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Abstract: Here we construct implicit numerical methods for solving Cauchy problem with using polynomial and
nonpolynomial integro-differential splines. Integro-differential polynomial splines were suggested in works of
Kireev. In this case splines contain the values of integrals over net intervals. Integro-differential nonpolynomial
splines were suggested by the author.
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1 Introduction

A large part of scientific computing is concerned with
the solution of differential equations. Polynomial in-
terpolation is quite useful for construction numeri-
cal methods for both ordinary and partial differen-
tial equations, especially boundary-value problems
[1–3, 11].

Minimal interpolation splines were investigated
in details in [4]. The distinctive feature of this splines
is the existence of interpolation basis. The support
of the basis spline contains one or several net inter-
vals. This splines convenient for approximation func-
tions and its derivatives with given error of approx-
imation. Minimal interpolation splines suitable for
solving interpolation problems of Lagrange, Hermit,
Hermit-Birkhoff. The solution is constructed as the
sum of products of the values of the function in the
points of interpolation and the values of basic func-
tions (and may be the values of their derivatives) on
every net interval separately.

Integro-differential polynomial splines were sug-
gested in works of Kireev. In this case splines contain
the values of integrals over net intervals.

Here we construct numerical methods for solv-
ing Cauchy problem with using polynomial and poly-
nomial integro-differential splines. Numerical meth-
ods for solving Cauchy problem with using minimal
splines without values of integrals were suggested by
the author in [5]. Some results were presented in
[6, 8–10].

2 On non-polynomial integro-
differential spline construction

Let α,m,mα, lα, sα, n, p2, q — be integer nonnega-
tive numbers, lα ≥ 1, sα ≥ 1, mα = sα + lα,
m0 + . . . + mq + p2 = m, {xk} be a net of ordered
nodes, a < . . . < xk−1 < xk < xk+1 . . . < b. Fur-
ther it will be considered the grid of equidistant points
xk = a + kh, h > 0. Let function u be such that
u ∈ Cm[a, b]. Suppose that φj , j = 1, . . . ,m, is a
Chebyshev system on [a, b], in which case the func-
tions φj ∈ Cm[a, b], j = 1, . . . ,m, are nonzero on
[a, b]. We construct

ũ(x) =

q∑
α=0

k+sα∑
j=k−lα+1

u(α)(xj) ωj,α(x)+

+

p2∑
i=1

(∫ xk

xk−i

u(t)dt

)
ω<−i>
k (x),

for approximation the function u(x) on the interval
[xk, xk+1].

Functions ωk,α(x), ω<−i>
k (x) are such that

suppωk,α = [xk−sα , xk+lα ], α = 0, 1, . . . , q,
suppωk,α ⊂ suppωk,β , β < α, suppω<−i>

k =

[xk, xk+1]. Functions ωk,α(x), ω<−i>
k (x) are deter-

mined from the system of equations, which are called
the approximation identities:

ũ(x) = u(x), for u(x) = φν(x), ν = 1, . . . ,m.

Introduce the notations
Φ(x) = (φ1(x), . . . , φm(x))T ,
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Φα(x) = (φ
(α)
1 (x), . . . , φ

(α)
m (x))T ,

Ψk,α = (Φα(xk−lα+1), . . . ,Φα(xk+sα)),
SΦp2 = (

∫ xk

xk−1
Φ(t)dt, . . . ,

∫ xk

xk−p2
Φ(t)dt).

Then the system determinant takes the form

∆ = det(Ψk,0, . . . ,Ψk,q, SΦp2).

Sometimes a numerical quantity of determinant
(if h ̸= const) may be approximately equal to 0. Sup-
pose that for the chosen values of parameters, the de-
terminant is nonzero. Then the basis functions ωj,α(x),
ω<−i>
k (x) can be determined by Cramer’s formulas. In

particular, for finding the basis function ωk,α(x) on
the interval [xk, xk+1] it can be used the following re-
lation

ωk,α(x) = det(Ψk,0, . . . ,
Φα(xk−lα+1), . . . ,Φα(xk−1),Φ(x),Φα(xk+1), . . .

. . . ,Φα(xk+sα) . . . ,Ψk,q, SΦp2)/∆.

Then the constructed splines ωk,α(x), ω<−i>
k (x)

and the approximation ũ(x) have the following prop-
erties:

1) at the ends of each interval [xk, xk+1] we have
u(α)(xk)=ũ(α)(xk), u(α)(xk+1) = ũ(α)(xk+1), α =
0, 1, . . . , q, ũ ∈ Cq[a, b];

2)
∫ xk

xk−i
u(t)dt =

∫ xk

xk−i
ũ(t)dt, i = 1, . . . , p2;

3) For polynomial and trigonometrical sys-
tem {φi} on equidistant set with step h we have
|ω<−i>

k (x)| ≤ K̃i/h, |ωk,α(x)| ≤ C̃αh
α, here K̃i, C̃α

are certain constants.
In general we assume that a nonpolynomial sys-

tem of functions {φi} is chosen in such a way that the
properties 3 are fulfilled.

3 The error of approximation
Find first the relation for u(x) for computing the ap-
proximation error. Construct a homogeneous linear
equation, which has a fundamental system of solu-
tions φ1(x), . . . , φm(x). Let us find the function u(x)
in the form convenient for obtaining error estimation.
Construct first a homogeneous linear equation, having
a fundamental system of equations φi. Let us generate
next equation for x ∈ [xk, xk+1] ⊂ [a, b]:

∣∣∣∣∣∣∣∣
φ1(x), φ2(x), . . . φm(x), u(x)
φ′
1(x), φ′

2(x), . . . φ′
m(x), u′(x)

. . . . . . . . . . . . . . .

φ
(m)
1 (x), φ

(m)
2 (x), . . . φ

(m)
m (x), u(m)(x)

∣∣∣∣∣∣∣∣ = 0.

Here Wronskian

W (x) =

∣∣∣∣∣∣∣∣
φ1(x), φ2(x), . . . φm(x)
φ′
1(x), φ′

2(x), . . . φ′
m(x)

. . . . . . . . . . . .

φ
(m−1)
1 (x), φ

(m−1)
2 (x), . . . φ

(m−1)
m (x)

∣∣∣∣∣∣∣∣

does not equal to zero. Expending the determinant ac-
cording to the elements of the last column and divid-
ing all terms of the obtained equation by W (x), one
can obtained the desired equation Lu = u(m)(x) +

p1(x)u
(m−1)(x) + . . . + pm(x)u(x) = 0. Construct

now a general solution of nonhomogeneous equation
Lu = F by the method of variation of the constants.
Suppose,

u(x) =
m∑
i=1

Ci(x)φi(x).

Then

Ci(x) =

∫ x

xk

Wmi(t)F (t)

W (t)
dt+ ci,

where ci are arbitrary constants. Since F = Lu, one
has

u(x) =
m∑
i=1

φi(x)

∫ x

xk

Wmi(t) Lu(t)

W (t)
dt+

m∑
i=1

ciφi(x).

where Wmi(x) are algebraic complements of ele-
ments of i-th column of m-th row of determinant
W (x). Let us estimate |r| = |ũ(x) − u(x)|. With
help of the approximation identities we have in non-
polynomial case (see [6])

|r| ≤ K1∥Lu∥[xk−l0
,xk+s0

]h
m, K1 > 0.

In polynomial case we have

|r| ≤ K2∥u(m)∥[xk−l0
,xk+s0

]h
m, K2 > 0.

4 Solution of the Cauchy Problem
for one Equation

We shell solve the Cauchy problem

y′ = f(x, y(x)), y(x0) = y0, x ∈ [x0, X].

Consider the integral identity

y(xj+1) = y(xj) +

∫ xj+1

xj

y′(x)dx.

We replace y′(x) by the integro-differential spline
ũ(x). Now we have

y(xj+1) = y(xj) +

∫ xj+1

xj

ũ(x)dx+R,

where R =
∫ xj+1

xj
(ũ(x) − u(x))dx, taking into

account the error of approximation by the integro-
differential spline we have

|R| ≤ hm+1K3∥ Lu∥, K3 > 0.
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5 Numerical methods for q = 0

We have for q = 0 and x ∈ [xj , xj+1]

ũ(x) =

j+s∑
k=j−l+1

u(xk) ωk(x)+

+

p2∑
i=1

(∫ xj

xj−i

u(t)dt

)
ω<−i>
j (x).

Here ωk,0(x) = ωk(x).

5.1 Numerical method 1
Let us take p2 = 1. We approximate a function u(x)
for [xj , xj+1] by expression in a form

ũ(x) = u(xj)ωj(x) + u(xj+1)ωj+1(x)+

+

(∫ xj

xj−1

u(x)dx

)
ω<−1>
j (x).

Here basic splines ωj(x), ωj+1(x), ω<−1>
j (x) we find

from conditions

ũ(x) = u(x), u(x) = φ1(x), φ2(x), φ3(x).

We replace integrand in

y(xj+1) = y(xj) +

∫ xj+1

xj

y′(x)dx

by ũ(x)

y(xj+1) = y(xj) +

∫ xj+1

xj

ũ(x)dx+R,

we obtain

y(xj+1) = y(xj) + u(xj)

∫ xj+1

xj

ωj(x)dx+

+u(xj+1)

∫ xj+1

xj

ωj+1(x)dx+

+

∫ xj

xj−1

u(x)dx

∫ xj+1

xj

ω<−1>
j (x)dx+R.

Now we have the next implicit method:

yj+1 = yj(1 + I<−1>)− yj−1(I
<−1>)+

+f(xj , yj)I0 + f(xj+1, yj+1)I1,

where

I<−1> =

∫ xj+1

xj

ω<−1>
j (x)dx, I0 =

∫ xj+1

xj

ωj(x)dx,

I1 =

∫ xj+1

xj

ωj+1(x)dx.

Now we construct I<−1>, I0, I1 for polynomial
and nonpolynomial cases.

a) Let us take φ1(x) = 1, φ2(x) =

e(x/2), φ3(x) = e(−x/2), h = const.
We receive easily

I0 = −A0/B0,

A0 = (−h/2− 1)e(−h) + (1− h/2)e(h)+

+(2 + h)e(−h/2) + (h− 2)e(h/2) − h,

B0 = (−1 + h/4)e(−h/2) + (−1− h/4)e(h/2)+

+
1

2
e(h) + 1 +

1

2
e(−h),

I1 = A1/B1,

A1 = (2− h)e(−h/2) + (−2− h)e(h/2) − e(−h)+

+2h+ e(h),

B1 = (−1 + h/4)e(−h/2) + (−1− h/4)e(h/2)+

+
1

2
e(h) + 1 +

1

2
e(−h),

I<−1> = −A2/B2,

A2 = ((−1− h/4)e(−h/2) + (−1 + h/4)e(h/2) + 2),

B2 = (−1 + h/4)e(−h/2) + (−1− h/4)e(h/2)+

+
1

2
e(h) + 1 +

1

2
e(−h),

and

|R| ≤ Kh4∥4yIV − yII∥[xj−1,xj+1], K > 0.

b) In case φ1(x) = 1, φ2(x) = x, φ3(x) = x2,
we have

yj+1 = yj

(
4

5

)
− yj−1

(
−1

5

)
+

+f(xj , yj)
4h

5
+ f(xj+1, yj+1)

2h

5
,

|R| ≤ Kh4∥yIV∥[xj−1,xj+1], K > 0.

c) In case φ1(x) = 1, φ2(x) = sin(x), φ3(x) =
cos(x), we have

I0 = 2
(cos2(h) + h sin(h) cos(h)− 1)

(2 sin(h) cos(h)− h cos(h)− h)
,

I1 = −2
(cos2(h) + h sin(h)− 1)

(2 sin(h) cos(h)− h cos(h)− h)
,
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I<−1> =
(−h cos(h) + 2 sin(h)− h)

(2 sin(h) cos(h)− h cos(h)− h)
.

Let us solve the problem

y′ = −150(y − cos(x)), y(0) = 0, x ∈ [0, 1].

The exact solution is the next: y(x) =
(22500/22501) cos(x) + (150/22501) sin(x) −
(22500/22501) exp(−150x). Let us take h = 0.001.
The error of solution of the Cauchy problem by
methods b and c are represented on graphs 1 and 2.
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1e–05

1.5e–05

2e–05

2.5e–05

0.01 0.02 0.03 0.04 0.05

Figure 1: Graph of the error of the solution of the
problem y′ = −150(y − cos(x)) by method b
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Figure 2: Graph of the error of the solution of the
problem y′ = −150(y − cos(x)) by method c

5.2 Numerical method 2
Now let us approximate function u(x) by

ũ(x) = u(xj)ωj(x) + u(xj+1)ωj+1(x)+

+

(∫ xj

xj−1

u(x)dx

)
ω<−1>
j (x)+

+

(∫ xj

xj−2

u(x)dx

)
ω<−2>
j (x)

on [xj , xj+1]. Here ωj(x), ωj+1(x), ω<−1>
j (x),

ω<−2>
j (x) we determine from the equations:

ũ(x) = u(x), u(x) = φ1(x), φ2(x), φ3(x), φ4(x).

So we have

yj+1 = yj
(
1 + I<−1> + I<−2>

)
−

−yj−1I
<−1> − yj−2I

<−2>+

+f(xj , yj)I0 + f(xj+1, yj+1)I1.

In polynomial case φ1(x) = 1, φ2(x) = x, φ3(x) =
x2, φ4(x) = x3, we have

I<−2> =

∫ xj+1

xj

ω<−2>
j (x)dx = 1/17,

I<−1> =

∫ xj+1

xj

ω<−1>
j (x)dx = −9/17,

I0 =

∫ xj+1

xj

ωj(x)dx = 18h/17,

I1 =

∫ xj+1

xj

ωj+1(x)dx = 6h/17,

yj+1 = yj

(
9

17

)
− yj−1

(
−9

17

)
− yj−2

(
1

17

)
+

+f(xj , yj)

(
18h

17

)
+ f(xj+1, yj+1)

(
6h

17

)
.

The error has the form:

|R| ≤ Kh5∥yV∥[xj−2,xj+1],K > 0.

Let us solve the problem

y′ = −150(y − cos(x)), y(0) = 0, x ∈ [0, 1].

The errors of the solution of the Cauchy problem by
method 2 are represented on graphs 3, 4.

Now let us solve next problem
y′ = −2(y − sin(x)) + cos(x), y(0) = 0.
The exact solution is y = sin(x). The error of

solution of the Cauchy problem by same method is
represented on graph 5.

6 Conclusion
The results explained in the previous sections show
that the numerical methods could be used on practical
calculations.
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Figure 3: Graph of the error of the solution of the
problem y′ = −150(y − cos(x)) (h = 0.001)
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Figure 4: Graph of the error of the solution of the
problem y′ = −150(y − cos(x)) (h = 0.0001)
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