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Abstract: Here we construct implicit numerical methods for solving Cauchy problem with using polynomial and
nonpolynomial integro-differential splines. Integro-differential polynomial splines were suggested in works of
Kireev. In this case splines contain the values of integrals over net intervals. Integro-differential nonpolynomial
splines were suggested by the author.
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1 Introduction 2 On non-polynomial integro-
differential spline construction
A large part of scientific computing is concerned with Let o, m, Ma, las Sas M, P2, ¢ — be integer nonnega-
the solution of differential equations. Polynomial in- tive numbers, I, > 1,54 > 1, mq = 5q + la,
terpolation is quite useful for construction numeri- mo + ...+ mg + pa = m, {z} be a net of ordered
cal methods for both ordinary and partial differen- nodes, a < ... < p_1 < T < Tpp1... < b. Fur-
tial equations, especially boundary-value problems ther it will be considered the grid of equidistant points
[1-3,11]. rr = a + kh, h > 0. Let function u be such that

u € C™[a,b]. Suppose that pj, j = 1,...,m, is a
Chebyshev system on [a, b], in which case the func-
tions p; € C™[a,b], j = 1,...,m, are nonzero on
[a, b]. We construct

Minimal interpolation splines were investigated
in details in [4]. The distinctive feature of this splines
is the existence of interpolation basis. The support
of the basis spline contains one or several net inter-
vals. This splines convenient for approximation func- ¢ k+sa
tions and its derivatives with given error of approx- u(z) = Z Z u(®) (25) wjalz)+
imation. Minimal interpolation splines suitable for
solving interpolation problems of Lagrange, Hermit,
Hermit-Birkhoff. The solution is constructed as the p2 zp

+> < / (t)dt)
i=1 Tk—iq

a=0 j=k—lq+1

sum of products of the values of the function in the wp T (z),
points of interpolation and the values of basic func-
tions (and may be the values of their derivatives) on

a for approximation the function w(z) on the interval
every net interval separately.

[$k7 xk+1]- )
) ) ) ) : <—i>
Integro-differential polynomial splines were sug- Functions  wyo(x), wy ™7 (x) are such that
gested in works of Kireev. In this case splines contain SUPP Wk = [Thoser Thila)s O = Oviv o q,
the values of integrals over net intervals. Suppwi,a C suppwrg, f < «, suppwy o=

[k, Tg41]. Functions wy, o (z), wi " (z) are deter-
mined from the system of equations, which are called

the approximation identities:

Here we construct numerical methods for solv-
ing Cauchy problem with using polynomial and poly-
nomial integro-differential splines. Numerical meth-

ods for solving Cauchy problem with using minimal u(z) = u(x), for u(z) =@, (x), v=1,...,m.
splines without values of integrals were suggested by

the author in [5]. Some results were presented in Introduce the notations

[6,8-10]. ®(z) = (p1(2), ..., om(z))7T,

ISBN: 978-1-61804-281-1 48


who
Rectangle


Mathematical Methods and Systems in Science and Engineering

o (1) = (PyV (@), o (2)7,
Vo = (PalTh—in11)s -+ Pa(Thisa))s
Sy, = (L1 )dt . ””:_m D (t)dt).

Then the system determinant takes the form
A=det(Vyo,..., Vg SPp,).

Sometimes a numerical quantity of determinant
(if h # const) may be approximately equal to 0. Sup-
pose that for the chosen values of parameters, the de-
terminant is nonzero. Then the basis functions w; « (),
wi~"(z) can be determined by Cramer’s formulas. In
particular, for finding the basis function wy, o(x) on
the interval [z, ) 1] it can be used the following re-
lation

wk,a(z) = det(¥gp, .. .,

Qo (Th—iy41)s - Palzp—1), P(2), Pal(Tps1),- -
3 Pa(Thpsy) -y Yhg, SPp, ) /AL '

Then the constructed splines wy, o(z), wy "~ (z)
and the approximation u(z) have the following prop-
erties:

1) at the ends of each interval [z, xx1] we have
ul® (@)= (2g), w ) (2p11) = @ (2g10), @ =
0,1,...,q,u € Ca,b;

2) [FF w(t)dt = [ at)dt.i=1,...,px:

3) For polynomial and trigonometrical sys-
tem {¢;} on equidistant set with step i we have
W™ (2)] < K; o(2)] < Cuh®, here Ky, C,
are certain constants.

In general we assume that a nonpolynomial sys-
tem of functions {¢; } is chosen in such a way that the
properties 3 are fulfilled.

3 The error of approximation

Find first the relation for u(z) for computing the ap-
proximation error. Construct a homogeneous linear
equation, which has a fundamental system of solu-
tions p1(x), ..., om(x). Let us find the function u(x)
in the form convenient for obtaining error estimation.
Construct first a homogeneous linear equation, having
a fundamental system of equations ;. Let us generate

next equation for x € [z, x4+1] C [a, b]:
QOl(SL'), 902($)7 @m($)7 u(ﬂj‘)
A ) o e W@ |
dM(@), @M (@), P (@), u™ (@)
Here Wronskian
p1(), @a(), om()
W) = (@), w5 (@), P ()
AV, W@,
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does not equal to zero. Expending the determinant ac-
cording to the elements of the last column and divid-
ing all terms of the obtained equation by W (x), one
can obtained the desired equation Lu = u(™(z) +
pr(@)u™ D (x) + ... 4 pm(z)u(z) = 0. Construct
now a general solution of nonhomogeneous equation
Lu = F by the method of variation of the constants.
Suppose,

m

u(z) =) Ci(x)pi(x).

=1

/ sz

where c¢; are arbitrary constants. Since F' = Lu, one

has
Z oi(x / sz dH—Z cipilz

where W,,;(x) are algebraic complements of ele-
ments of i-th column of m-th row of determinant
W (z). Let us estimate |r| = |u(z) — u(x)|. With
help of the approximation identities we have in non-
polynomial case (see [6])

Then

dt+ Cis

‘T| < KlHLuH[ﬂkalO@k+sO]hm7 K, > 0.
In polynomial case we have

Ir| < Kollu™ m Ky > 0.

H [LDk_lO ,$k+30] h
4 Solution of the Cauchy Problem
for one Equation

We shell solve the Cauchy problem

Y = f(x,y(x)), y(xo) = yo, x € [x0, X].

Consider the integral identity

y(xj1) = y(oy) + /zj+1 y'(z)dx.

J

We replace y/(x) by the integro-differential spline
u(x). Now we have

Tj+1
) =yl + [ e+ R
zj
where R = ffj’“(u(x) — u(z))dz, taking into
account the error of approximation by the integro-
differential spline we have
|R| < ™1 K| Lul|, K3 > 0.
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S Numerical methods for ¢ = 0
We have for ¢ = 0 and z € [z, zj41]

jts

u(z) = Z

k=j—l+1
Z ( dt) > ().

5.1 Numerical method 1

Let us take po = 1. We approximate a function u(x)
for [z, x;4+1] by expression in a form

w(zg) wi(x)+

Here wy, o(x

() = u(zj)w;(@) + u(@jr1)wjvi(z)+

+ ( / u(x)dw) Wi (2).

i

Here basic splines w; (), wj1(z), wj<_1> (x) we find
from conditions

u(x) = u(z), u(x) =

We replace integrand in

p1(x), p2(z), @s3(x).

Tjp1

y(z41) = ylz;) + /  (@)de

Zj

by a(x)

Tj+1
y(2j1) = y(z;) + / i(z)de + R,

j
we obtain

y(zjs1) = y(z;) + u(zy) /ijrl wj(z)dz+

J
Tj+1
fua) [ wpn(@)dot
X

i
j i1
+/ u(x)da:/ wj<_1>(x)dx + R.

j—1 J
Now we have the next implicit method:

I<71>) _ yj_l(I<71>>+

yi+1 = y; (1 +
+f(wj,95) Lo + f(xj41,Y541) 11,
where

Tj41
I<—1>_/ SRS
j
o,

J

Tj+1
(z)dz, Io—/ ’ wj(z)de,

J
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Tj+1
I = / wj+1(x)da:.
x

J
Now we construct I<~1>, I, I; for polynomial
and nonpolynomial cases.
a) Let us take ¢i(z) =
e(®/2) ps(z) = e=*/2) h = const.
We receive easily

1’302(1U) =

Iy = —Ay/ By,

Ag = (=h/2—1)e"™™ + (1 = h/2)e™
+(2 4 h)etM2 4 (h—2)eM? — p,

By = (=14 h/4)e="?) 4 (=1 — h/4)e/? +
—I—%e(h) +1+ %e(_h),
I = Ay /By,
Ar = (2= h)ehD 4 (—2 — pyehD _ (P4
+2h + ™),
By = (=1 + h/4)etM?) 4 (=1 — h/4)eh/?) 1

1 1
+§e(h) +1+ 5e(*h),

I<_1> = _AQ/BQ7
Ay = (=1 = h/4)eM2) 4 (=1 + h/4)e/? 1 9),
By = (=1 + h/4)e"M2) 4 (=1 — h/4)eM/? +

1 1

and

IR| < Kht||4y"Y —y K > 0.

11
|| [xj_l,l'j_;'_ﬂ)

b) In case ¢1(x) = 1,p2(z) = z,p3(z) = 22,

we have
4 -1
Yirr =Yg ) ~Yi-1\ 5 ) T

2h

+ f(ijrl’ ijrl)gv

K >0.

4h

IRl < Kh*ly™ g,

zjy1]>

O Tn case o (x) = 1, pa(z) = sin(x), ps(z) =
cos(x), we have

Iy =2 (COS2(h) + hsin(h) cos(h) — 1)
(2sin(h) cos(h) — hcos(h) — h)’

I = -2 (cos?(h) + hsin(h) — 1)
(3sin(h) cos(h) — hcos(h) — B)’
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7<-1> _ (—hcos(h) + 2sin(h) — h)

(2sin(h) cos(h) — hcos(h) — h)’

Let us solve the problem

y' = —150(y — cos(x)),y(0) = 0,z € [0, 1].

The exact solution is the next: y(z) =
(22500/22501) cos(z) + (150/22501)sin(z) —
(22500/22501) exp(—150x). Let us take h = 0.001.
The error of solution of the Cauchy problem by
methods b and c are represented on graphs 1 and 2.
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Figure 1: Graph of the error of the solution of the
problem y' = —150(y — cos(x)) by method b
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Figure 2: Graph of the error of the solution of the
problem 3’ = —150(y — cos(x)) by method ¢

5.2 Numerical method 2

Now let us approximate function u(x) by

() = u(zj)w;(@) + u(@jr1)wjvi(z)+

" ( / u(:c)dac) W (@) +
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—1>(

on [zj,zj+1]. Here w;(z), witi(z), wi™ " (x),

J
wj<*2> (z) we determine from the equations:

() = u(x), u(z) = p1(x), p2(x), 3(x), Pa(x).
So we have
g =v; (1+ <> I<_2>) _
_yj71[<—1> _ yj721<—2>+

+f(xj,y5) 1o + f(xj41, yj41) 11

In polynomial case ¢1(z) = 1, p2(x) = z,p3(x) =
22, ¢4(z) = 23, we have

9 Tj+1 9
J<2%> :/ cuj<_ 7 (z)dz = 1/17,
xT

J

1 AN 1
= = / w; 7 (2)dr = —9/17,
x

J

Tj+1
Iy = / wj(x)der = 18h /17,

J

Tj+1
L = / wjt1(x)dr = 6h/17,

J

9 -9 1
Yji+1 = Yj <17> —Yji-1 (17> —Yj—2 <17> +
h
+f(xj,95) (1187> + f(zj+1,Yj+1) <17) :

The error has the form:

IR < KB°[[y¥ llie; o542, K > 0.

Tjt1]

Let us solve the problem
y' = —150(y — cos(z)),y(0) = 0,z € [0, 1].

The errors of the solution of the Cauchy problem by
method 2 are represented on graphs 3, 4.

Now let us solve next problem

y = —2(y —sin(x)) + cos(x), y(0) = 0.

The exact solution is y = sin(x). The error of
solution of the Cauchy problem by same method is
represented on graph 5.

6 Conclusion

The results explained in the previous sections show
that the numerical methods could be used on practical
calculations.
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Figure 3: Graph of the error of the solution of the
problem y' = —150(y — cos(z)) (h = 0.001)
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Figure 4: Graph of the error of the solution of the
problem y' = —150(y — cos(z)) (h = 0.0001)
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