
     

Relativistic Effects in a moving Point Charge  
 

C. GUARNACCIA (
1
), J. QUARTIERI (

1
), L. SIRIGNANO (

2
) 

 

(
1
) Dept. of Industrial Engineering 

Via Giovanni Paolo II, 84084 Fisciano – SA 
 

(2)  “Pegaso” Online University 

Piazza Trieste e Trento, 48 – 80132 NA 
 

ITALY 
 

quartieri@unisa.it       http://www.lafin.sa.it        
 

 

Abstract: - Using the transformation law of the electromagnetic field between two inertial frames, the Lo-

rentz force BVqF


 , that acts on a charged particle moving in a magnetic field, is  obtained.  

It is shown why this force, despite being of relativistic nature, manifests itself at any value of speed of the 

moving charge. 

In addition, using the same transformation laws, the electromagnetic field generated by a charge that moves 

with constant speed, in the direction perpendicular to the speed, is calculated. 
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1 Introduction 
General Physics is usually taught at the first years of 

Engineering courses. Usually, the contents of this 

course are focused on General Mechanics and 

Electromagnetism, sometimes including Thermo-

dynamics and Fluid Dynamics. It is rare to teach 

Special Relativity (SR), even if some basic aspects 

of this theory are recalled when introducing the 

Electromagnetic waves and fields.  

The two basic postulates of SR  are [1]:  

P1. laws of physics are invariant in all inertial 

reference frames;  

P2. the speed of light in a vacuum is constant and 

it is the same in all the reference frames. 

In this paper, the authors, focusing on a didactic 

approach, will show how the Lorentz Force can be 

derived as a relativistic effect. 

Finally is also calculated the transverse 

electromagnetic field generated by a moving point 

charge. 
 

 

2 Lorentz Transformation 
Let us consider two inertial reference frames S and 

S , that move with x and x  axes superimposed and 

y and y , z and z  parallel to each other. Let V


 be 

the constant speed, parallel to x and x , of frame S  

with respect to frame S. Let us start timing from the 

instant in which the origins, O and O , of the two 

reference frames coincide.  

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  S and S are two inertial reference frames that move 

with a relative speed V


 (the axes z, z are perpendicular to the 

plane and coming out of the paper). 

 

Let  t,z,y,x  be an event in the reference frame 

S. The spatiotemporal coordinates of the same event 

seen from frame S are: 
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where: 1
c/V1

1

22



 , being c the speed of 

light in vacuum.  
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Relations (1) are known as Lorentz transfor-

mations and can be promply derived when one 

imposes the invariance, under these transformations, 

of the dalembertian operator: 
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In our mono-dimensional case this invariance reads:   
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Also indicated in contracted form:  

22 '
~~
 . 

The (1) have the following properties: 
 

a) It is possible to write the inverse relations, 

related to the event  't,'z,'y,'x  that occurs in 

the frame S , simply exchanging the superscript 

and posing VV  . 
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b) Considering 1
c/V1

1

22



  we have that 

cV   should give an imaginary  , and so  

imaginary lengths, that does not have any 

physical meaning. This leads to the conclusion 

that the relative speed between two inertial 

reference frames cannot be equal to or greater 

than light speed. 

c) The important relation holds: 
 

222222 'tc'xtcx     Invariant 

 

That is easily explained using property a) and 

considering that the speed of light is the same in 

every reference frame.  

d) For speeds, small with respect to light’s, 

equations (1) give back the classical Galilean 

transformations: 
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zzVtxx

yy)timeabsolute(tt
 

 

 

3 Charge density and current density 

transformations 
Let us consider a charge at rest in the inertial 

reference frame S , distributed according to the 

density: 

0000

0
d

dq

dzdydx

dq


     00 ddq   

where 0d  is the elementary volume occupied 

by the charge at rest in the reference frame S . 

Let us study how the density transforms if the 

charge distribution is seen from the inertial 

reference frame S. In SR the charge is invariant, but  

lengths contract in the direction of the speed V


 of 

the frame S  relative to S, so: 


 0dx

dx   0dydy    0dzdz       



 0d

d  

Then, the charge density, seen from S, is: 

                        0

0d

dq

d

dq






 .                    (3) 

In frame S, the current density on the x axis is:  

              wJx w
d

dq







/d

V
dq

0

V0       (4) 

where has been realized that charge, at rest in S , 

has a velocity w.r.t. S equal to w, which is the same 

as the relative velocity V. 

Squaring (4): 

22
0

22
x VJ   

and subtracting from both sides 22c , one has: 

2222
0

2222
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22
0
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0

2222
x cVcJ  )cV( 2222

0   

But, being: 2222 c)cV(    we have, at last: 

22
0

222
x ccJ   

where the r.h.s. is an invariant quantity. So com-

paring this with 

222 tcx     Invariant 

we see that  transforms like t and xJ  transforms 

like x. So, considering (2), we have: 
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4 Electromagnetic potentials trans-

formations 
It is well known that the electromagnetic field can 

be deduced by electromagnetic potentials A


 and 

 , respectively magnetic vector potential and elec-

tric scalar potential, by means of the following rela-

tions: 

               
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In the Lorentz gauge, the potentials equations 

are:  
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  (7) 

having substituted: 2
00 c/1  .  

Since the dalembertian 
2~

  is invariant under a Lo-

rentz transformation, and xJ ,   transform in the 

same way of x, t  we can deduce that xA , 2c/   

have to transform as in (1): 
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5 Electromagnetic  field transfor-

mations 
Projecting (6) onto x axis, one has: 
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  Thus, the electromagnetic field components, 

taking into account (8) and  
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transform as:  
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whose inverse transformations can be obtained ex-

changing the superscripts and substituting VV  . 
 

 

6 Lorentz Force as a relativistic effect 

Let us consider a uniform magnetic field B


, with a 

charged particle q, moving with constant speed  V


, 

perpendicular to B


 .  

Let S be the inertial frame with x axis in the 

same direction of V


 and z axis parallel to B


. In this 

frame, the vectors B


  and V


 have components:    

  k̂BB 


     îVV 


 

In addition, let S  be the inertial frame, moving 

with the charged particle and translating with re-

spect to S with speed  V


, having its x  axis over-

lapped to x axis.  

Moving from an inertial frame to the other, the 

fields transform as (11), and being, now, in S only a 

magnetic field: 0E


 , k̂BB 


, we find out from 

(11) that:  
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So in the frame S , two fields are present: a 

magnetic field B


  (uniform, in the z  axis direction 

and increased by a factor of   ) and an electric field 

E


 , (uniform, in the opposite direction of  y  axis), 

also increased by a factor of   and created just as a 

relativistic effect. 

The charged particle q, at rest in the frame S , 

feels the presence of the electric field E


 as a force:  

ĵ)qVB(EqF 


 

Now, the point is the evaluation of this force in 

the frame S. More precisely, we have to evaluate the 

transformation of the force component perpendicu-

lar to the speed of the frame S  with respect to S. 

For this reason, let us suppose that the particle in 

the frame S has a given impulse dp   perpendicular 

to the speed V


. This impulse does not change if 

evaluated from the frame S : 


 pddp  

On the contrary, the time dt of the frame S is dif-

ferent when evaluated by S , because of the effect 

of the time dilation: 

 ddt  

Then:  


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



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
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1

d
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In the frame S, the force acting on the charged 

particle is then:  

 ĵqVB
1

F 





       ĵqVBF 
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which is independent of  !. 

In addition, because:  

)ĵ(qVB)k̂î(qVBk̂BîqV   

It is evident the previous relation can be written as: 

BVqF


  

that is exactly the Lorentz force. 

  

Finally, let us observe that this force exists also if 

the speed of the charged particle is small with re-

spect to the one of light. In this case, the magnetic 

field seen from the frame S’ is practically the same 

of that seen in the frame S.  
 

 

7 Field generated by a point charged 

particle with constant speed, in the di-

rection perpendicular to the speed  
With respect to the inertial frame S, let us consider a 

point charge q that moves with constant speed V


, 

parallel to the x axis. Let also S  be the inertial 

frame moving with the charge, placed in its origin.  

In the frame S , in a point P of the y  axis, at a 

distance d  from the charge q (i.e. in the radial di-

rection with respect to the charge and perpendicular 

to the speed V


), there is an electric field but not a 

magnetic field. 

ĵ
d

q

4

1
E

2
0 




       0B


  

In the frame S, considering that dd   (there is 

no  contraction of length in the direction perpen-

dicular to the speed V


 ) and that the electric charge 

is invariant, according to (11) we have:  

ĵ
d

q
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1
E

2
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

       k̂
dc

Vq

4

1
B

22
0
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Thus, the charge in motion, beside the electric 

field (greater than the one generated in the frame in 

which it is at rest), generates also a magnetic field. 
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Let us observe that E


 and B


 are orthogonal and the 

following relation holds between their moduli: 

E
c

V
B

2
  

In non relativistic conditions, i.e. when cV  , 

there is no differences between what is observed in 

the frame S and in the frame S , according to the 

expectations.   
 

 

8  Conclusions 
Using the transformation law of the electromagnetic 

field between two inertial frames S and S , the Lo-

rentz force BVqF


 , that acts on a charged parti-

cle that moves in a magnetic field is  obtained.  

It is shown why this force, despite being of rela-

tivistic nature, manifests itself at any value of speed 

of the moving charge. 

In addition, using the same transformation laws, 

the electromagnetic field generated by a charge that 

moves with constant speed, in the direction perpen-

dicular to the speed, is calculated.   
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Appendix 

To facilitate controls of relations (10), (11), etc. 

and to let the readers acquire a unifying point of 

view we write here the matrices for transforming 

variables and their derivatives. At this aim, we start 

from relations (2): 
 














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 t
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(2) 


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and, using the partial differentiation rules, one can 

write, for instance:  
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







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





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

















x

t
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z
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y

yx

x

xx
   



















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V

x 2
 

Similarly one can get and collect all main relations 

in the following matrix form: 
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(10) 
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that, in intrinsic form (vectors-matrices) can be re-

written as:  
 
 

rA'r
1

V





 r

T
V'r A

1






  

'rAr
1

V





 'r

T
Vr A

1






  

  

This latter form has the advantage of showing - 

comparing the columns -  that: 

- To go from the coordinates of a reference 

frame to the ones of the other, it is enough to 

exchange the superscript and reverse the 

speed; 

and, comparing the rows, that: 

- To go from the coordinates of a frame to the 

partial derivatives related to the same refer-

ence frame, it is enough to transpose the ma-

trix and reverse the speed.  
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