holographi-
cally characterized there. Then, the problem in spaces
with the highest rigidity (constant curvature) was con-
sidered in [3], where it was proved that the dynam-
ics associated with the total curvature action is con-
sistent only in round 3-spheres. More precisely, it is
shown in [3] that extremals of the total curvature in an
n-dimensional Riemannian space, Mn(ρ), with con-
stant curvature ρ, must lie in a totally geodesic sub-
manifold Mm(ρ) ⊂ Mn(ρ), m ≤ 3 and, in addi-
tion, we must have ρ ≥ 0. So it does not make sense
in, for example, the hyperbolic space. Moreover, if
ρ = 0 and up to topology, arbitrary plane curves in
R3 are the critical curves. Finally, for ρ > 0, up to
topology, extremals over a round 3-sphere are just the
so called Legendrian curves, that is, curves which are
horizontal lifts, via the Hopf map, of curves in the 2-
sphere. As in the elasticae case, one may consider
extremals among curves of the same length and/or
same total torsion. Again, by a Lagrange multiplier
argument, these may be treated as critical curves for∫
γ(m+nκ+ pτ), m,n, p ∈ R and τ representing the

torsion of γ. These curves have been used as models
for relativistic particles in pseudo-riemannian ambi-
ent spaces and if p = 0 they were proposed as a vari-
tional model to described protein chains in [18]. In
this case, the family of extremals is formed by Lan-
cret helices. There are no closed Lancret helices in
R3 (other that plane curves) but there exist a rational
1-parameter family of closed extremals in S3 (see [1]
and references therein for more details). Other partial
results, providing examples and families of extremals
in Berger spheres and in the complex projective plane
CP2(4), can be found in [3, 10] (see also [8, 13, 15]
for extremals in warped product spaces). The exis-
tence of extremals for the total curvature of curves in
homogeneous 3-spaces M3 has been recently studied
in [9].

Here we consider the variational problem asso-
ciated to (1), for a ≠ 0, when acting on spaces of
curves, satisfying suitable boundary conditions, of a

riemannian n-manifold Mn. As it has been said be-
fore, if a ̸= 0, planar extremals are relevant in ima-
ge restoring and a parametrization of them without
inflection points has been given in [11]. This con-
nection is described in section 2. Then, in section
3, we will compute the Euler-Lagrange equation for
(1) and we will show that a simple analysis of the
Euler-Lagrange’s first integrals phase plane reveals
that closed extremals in background spaces with con-
stant sectional curvature ρ, Mn(ρ), are only possible
if ρ ≥ 0. Moreover, in this case, that is when the am-
bient space is a two sphere M2(ρ) = S2(ρ), we have
that if a2 > ρ the only closed extremals are geodesics,
while if a2 = ρ, every circle (and only them) is a
closed critical curve. If a2 < ρ, there is a 1-parameter
family of closed extremals with non-constant curva-
ture, [?]. Also, a 2-parameter family of closed helical
extremals can be found in S3(ρ), [4]. In this section
we also characterize equivariant surfaces all whose or-
bits are critical for (1) and show that they must be ei-
ther cylinders or surfaces with positive constant curva-
ture. The final section is devoted to analyze numeri-
cally the subriemannian geodesic problem in the unit
tangent bundle R2 × S1. This analysis is made by
using the XEL-platform implemented in [5] and we
illustrate how it could be extended to many other si-
milar functionals under different boundary conditions
as, for example, the elastic energy of curves.

2 Subriemannian Geodesics in R2 ×
S1

Neuro-biologic research over the past few decades has
greatly clarified the functional mechanisms of the first
layer V1 of the visual cortex (primary visual cortex).
Such layer contains a variety of types of cells, inclu-
ding the so-called simple cells. Researchers found
that V1 constitutes of orientation selective cells at all
orientations for all retinal positions so simple cells are
sensitive to orientation specific brightness gradients
(for details see [11, 17]).

Recently, this structure of the primary visual cor-
tex has been modeled using subriemannian geometry,
[26]. In particular, the unit tangent bundle of the plane
can be used as an abstraction to study the organization
and mechanisms of V1.

According to this model, in the space R2×S1 each
point (x, y, θ) represents a column of cells associated
to a point of retinal data (x, y) ∈ R2, all of which are
adjusted to the orientation given by the angle θ ∈ S1.
In other words, the vector (cos θ, sin θ) is the direction
of maximal rate of change of brightness at point (x, y)
of the picture seen by the eye. Such vector can be seen
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as the normal to the boundary of the picture. Thus,
when the cortex cells are stimulated by an image, the
border of the image gives a curve inside the 3D space
R2 × S1, but such curves are restricted to be tangent
to the distribution spanned by the vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ
. (2)

It is believed that, if a piece of the contour of a pic-
ture is missing to the eye vision (or maybe it is cove-
red by an object), then the brain tends to ”complete”
the curve by minimizing some kind of energy, being
length the simplest (but not the only) of such. In short,
there is some subriemannian structure on the space of
visual cells and the brain considers a subriemannian
geodesic between the endpoints of the missing data.

Let Mn be a smooth manifold. A a sub-bundle
of the tangent bundle TM is called distribution D on
Mn. Once we have chosen D, a D-curve on Mn is
a smooth immersed curve γ : [a, b] → M which is
always tangent to D, that is, γ′(t) ∈ Dγ(t) for all
t ∈ [a, b]. A distribution D is said to be bracket ge-
nerating if for every p ∈ M the sections of D near p
together with all their commutators span the tangent
space of Mn at p, TpM . By a well known theorem
of Chow, there is a D-curve joining any two points
of Mn if D bracket generating (check [10] for the
smooth version of this theorem). A subriemannian
metric is a smoothly varying positive definite inner
product ⟨, ⟩ on D. Thus, if D were equal to the whole
tangent bundle, ⟨, ⟩ would give a Riemannian metric
on Mn. A subriemannian manifold, (M,D, ⟨, ⟩), is
a smooth n-dimensional manifold Mn equipped with
a subriemannian metric ⟨, ⟩ on a bracket generating
distribution D of rank m > 0. In this case, the
length of a D-curve γ : [a, b] → M is defined to be
L(γ) =

∫ b
a ⟨γ

′(t), γ′(t)⟩) dt. Since D is bracket ge-
nerating it is possible to endow Mn with a distance d.
The distance d(p, q) between any two points p and q
of Mn is defined by d(p, q) = infγ{L(γ)/γ is aD −
curve joining p to q}.

To construct a subriemannian structure on Mn =
R2 × S1 we take the distribution D = ker(sin θ dx−
cos θ dy), where x and y are the coordinates on R2 and
θ is the coordinate on S1. This distribution is spanned
by the vector fields described in (2). Consider on D
the inner product ⟨, ⟩ for which the two vectors (2)
are everywhere orthonormal. Every D-curve γ(t) =
(x(t), y(t), θ(t)) with γ ∗ (sin θ dx + cos θ dy) ̸= 0
is the lift of a regular curve α(t) = (x(t), y(t)) in the
plane whose tangent vector α′(t) forms the angle θ(t)
with the x-axis, i.e.,

α′(t) = v(t) cos θ
∂

∂x
+ v(t) sin θ

∂

∂y
, (3)

where v(t) is the speed of α(t). Conversely, every
regular curve α(t) in the plane may be lifted to a D-
curve γ(t) = (x(t), y(t), θ(t)) by setting θ(t) equal
to the angle between α′(t) and the x-axis. Now, the
tangent vector γ′(t) of the D-curve γ(t) has squared
length

⟨γ′(t), γ′(t)⟩ = v2(t) + θ′2(t)

= v2(t)

(
1 +

(
θ′(t)

v(t)

)2
)

= v2(t)(1 + κ2(t)) , (4)

where κ(t) is the curvature of α, and so the length
of γ(t) is equal to the integral of

√
1 + κ2(t)v(t)

along α. Thus the D-curves with (sin θ dx +
cos θ dy) ̸= 0 that realize the distance between two
points (x0, y0, θ0) and (x1, y1, θ1) of Mn are the lifts
of curves α in the plane joining (x0, y0) to (x1, y1)
with initial angle θ0 and final angle θ1 that minimize
the functional

L(κ) =

∫ (
1 + κ2(s)

) 1
2 ds , (5)

s being the arc-lenth parameter, among all such curves
in the plane. In other words, geodesics in V1 are ob-
tained by lifting to Mn = R2 × S1 minimizers of (5)
in R2.

Finally, as indicated in [11], the hypercolumnar
organization of the visual cortex suggests that the cost
of moving one orientation unit is not necessarily the
same as to moving spacial units, then the curve com-
pletion problem should consider the functional Fa ac-
ting on planar curves instead. This motivates consi-
dering critical curves of Fa, not only in the plane, but
also in more general backgrounds.

3 Extremals in Real Space Forms

For finite m, let Mm be an m-dimensional Riema-
nnian manifold with metric ⟨ , ⟩ and associated Levi-
Civita covariant derivative ∇. Let β(t), β : I :=
[0, 1] → M be a C∞ immersed curve and denote by
γ(s) its unit speed reparametrization, that is, it satis-
fies ⟨γ′(s), γ′(s)⟩ ≡ 1, where now ′ denotes derivative
with respect to the arc-length parameter s ∈ [s0, s1].
If the successive covariant derivatives of the velocity
vector

γ′(s), ∇ ∂
∂s
γ′(s), ∇2

∂
∂s

γ′(s), . . . ,∇n−1
∂
∂s

γ′(s),

are everywhere linearly independent, for 1 ≤ n ≤ m,
then we set e0 := γ′(s), and define the unit normal
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field e1 to be the unit vector field along γ in the direc-
tion of ∇ ∂

∂s
γ′(s). The geodesic curvature is defined

by
κ1(s) := ⟨∇ ∂

∂s
e0(s), e1(s)⟩.

Unit normal fields ej and curvatures κj , for j =
2, . . . , n−1, are given inductively by Gramm-Schmidt
orthogonalization, as follows. Let êj(s) be the orthog-
onal projection of ∇ ∂

∂s
ej−1 onto the orthogonal com-

plement of {e0(s), e1(s), e2(s), . . . , ej−1(s)}. Set

ej(s) :=
êj(s)

∥êj(s)∥
,

and κj(s) := ⟨∇ ∂
∂s
ej−1, êj(s)⟩. Then κj is never-

zero, and the Frenet-Serret formulae read as

∇ ∂
∂s
ej−1 = κj(t)ej(t)− κj−1(t)ej−1(t) , (6)

∇ ∂
∂s
en−1 = − κn−1(t)en−1(t). (7)

We call rank of γ the maximum integer j for which
κj(s) ̸= 0 for some s ∈ [s0, s1], namely, rank(x) =
n − 1 where n is the maximum integer for which
γ′(s), ∇ ∂

∂s
γ′(s), . . . ,∇n−1

∂
∂s

γ′(s), are linearly inde-

pendent. So 0 ≤ rank(γ) ≤ m−1, and γ is a geodesic
if and only if rank(γ) = 0. When γ has constant cur-
vatures κl for 1 ≤ l ≤ rank(γ), it is called a helix of
rank l.

If Mm(ρ) is a Riemannian n-manifold with con-
stant sectional curvature ρ, then curves of any rank are
determined by their curvatures up to isometries and, if
the rank of γ is n − 1, with 2 ≤ n < m, then γ is
contained into an n-dimensional totally geodesic sub-
manifold, Mn(ρ) of Mm(ρ).

In the first part of this section we will often re-
sort to results in [4] (which were proved inspired by
techniques in [21] and [22]). Although in this sec-
tion we will be mainly concerned with closed curves,
many computations can be performed in larger spaces
of curves, so let us first consider the space Ω of im-
mersed curves γ(t) in a m-dimensional Riemannian
manifold Mm with fixed endpoints p, q ∈ Mm: Ω =
{γ : [0, 1] → Mm; γ is a C∞-immersion; γ(0) =
p; γ(1) = q}. Let us define the following energy func-
tional Fa : Ω → R

Fa(γ) =

∫
γ

(
κ2 + a2

) 1
2 ds, (8)

where, a ∈ R, s is the arc-length parameter and
κ(s) ≡ κ1(s) is the geodesic curvature of γ(s). Ob-
serve that geodesics (curves of rank 0) are minima of
Fa among curves of the same length.

For a given γ ∈ Ω, we consider a C∞ variation
by curves in Ω, that is a C∞ function Γ: (−ϵ, ϵ) ×

[0, 1] → Mm such that Γ(0, s) = γ(s) and Γ(z, s) =
γz(s) ∈ Ω. We say that γ(s) is a critical curve or,
simply, an extremal of Fa in Ω, if dFa

d z (0) = 0, for
any variation of γ. By using standard arguments one
can compute the first variation formula of Fa

dFa

d z
(0) =

∫
γ
⟨E(γ),W ⟩ds+ B[γ,W ] , (9)

where W = ∂ Γ
∂ z (0, s) is the variation field of Γ and

E(γ), B[γ,W ] are the Euler-Lagrange and boundary
operators, respectively. After a long computation, we
obtain that the Euler-Lagrange operator is given by

E(γ) = 1

(κ2 + a2)
1
2

∇3
TT + 2

d

ds

(
1

(κ2 + a2)
1
2

)
∇2

TT

+

(
d2

ds2
1

(κ2 + a2)
1
2

+
κ2 − a2

(κ2 + a2)
1
2

)
∇TT

+
d

ds

(
κ2 − a2

(κ2 + a2)
1
2

)
T

+
1

(κ2 + a2)
1
2

R(∇TT, T )T ,

(10)

T = e0(s) = γ′ being the unit tangent vector to γ,
R denoting the Riemannian curvature tensor of Mm,
while the boundary operator B is given by

B[γ,W ] = ⟨∇TW,K⟩|10 − ⟨W, J⟩|10 ,

where

K =
1

(κ2 + a2)
1
2

∇TT ,

J = ∇TK+

(
κ2 − a2

)
(κ2 + a2)

1
2

T .

(11)

Then, from (9) one sees that a curve γ ∈ Ω satis-
fying suitable first order boundary conditions (for in-
stance, closed curves) is a critical point of Fa, if and
only if,

E(γ) = 0. (12)

and, consequently, geodesics are always extremals of
Fa.

Case a = 0 corresponds to the total curvature
functional which has been already discussed in the in-
troduction. So we assume a ≠ 0 .

Now we consider Fa acting on the subspace Ω̃ ⊂
Ω which is formed by closed curves. One sees from
(10) and (12) that every closed geodesic is a critical
point of Fa in Ω̃. Hence we may assume in addition
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that γ ∈ Ω̃ is a non-geodesic closed curve, namely,
that it is a curve of rank at least 1. As it has been
noticed before, γ is an extremal, if and only if, E(γ) =
0.

If Mn(ρ) is a m-space real form with constant
curvature ρ, then, it was shown in [4] that extremals
fully lie in a totally geodesic submanifold of dimen-
sion three at most. So, we may assume n ≤ 3 and
we use the standard notation for the Frenet frame
{e0(s) ≡ T (s), e1(s) ≡ N(s), e2(s) ≡ B(s)}
(which will be referred to as unit tangent, unit nor-
mal and binormal, respectively) and Frenet curva-
tures {κ ≡ κ1, τ ≡ κ2} (which will be referred
to as curvature and torsion, respectively). Using
the well known expression for the curvature tensor
R(X,Y )Z = ρ{⟨Y,Z⟩X−⟨X,Z⟩Y }, the Frenet for-
mulas (7), and the linear independence of the Frenet
frame, the Euler-Lagrange equations (10) reduce, af-
ter some straightforward computations, to

d2

ds2

(
κ

(κ2 + a2)
1
2

)
+ (13)

κ

(κ2 + a2)
1
2

(
κ2 − τ2 + ρ

)
− κ

(
κ2 + a2

) 1
2 = 0 ,

d

ds

(
κ2

(κ2 + a2)
τ

)
= 0 . (14)

If ρ > 0, that is when we are considering curves
in spheres with curvature ρ, Sn(ρ), n = 2, 3, ex-
tremals of Fa are well known [4]

Proposition 1. Let Fa : Ω̃ −→ R be the energy func-
tional defined in (8) acting on Ω̃, the space of closed
curves in S3 (ρ). Then, we have

1. If a2 > ρ, then the only closed critical curves are
the geodesics;

2. If a2 = ρ, then the only closed critical curves are
the circles;

3. If 0 < a2 < ρ, then

(a) in addition to geodesics, the set of closed
critical points in S2 (ρ) forms a countable
infinite family of curves with non-constant
curvature.

(b) the set of closed critical helices fully
immersed in S3 (ρ) forms a rational 1-
parameter family.

Thus, it remains to consider the case ρ ≤ 0. If
the geodesic curvature κ were constant, then (13) and
(14) would give that τ is constant and φ = τ2 + a2

which is impossible. So, there are no extremals with

constant curvature. If κ is not constant, then one may
check that the following equations are first integrals of
(13) and (14)(

dk

ds

)2

=

(
a2 + κ2

a2κ

)2

× (15)((
κ2 + a2

)
(dκ2 − e(κ2 + a2))− κ2(ρκ2 + a4)

)
,

τ = e

(
κ2 + a2

κ2

)
, (16)

where d, e are constants of integration. Setting u(s) =
κ2, equation (15) can be written as(

d u

ds

)2

=
4

a4
(u2 + a2)2Q(u) , (17)

where Q(x) = (d − e2 − ρ)x2 + (a2d − 2e2a2 −
a4)x−e2a4. Periodic solutions of (13) and (14) would
imply the existence of closed trajectories in the phase
plane of the equation (17) for u ≥ 0. An analysis
of (17) shows that for this to happen we need Q(u)
to have two positive roots and positive value at any
point between them. But the two roots of Q(u) are

u =
a2(a2+2e2−d±

√
(a2−d)2+4e2(a2−ρ))

2(d−e2−ρ)
, which can be

check to be non-positive under the condition ρ ≤ 0.
The same reasoning applies equally well in surfaces
M2(ρ). Hence we have

Proposition 2. There are no closed extremals curves
of Fa in Mn(ρ), for constant curvature ρ ≤ 0 and for
any a ∈ R− {0}.

Extremals in M2(ρ) are totally determined by
their curvature, κ, which, in our case, can be obtained
explicitly. In fact, the Euler-Lagrange equation re-
mains valid for critical curves with prescribed zero
and first order boundary data. In particular, in sur-
faces with constant curvature ρ, M2(ρ), the Euler-
Lagrange equations are obtained by taking τ = 0 in
(13) and (14). Hence, the geodesic curvature of ex-
tremals must satisfy (15) and (16) which, in this case,
reduce to τ = e = 0 and, after a little manipulation to(
dk

ds

)2

=

(
a2 + κ2

a2

)2 (
κ2(d− ρ) + a2(d− a2)

)
.

(18)
If ρ ≤ 0, this can be integrated to

κ(s) =
a
√
d− a2 tanh

(√
a2 − ρ s− c1

)
√
a2 − ρ+ (ρ− d) tanh2

(√
a2 − ρ s− c

) .
(19)

c ∈ R. Thus, a parametrization of the Fa-extremals in
R2, in terms of the arc-length parameter, is given by
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(∫
cos
∫
κ,
∫
sin
∫
κ,
)
, so it can be obtained after two

quadratures using (19). This is a case relevant in ima-
ge restoration as we mentioned at the beginning and a
different parametrization was given in [11] assuming
that the critical curves have no inflection points.

On the other hand, one may notice as a con-
sequence of Proposition 1.(2), that every parallel of
S2(a2) (as a surface of revolution in R3) is critical for
Fa. This fact can be generalized as follows.

For convenience, let us change notation a little bit
for a while. Assume now that (M3, g) is a Riema-
nnian 3-manifold and let ξ be a Killing vector field
on (M3, g). Then ξ generates a one-parameter sub-
group Gξ of the group of isometries of M3. An im-
mersion φ : S → (M3, g) of a surface S into M3

is said to be a Gξ-equivariant immersion, and φ(S) a
Gξ-invariant surface of M3, if there exists an action
of Gξ on S such that for any x ∈ S and h ∈ Gξ we
have φ(hx) = hφ(x). By pulling back the metric g
via φ, a Gξ-equivariant immersion φ : S → (M3, g)
induces a Riemannian metric on S, called the Gξ-
invariant induced metric, which is denoted by gφ.

Endow S with the Gξ-invariant induced metric
gφ, assume that φ(S) ⊂M3

r (M3
r denoting the regular

part ofM3, namely, the subset consisting of points be-
longing to principal orbits), thatM3/Gξ is connected,
and equipM3

r /Gξ with the natural Riemannian metric
making π : M3

r → M3
r /Gξ a Riemannian submer-

sion, g̃ (for details, see, for instance, [25]).
Now, a local description of the Gξ-invariant sur-

faces of can be given as follows. Let γ : (ε1, ε2) ⊂
R → (M3/Gξ, g̃) be a curve parametrized by arc
length and let γ̃ : (ε1, ε2) ⊂ R → M3 be a lift of
γ, such that dπ(γ̃′) = γ′. If we denote by ϕv, v ∈
(−ϵ, ϵ), the local flow of the Killing vector field ξ,
then the map

ψ : U ≡ (ε1, ε2)× (−ϵ, ϵ) →M3 ,

ψ(s, v) = ϕv(γ̃(s)),
(20)

defines a parametrized Gξ-invariant surface. Con-
versely, if φ(S) is a Gξ-invariant immersed surface in
M3, then γ = πφ(S) defines a curve in (M3/Gξ, g̃)
that can be locally parametrized by arc length. The
curve γ is generally called the profile curve of the
invariant surface. From now on, we denote a Gξ-
invariant surface by Sγ , γ being its profile curve. We
have

Proposition 3. Let Sγ be Gξ-invariant surface of M3

all whose orbits are extremals curves of Fa, for a
given a ∈ R, under suitable zero and first order
boundary data. Then either every orbit is a geodesic
of Sγ (and then Sγ is flat) or it has non-negative
constant Gaussian curvature KSγ = a2. Moreover,

in the former case, the only closed extremals are
closed geodesics (if any), while in the latter case the
only closed extremals are closed curves with constant
geodesic curvature (if any).

Proof. Take γ̃ a horizontal lift of the profile
curve of Sγ and consider the local parametrization
of Sγ defined in (20). Let us define the following
volume function on the orbits ω2(s) := ∥ξ(γ̃(s))∥2g.
Then, αs(v) = ψ(s, v

ω(s)) is a unit speed parametriza-
tion of an orbit. Consider the two following or-
thonormal vector fields defined on any orbit αs(v):
Ts(v) = d

dvαs(v), and Xs(v), the ξ-invariant exten-
sion of d

ds γ̃. Then, after a suitable orientation if nec-
essary, the geodesic curvature of αs(v) in Sγ is given
by κ(v) = ⟨∇TT,X⟩ (for simplicity, we are using
again ⟨, ⟩ to denote the metric instead of gφ). Now, ξ
is a Killing field so

2ω(s)
dω(s)

ds
= X⟨ξ, ξ⟩ = 2⟨∇Xξ, ξ⟩ = −2⟨X,∇ξξ⟩

= −2ω2(s)⟨X,∇TT ⟩ = −2ω2(s)κs(v) ,

therefore,

κs(v) =
dω/ds

ω
(v) . (21)

In other words, the geodesic curvature is constant on
any orbit. Now, assume that ∀s the orbit αs(v) is an
extremal of Fa. Then, E(γ) = 0 ∀s and applying (10)
(11) we have

0 =
d2

dv2

(
κs

(κ2s + a2)
1
2

)
+

κs

(κ2s + a2)
1
2

(
κ2s +KSγ

)
− κs

(
κ2s + a2

) 1
2 ,

(22)

and since the geodesic curvature is constant on orbits
we get

κs(v)(KSγ − a2)(s, v) = 0 , (23)

on U . Then, either the Gaussian curvature is constant
on U , KSγ = a2, or every orbit αs(v) is a geodesic
of Sγ . In the latter case, combining (21) and KSγ =

−d2ω(s)/ds2

ω(s) , [25], we see that Sγ is flat. �

Remark 4. Observe that the orbits of Sγ are
geodesics in Sγ , if and only if, w(s) is constant along
the profile curve. In this case, we say that Sγ is a
ξ-cylinder shaped on the curve γ. Moreover, dim
S/Gξ = 1 means that Sγ is a Gξ-invariant surface of
cohomogeneity one and they are known as generalized
rotational surfaces [6]. Thus S/Gξ is an open interval
and if, in addition, the principal orbits are diffeomor-
phic to S1, they are known as generalized rotational
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surfaces of spherical type, [6]. The intrinsic geometry
of a generalized rotational surface of spherical type
is uniquely determined by the characteristic function
w(s) of orbit sizes.

Corollary 5. Generalized rotational surfaces of
spherical type with constant Gaussian curvature a2

are foliated by closed extremals of Fa.

In particular, the above corollary applies to rota-
tion surfaces in real space forms with positive constant
curvature. Gξ-invariant surfaces with constant Gaus-
sian curvature in homogeneous 3-manifolds have been
studied in [14, 19, 24, 25].

4 Numerical Approach

We come back now to the problem described in sec-
tion 2. As explained there, the problem of minimizing
the functional (5) acting on the space of plane curves
joining two given points of R2 with prescribed initial
and final angles, can be linked to that of finding D-
curves minimizing the length. Even better adapted to
the curve completion demands is the variational pro-
blem associated to the functional Fa, which has been
discussed in the previous section. Now, we want to
analyze this problem directly on the unit tangent bun-
dle.

More precisely, we are led to the following varia-
tional problem. Denote by X the space of curves

β : [a, b] −→ R2 × S1; β (t) = (x (t) , y (t) , θ (t))

joining two given points (xa, ya, θa) and (xb, yb, θb)
of R2 × S1, that is

(x (a) , y (a) , θ (a)) = (xa, ya, θa) ,

(x (b) , y (b) , θ (b)) = (xb, yb, θb) , (24)

and satisfying the following admissibility condition

y′(t) = x′(t) tan θ(t) , t ∈ [a, b] . (25)

Now, consider the functional L defined on X by

L (β) =

∫ b

a

√
(x′)

2
+ (y′)2 + h2 (θ′)2dt , (26)

where ′ denotes derivative with respect to the parame-
ter t ∈ [a, b] and h ∈ R is proportionality constant
introduced by accuracy of the physical model [11].
Then, one must find the minimizers of L : X → R.

The corresponding Euler-Lagrange equations can
be computed and solve in terms of elliptic functions
[11]. However, specific determination of the solution
curves requires solving a highly nonlinear system for

10

1/3

0

Figure 1: Minimizers of (26) obtained viaXEL−2.0.

which an explicit expression seems unlikely. Hence, a
numerical approach is a reasonable strategy.

In [5] we have developed a gradient descent
based method (which we call XEL-platform) to lo-
calize minima of an ample family of functionals de-
fined on certain spaces of curves satisfying both affine
and isoperimetric constrains. These spaces become
Hilbert spaces under suitable Sobolev-type metrics
and, also, the energy functionals are allowed to be
weighted at the ends of the curves. Then, a numerical
method to locate minimizers of this general class of
variational problems is implemented in [5] (see also,
www.ikergeometry.org).

In particular, for the functional L : X → R de-
fined in (26) the XEL-platform can be applied. For
this, we can take, without loss of generality, a =
0, b = 1 and the ends of the curves are chosen to be

p0 = (0, 0, θ0) , p1 = (1, 0, θ1) .

Figure 1 shows a family of minimizers for different
choices of end angles θ0, θ1 detailed in Table 1. One
may wish to compare extremals obtained by our with
those got in [11], where the authors used a different
numeric approach. For example, Table 1 also shows
the length of the extremal curves obtained with both
methods for identical initial data. Thus, although
both numeric approaches are conceptually very di-
fferent, it is remarkable that the results obtained by
either method are very close concerning both shape
and length of the extremals.

One advantage of our XEL-platform is that it is
easily adaptable to a huge family of functionals satis-
fying the required conditions. For instance, it has been
pointed out in [11] that investigation of extremals for
the elastic energy F̂ : X → R; F̂(β) =

∫
γ κ

2
β , where

κβ denotes the geodesic curvatures of β, might be im-
portant for examining combinations of image plane
properties. Having this in mind, we can proved that
if

α = α (s) = (x(s), y(s))
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is an arc-length parametrized plane curve, and β de-
notes its lift to X (with slope h ∈ R) then its elastic
energy in R2 × S1 is given by∫ l

0
κ2βvβds =

∫ l

0

κ2α (s)

(1 + h2κ2α)
3/2

ds

+ h2
∫ l

0

(κ′α (s))
2

(1 + h2κ2α)
5/2

ds ,

where κβ , κα denote the geodesic curvatures of β in
R2 × S1 and of α in R2, respectively.

Length of the curve
β (s) in R2 × S1

θ0, θ1 [11] XEL2-0
θ0 = 20, θ1 = −10 1.1687 1.1691

θ0 = 40, θ1 = −30 1.6287 1.6289

θ0 = 60, θ1 = −50 2.2435 2.2436

θ0 = 70, θ1 = −60 2.5758 2.5761

Table 1

Moreover, we have

∫ l

0

κ2α (s) ds

(1 + h2κ2α)
3/2

=

∫ l

0

(
θ′(t)
vα(t)

)2
vαdt(

1 + h2
(

θ′(t)
vα(t)

)2)3/2

=

∫ l

0

(θ′ (t) vα (t))
2 dt(

v2α (t) + h2 (θ′ (t))2
)3/2 ,

∫ l

0

(κ′α (s))
2 ds

(1 + h2κ2α)
5/2

=

∫ b

a

(
θ′′(t)
v2α(t)

− θ′(t)v′α(t)
v3α(t)

)2
vα(

1 + h2
(

θ′(t)
vα(t)

)2)5/2
dt

=

∫ b

a

(θ′′ (t) vα − θ′v′α)
2 dt(

v2α (t) + h2 (θ′ (t))2
)5/2 .

which allows F̂ to be written in a way suitable for our
numerical experiments with the XEL-platform.

In this respect, many different experiments can
be performed with the elastic energy functional F̂ in
R2×S1. For example, choosing again p0 = (0, 0, θ0),
p1 = (1, 0, θ1) as end points for our curves, and se-
veral ending angles, θ0, θ1, one may wish to find ex-
tremals of the elastic energy for, say, variations with
(or without) the same length, and/or with (or without)
prescribed ending curvatures.

Thus, when there is no penalty on the length, Fi-
gure 2 shows extremals obtained under both condi-
tions, prescribed or unprescribed ending curvatures,

fixed
free

curvatures at endpoints:

10

2/3

0

Figure 2: Minimizing the elastic energy.

and Table 2 shows initial data and the corresponding
value of the elastic energy under both conditions (in
this example, it is assumed also that θ (t) = θ0 +
(θ1.θ0) t).

Elastic energy in
R2 × S1

(θ0, θ1) Prescr. curv. Free
(20,−10) 2.84653 0.62874

(40,−30) 0.88453 0.46458

(60,−50) 0.56127 0.45739

(70,−60) 0.53310 0.46825

Table 2

5 Conclusions

Subriemannian geodesics in the unit tangent bundle
R2 × S1 play an important role in recent models for
the primary visual cortex V1. It turns out that such
geodesics have to be lifts to R2 × S1 of curves in
R2 which are critical for a total curvature type func-
tional. The variational problem associated to this cur-
vature energy is considered for curves in real spaces
forms. In this case, we compute the first variation for-
mula and first integrals of the corresponding Euler-
Lagrange equations. Using them, we prove that there
are no extremal curves if the sectional curvature of the
ambient space in non-positive and we solve the Euler-
Lagrange equations when the dimension of the am-
bient space is 2, what completely determines the ex-
tremals up to two quadratures. We also show that Gξ-
invariant surfaces of a 3-space (i.e., surfaces which
are invariant under the 1-parameter group of isome-
tries Gξ associated to a Killing field ξ) whose orbits
are all critical for this energy, must have non-negative
constant Gaussian curvature.
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Finally, for practical purposes it is better to di-
rectly consider subriemannian geodesics in R2 × S1
from a numerical point of view. We use a gradient des-
cent based method implemented by our group some-
where else. For subriemannian geodesics our results
are in close agreement with those obtained by other
authors, however, our method is useful for a large fa-
mily of functionals, as we show here by considering
the elastic energy.
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