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1 Introduction placement of the poles of the closed-loop system

becomes with the help of v v1 2∗  parameters of the
regulator F .Consider the LTI Discrete System described

by: In 1970, Davison, [1], and Davison and

Chow, [2], proved that max ,ν ν1 2b g  eigenvalues of

the matrix Iz A BFC− −  can be placed in

arbritarly selected positions. Moreover, Davison and
Wang, [3], and Kimura, [4], showed independently
that "almost all" the systems (1.1) and (1.2) with

ν ν ν1 2 1+ ≥ +  have arbitrary pole assignment. An
alternative proof of the above result was given from
Brockett and Byrnes, [5], and Schumacher, [6].
Herman and Martin, [7], proved that almost all the

systems (1.1) and (1.2) with ν ν ν1 2∗ ≥  have
arbitrary pole assignment with complex numbers
control law of the form (2). Willems and Hesselink,

[8], proved that the condition ν ν ν1 2∗ ≥  is
necessary but no sufficient for the solution of the
problem in the set of the real numbers. Karcanias
and Giannakopoulos, [9], gave a necessary condition
for the solution of the above problem in the set of the
real numbers concerning the degree of the Plucker’s
matrix. Wang, [10], showed that if the system (1.1),

(1.2) is generic and ν ν ν1 2∗ ≥ , then all the poles of
it can be placed in arbitrarly selected positions. An
alternative sufficient condition was also given by
Wang, [11]. His results concern a very limited
category of systems and furthermore they are not
accompanied from a certain algorithm which places

x Ax Bun n n+ = +1b g b g b g           (1.1)

y Cx Dun n nb g b g b g= +            (1.2)

where u nb g ∈ℜν1  is the input vector of the system,

y nb g ∈ℜν2  is the output vector, x nb g ∈ℜν is the

state vector and A , B , C, D are matrices of
appropriate dimensions. In Continuous Systems a
similar analysis yields identical results.

Consider the following feedback control law:

u Fy vn n nb g b g b g= +            (2)

Then the arbitrary eigenvalue assignment
problem with output feedback consists of the design
of a regulator of the form (2) in order to:

det zI A BFC FD− + − =−
1

1b ge j b gp z      (3)

where p zb g is an arbitrary monic polynomial ν -

degree in ℜ z  where ℜ z  denotes the ring of

polynomials with real coefficients. It is noted that the



the poles in the desired position. Alternative proofs
of the Wang’s result, [10], were given from
Karcanias and Leventides, [12], and from Rosenthal,
Willems and Schumacher, [13]. A complete
reference is given in the review papers of Syrmos
and Dorato, [14], Kimura, [15], and Byrnes, [16].
Recent results can also be found in [17], and, [18].

a zf b g b ge je j= − + − −
det zI A BF I DF C

1
     (8)

The problem is: which F  must be selected in
order to have:

a z p zf b g b g=                      (9)

2 Problem Formulation In the relevant literature, there exists a great many
number of theoretical results for the solution of (9)
with respect to F . Unfortunately, all these
theoretical results are not appropriate for practical
purposes at all. For this reason, in the present study,
an optimization criterion is proposed for the
approximate validity of (9). The proposed criterion
is:

Consider the following LTI System :

x Ax Bun n n+ = +1b g b g b g          (4.1)

y Cx Dun n nb g b g b g= +           (4.2)

where u nb g is the input vector, y nb g  is the output

vector, x nb g is the state-space vector, A  is a νxν
matrix, B  is a νxν1matrix, C is a ν2xν  matrix

and D is a ν2xν1 matrix. It is well-known that the
characteristic polynomial of the above system (4.1),
(4.2) is:

min
1

2

2

1π
ρ

j
p z a z

dz

zf

z

b g b g−
=
z           (10)

where ρ  is an arbitrary positive integer, or
equivalently:

a zb g b g= −det zI A                     (5)

min det
1

2
1

2

1π

ρ

j
p z

dz

zz

b g b ge je j− − + − −

=
z zI A BF I DF C (11)The problem in question is how under the output

feedback control law:

where the selection ρ = 1 is usually used.
u Fy vn n nb g b g b g= +                     (6)

From (11), with ρ = 1 after elementery
manipulation, one finds:

the characteristic polynomial (of ν -degree) of the
original system (4.1), (4.2) will be led to the desired

polynomial p zb g, where p zb g is an arbitrary ν -

degree monic polynomial of ℜ z .
min

!
det

1 1
2

0 k z
p z

k

k
k

v ∂
∂

b g b ge je j− − + −F
H

I
K

−

=
∑ zI A BFC I DF (12)

Obviously substituting (6) into (4.1), (4.2)
one finds:

The above minimization problem is solved via a
variety of numerical techniques. In this paper, the
Levenberg-Marquardt routine for solving nonlinear
least squares problems is used, [19]÷ [22]. The
problem for this routine, is stated as follows:

x A BF I DF C x

BF I DF D BF v

n n

n

+ = + − +

+ − +

−

−

1
1

1

b g b ge j b g

b ge je j b g
     (7.1)

min ...

,...,

imize x f x f x

where x x x

over m

N

1
2 2

1

b g b gro

qm

+ +

=
     (13)y I DF Cx I DF Dvn n nb g b g b g b g b g= − + −− −1 1

  (7.2)

Therefore the characteristic polynomial under output
feedback control law will be: A sequence of approximation to the minimum point

is generated by:



d={{1,-1},{-1,0}};

x x a f xn n
n n n

T
n n

T n+ −
= − + ⋅1 1

D J J J d i      (14)
f={{f1,f2},{f3,f4}};

inv=Inverse[i2-d.f];
difference=(z+1)(z+2)(z+3)-Det[z i3-(a+b.f.w.c)];

where Jn is the mathematical Jacobian matrix

evaluated at xn . Dn is a diagonal matrix equal to the

diagonal of J Jn
T

n  and an is a positive scaling
constant.

z=x;
coef1=difference/.x->0;
coef2=D[difference,x]/.x->0;
coef3=(D[difference,{x,2}])/2/.x->0;
coef4=(D[difference,{x,3}])/6/.x->0;
scoef=coef1 coef1+coef2 coef2+coef3 coef3+coef4
coef4;Example:- If we suppose that we have:

simp=Simplify[scoef];

A =
−

−
− −

L

N

M
M
M

O

Q

P
P
P

1 2 1

3 4 0

1 1 1

,

FindMinimum[simp,{f1,-.5},{f2,1},{f3,.5},{f4,1},
MaxIterations->100]

3 Extension in 2-D Discrete Systems

B =
−

−
L

N

M
M
M

O

Q

P
P
P

1 2 1 2

1 2 1 2

1 0

/ /

/ /
,

In 2-D Discrete Systems, quite analogously,
we have:

x Ax Bun n n+ = +1b g b g b g          (15.1)

y Cx Dun n nb g b g b g= +           (15.2)

where the following compact notation is used:

C =
L

N
M

O

Q
P

1 2 1

0 1 1
,

x
x

x
n

n n

n n

h

v
b g

b g

b g

b g

b g
=

L

N
M
M

O

Q
P
P

1 2

1 2

,

,
,

D =
−

−
L

N
M

O

Q
P

1 1

1 0
 and F =

L

N
M

O

Q
P

f f

f f
1 2

3 4

x
x

x
n

n n

n n

h

v
+ =

+

+

L

N
M
M

O

Q
P
P

1
1

1

1 2

1 2

b g
b g

b g

b g

b g

,

,
,then after the appropriate calculations (using a

simple Mathematica code) we find that f1 1 9655= . ,

f2 2 0076= . , f3 2 2952= .  and f4 1 1539= .
Therefore:

u un n nb g b g= 1 2, ,

y yn n nb g b g= 1 2,

F =
L

N
M

O

Q
P

1 9655 2 0076

2 2951 1 1539

. .

. .
where x h n nb gb g1 2,  and x v n nb gb g1 2,  are the orizontal

and vertical state space vectors and A B C D, , ,  are
matrices of appropriate dimensions. The above
model (15.1), (15.2) is known as the Roesser model.
The characteristic polynomial of (15.1), (15.2) is:

The Mathematica code is as follows:

a=.;b=.;f=.;

a z z
z

z

h

1 2
1

2

0

0
, detb g

b g

b g
=

L

N
M
M

O

Q
P
P

−
F

H
G

I

K
J

I

I
A

ν
      (16)

i2={{1,0},{0,1}};
i3={{1,0,0},{0,1,0},{0,0,1}};
a={{1,2,-1},{-3,4,0},{-1,-1,1}};
b={{1/2,-1/2},{-1/2,1/2},{1,0}};
c={{1,2,1},{0,1,1}};



The problem in question is how under the
output feedback:

where ρ  is an arbitrary positive integer, or

equivalently, for ρ = 1, one has:

u Fy vn n n n n n1 2 1 2 1 2, , ,b g b g b g= +      (17)

min , det
1

2

0

0
2 1 2

1

2

1

1

2

1

1

2

21 21
π

ρ

j
p z z

z

z

dz

z

dz

z

h

v
zzb g

b g b ge j−
L

N
M

O

Q
P− + −

F

H
G

I

K
J

−

==
zz

I

I
A BF I DF C

 (22)
the characteristic polynomial of ν1,ν2-degree of the
original system (15.1), (15.2), will be led to the

desired polynomial p z z1 2,b g where p z z1 2,b g is an

arbitrary ν1,ν2-degree monic polynimial of

ℜ z z1 2, .

From (22) with ρ = 1 after elementary manipulation,
one finds:

min
! !

,

det

1 1

0

0

1 2 1 2
1 2

1

2

1

2

00

1

1

2

2

2

2

1

1
k k z z

p z z

z

z

k

k

k

k

h

v

k

v

k

v

∂
∂

∂
∂

b gc

b ge j

−

−
L
N
M

O
Q
P− + −

F
HG

I
KJ
I

K
J−==

∑∑
I

I
A BFI DF C

 (23)

Obviously substituting (17) into (15.1),
(15.2) and using the above compact notation one
finds:

x A BF I DF C x

BF I DF D BF v

n n

n

+ = + − +

+ − +

−

−

1
1

1

b g b ge j b g

b ge je j b g
     (18.1)

The above minimization problem is also solved via
the Levenberg-Marquardt routine for solving
nonlinear least squares problems. An illustrative
example is given.

y I DF Cx I DF Dvn n nb g b g b g b g b g= − + −− −1 1
     (18.2)

Therefore the characteristic polynomial under output
feedback control law will be: Example: -We consider that:

a z z
z

z
f

h

v1 2
1

2

10

0
, detb g b ge j

b g

b g
=

L

N
M
M

O

Q
P
P
− + −

F

H
G

I

K
J

−I

I
A BF I DF C   (19)

A =
−

−
− −

L

N

M
M
M

O

Q

P
P
P

1 2 1

3 4 0

1 1 1

,

where I hb g, I vb g are identity matrices corresponding

to  x h nb gb g , x v nb gb g .

B =
−

−
L

N

M
M
M

O

Q

P
P
P

1 2 1 2

1 2 1 2

1 0

/ /

/ /
,

Our problem is: which F  must be selected in
order to have:

a z z p z zf 1 2 1 2, ,b g b g=                      (20)

C =
L

N
M

O

Q
P

1 2 1

0 1 1
,

Some theoritical results exist for the solution of (20)
with respect to F  in the recent literature.
Unfortunately, these results are not appropriate for
practical usage. For this reason, in the present study,
the following optimization criterion will be used:

D =
−

−
L

N
M

O

Q
P

1 1

1 0
,

min , ,
1

2
2 1 2 1 2

2
1

11

2

21 21
π

ρ

j
p z z a z z

dz

z

dz

zf

zzb g
b g b g−

==
zz  (21)

and F =
L

N
M

O

Q
P

f f

f f
1 2

3 4



Also suppose that scoef2=scoef1+coef02 coef02 +coef20 coef20
+coef12 coef12+coef21 coef21 +coef22 coef22;

I hb g = 1

sim=Simplify[scoef2];
FindMinimum[y,{f1,0},{f2,0},{f3,0},{f4,0},
MaxIterations->100]

4 Conclusionand

The methodology of the (approximate) pole
assignment can be proved useful and powerful tool
for many practical design problems of classical
automatic control. Here, this methodology was
adopted for linear time invariant, discrete time
systems. The analysis can be the same for
continuous time systems. Also, this methodology is
applied for two dimensional systems.

I vb g =
L

N
M

O

Q
P

1 0

0 1

After the necessary calculations one can find:

f1 0 0813= . , f2 0 3211= − . , f3 0 0033= .  and

f4 0 3892= . . Therefore: References:
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