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Abstract: The study of the Stability of m-dimensional systems is a difficult problem
especially when m ≥ 3. There exist only a few results and, unfortunately, there does not exist
any practical criterion. In this brief, the stability of an m-dimensional system is dealt as a
minimization problem of the absolute value of its characteristic polynomial over the boundaries
of its variables (i.e. on the m unit circles). In this minimization, we seek for a global minimum.
It is known that all the numerical algorithms and all the artificial neural networks' techniques
can not guarantee the convergence to the total (global) minimum. On the contrary, genetic
algorithms provide us the advantage of the convergence to the global minimum without the
requirement of the differentiability nor of the objective function neither of the constraints. So,
the problem of the stability of an m-D (multidimensional) system is reduced to a minimization
problem of the absolute value of its characteristic polynomial over the boundaries of its
variables which is solved via an appropriate genetic algorithm (GA). Numerical examples are
presented.                                                               CSCC'99 Proceedings: - Pages 1021-1028

I.  Introduction
In the study of Systems Theory, stability
plays an important role, since every
designed system ought to be stable. An 1-D
(one-dimensional) discrete-time system is
stable (in the Bounded Input - Bounded
Output sense) if and only if its
characteristic polynomial has not any root
inside the unit disk and it has not any
multiple root on the unit circle. In the
system theory's literature, this kind of
stability is also known as Schur Stability.
Also, for practical purposes and
applications, there exist many criteria like
Jury's test, Hurwitz's test etc that check the
stability without finding the roots of the
characteristic polynomial.
An m-D (multidimensional) linear, shift
invariant, discrete variables, system
described by the transfer function
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The above theorem is known as the
theorem of Anderson and Jury, [1÷3].

Unfortunately, for practical purposes
(filtering, design of m-D filters etc) we
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need more "convenient", more "practical"
tests than the above theorem. In 2-D
systems, a great variety of practical tests
has been produced in the last three decades
(Jury's 2-D test [1,2], Schur-Cohn test
[1,2], Inners' test [12], Zeheb-Walach test
[7,8], Mastorakis-Barnett test [23,25,27],
Partial Energies'test [21], etc). There are
also a variety of special results and other
considerations [22÷30].

In m-D systems (m>3), unfortunately,
we have a complete lack of such tests,
though we must refer to the contributions
of [3÷15].

So, it is difficult to check if a given m-D

polynomial ( )B z zm1...,  corresponds to the

characteristic polynomial of a stable m-D
system when m>2.

In the sequel, by the term stable or
unstable polynomial, we will mean the
characteristic polynomial of stable or
unstable m-D (linear, shift-invariant,
discrete variables) system.

An important result in the stability of
m-D system is given by the following
theorem, known as DeCarlo-Strintzis
Theorem [1,2,5].

DeCarlo-Strintzis Theorem: ( )B z zm1,...
is a stable polynomial if and only if

( )B z1 1 1 0, ,... ≠      for z1 1≤          (1.1)
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and numerator of the transfer function and

( )B z zm1,...  have not any nonessential

singularity of the second kind.               g

In the sequel, we always will assume
that the condition of the non-existence of
nonessential singularities of the second
kind is fulfilled. The m first conditions of

DeCarlo-Strintzis Theorem actually consist
m one-dimensional conditions and are easy
to be checked via any 1-D test (for example
one-dimensional Jury's test).

In this brief, Genetic Algorithms (GA's)
methodology is proposed in order to check
the last equation of DeCarlo-Strintzis'
Theorem. This methodology is presented in
the next section.

II. A Genetic Algorithm for
checking the m-dimensional
systems stability
According the DeCarlo-Strintzis Theorem,
the first m conditions can be examined via
any one-dimensional test (criterion). If
some of these conditions is/are not
satisfied, we easily conclude that the
system is unstable, without examing the
last condition (1,m+1). However, if these m
conditions are fulfilled, then Condition
(1,m+1) is that which will "decide" about
the stability. If it is satisfied the system is
stable, otherwise is unstable. In order to
investigate (1,m+1), we consider the
minimum of the function f, where

( ) ( )f f w w w B e e em
jw jw jwn= =1 2

1 2, ,..., , ,...

.  So, assume that

M=min f                   (2)
over wi  0 2≤ ≤wi π

Therefore  (1,m+1) condition is equivalent
to

M>0                  (3)

If  M=0, the polynomial ( )B z zm1,...  is

unstable. The problem with the existing
methods of minimum research (numerical
or neural networks' techniques) is that they
usually give only local minima whereas we
wish to find the global minimum over the

boundaries z zm1 1= = =...  (or

equivalently over the set
{w wi i/ 0 2≤ ≤ π})

So, we are obliged to develop a reliable
and efficient global optimization technique.
To this end, in this paper, a simple Genetic
Algorithms (GA) is developed.
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A brief overview of the GA's theory
could be the following: Suppose that we

have to maximize (minimize) ( )f x , GA's

are search algorithms which initially were
insiped by the process of natural genetics
(reproduction of an original population,
performance of crossover and mutation,
selection of the best). The main idea for an
optimization problem is to start our search
no with one initial point, but with a
population of initial points. The 2n
numbers (points) of this initial set (called
population, quite analogously to the
biological system) are converted to the
binary system. In the sequel, they are
considered as chromosomes (actually
sequences of 0 and 1).

The next step is to form pairs of these
points who will be considered as parents
for a "reproduction" (Fig.1)

10...101|00011

11...100|01100
}→

11..00011100

10...01100101

parents                       children
Fig.1. Crossover

"Parents" come to "reproduction" where
they interchange parts of their "genetic
material". (This is achieved by the so-
called crossover, Fig.1) whereas always a
very small probability for a Mutation
exists. (Mutation is the phenomenon where
quite randomly - with a very small
probability though - a 0 becomes 1 or a 1
becomes 0). Assume that every pair of
"parents" gives k children.

By the reproduction  the population of
the "parents" are enhanced by the
"children" and we have an increasement of
the original population because new
members were added (parents always
belong to the considered population). The
new population has now 2n+kn members.
Then the process of natural selection is
applied. According the concept of natural
selection, from the 2n+kn members, only
2n survive. These 2n members are selected
as the members with the higher values of f,
if we attempt to achieve maximization of f
(or with the lower values of f, if we attempt
to achieve minimization of f). By repeated

iterations of reproduction (under crossover
and mutation) and natural selection we can
find the minimum (or maximum) of f as the
point to which the best values of our
population converge. The termination
criterion is fulfilled if the mean value of f in
the 2n-members population is no longer
improved (maximized or minimized). More
detailed overviews of GA can be found in
[16] and [17]. Other recent results and
applications can be found in [18] and [19].

In our problem of m-D systems stability
we wish to minimize f over mwww ,...,, 21

when  wi ∈ 0 2, π ,   i=1,...,m. To this end

mwww ,...,, 21  are converted to the binary

system and are considered as parts of a big
chromosome (Fig 2).

        w1              w2                   wm

100110010|001000111|...|111001010
Fig.2

If we suppose that for every iw  is

converted to a t-bits binary number, for the
"chromosome" of mwww ,...,, 21 , we need

mt bits. Our search starts with a randomly
generated population of such 2n
chromosomes.

In a quite random manner, this
population is split into pairs of parents that
will be crossed i.e. they will interchange
their genetic material (with c crossovers)
always under a very small probability p for
mutation (for example p=0.01).

By this reproduction, a new population
of 2n+kn members will be formed, since
each pair of parents give birth to k
children. The new population is filtered and
only the 2n better members (here "better"
means the 2n lower values of

( )f w w wn1 2, ,..., ) remain to the population,

the other are deleted. By repeated iterations
of reproduction (under crossover and
mutation) and natural selection we can find

the minimum of ( )f w w wn1 2, ,..., ,

0 2≤ ≤wi π ,  i=1,...,m as the point to
which the best values of our population
converge. The termination criterion is: "the
mean value of f in the population is no
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longer improved". The algorithm is
summarized as follows
STEP A: Find (randomly) the initial
population of 2n members
STEP B: Split the population (randomly)
into n pairs
STEP C: Make c crossovers and from

each pair of parents take k
children. Every bit of every child
has p probability for a mutation

STEP D: Find the new population 2n+2k
(parents+children)
STEP E: From the new population select the
2n members with the lower values of f.
STEP F: If the absolute value of the

difference of the mean value of f in
the population of this generation
with the mean value of f in the
population of the previous
generation is < å, then STOP,
otherwise go to STEP C.

Example 1. Suppose that our 3-D
system (without any nonessential

singularity of the second kind), has the
following characteristic polynomial

( ) 6.53.12.08.15.18.0,, 2
323

3
22

2
11321 +++++= zzzzzzzzzzB

The first three conditions (i.e. (1.1) ÷ (1.3))
of DeCarlo-Strintzis Theorem are satisfied

for 1≤iz  with i=1,2,3 respectively, since

So, we have to examine the last
equation in the DeCarlo-Strintzis Theorem.
To this end, let us consider

( ) ( )321 ,,,, 321
jwjwjw eeeBwwwff == .

We easily find that

f Q Q= +1
2

2
2

where
( ) ( ) ( ) ( ) ( ) .52cos3.1cos2.03cos8.12cos5.1cos8.0 32322111 +++++++= wwwwwwwQ

( ) ( ) ( ) ( ) ( 2322112 2sin3.1sin2.03sin8.12sin5.1sin8.0 wwwwwwwQ ++++++=
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Fig.3. Convergence of the optimum value of f: ____ in every generation, as well as
of the mean value of f in every generation _ _ _ _

Iterations 1 50 100 150 200 250 300 350 400 450 500
Parents 6.134 1.216 0.966 0.674 0.094 0.070 0.023 0.019 0.018 0.017 0.016
Best 2.870 0.614 0.614 0.299 0.065 0.025 0.002 0.002 0.002 0.001 0.001

,06.68.28.1)1,,1(,09.88.05.1)1,1,( 2
3
221

2
11 ≠++=     ≠++= zzzBzzzB

07.92.03.1),1,1( 3
2
33 ≠++= zzzB
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Using now the previously presented GA
with n=5, k=4, t=12, p= 0.01, c =6 we
obtain that the Optimum value of f in each
generation (denoted by ____) as well as the
mean value of f in each generation parents
(denoted by _ _ _ _ ) converges to 0 (Fig.3
and Table 1). Therefore for this example
M=0 and the polynomial is (Schur)
unstable.

Example 2.  Suppose that our 3-D
system (without any nonessential
singularity of the second kind), has the
following characteristic polynomial

( ) 5,, 3213
2
2

2
1321 +−++= zzzzzzzzzB

The first three conditions (i.e. (1.1) ÷ (1.3))
of DeCarlo-Strintzis Theorem are satisfied

for 1≤iz  where i=1,2,3 respectively,

since

So, we have to examine the last equation in
the DeCarlo-Strintzis Theorem. Similarly

one has f Q Q= +1
2

2
2  where

_______________________________________________
       ( ) ( ) ( ) ( ) 5coscos2cos2cos 3213211 +++−++= wwwwwwQ

       ( ) ( ) ( ) ( )Q w w w w w w2 1 2 3 1 2 32 2= + + − + +sin sin sin sin
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Fig.4. Convergence of the optimum value of f: ____ in every generation, as well as
of the mean value of f in every generation _ _ _ _

Iterations 1 10 20 30 40 50 60 70 80 90 100
Parents 5.275 2.579 1.504 1.424 1.388 1.240 1.152 1.069 1.019 1.010 1.000
Best 3.039 1.731 1.265 1.265 1.265 1.137 1.137 1.009 1.008 1.008 1.000
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Using now the previously presented GA
with n=5, k=4, t=12, p= 0.01, c =6 we
obtain that the Optimum value of f in each
generation (denoted by ____) as well as the
mean value of f in each generation parents
(denoted by _ _ _ _ ) converges to 1 (Fig.4
and Table 2). Therefore for this example
M>0 and the polynomial is (Schur) Stable.

Example 3. Let our 5-D system
(without any nonessential singularity of the
second kind), has the following
characteristic polynomial

( ) 5,,,, 5432152
3
1

2
4

3
3

3
3

2
154321 ++++= zzzzzzzzzzzzzzzzzB

The first five conditions (i.e. (1.1) ÷ (1.5))
of DeCarlo-Strintzis Theorem are satisfied

for 1≤iz  where i=1,2,3,4,5 respectively,

because

So, we have to examine the last
equation in the DeCarlo-Strintzis Theorem.

Here, f Q Q= +1
2

2
2 ,  where

_______________________________________________
( ) ( ) ( ) ( ) 5cos3cos23cos32cos 5432152343311 ++++++++++++= wwwwwwwwwwwwQ

( ) ( ) ( ) ( )5432152343311 sin3sin23sin32sin wwwwwwwwwwwwQ +++++++++++=
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Fig.5. Convergence of the optimum value of f: ____ in every generation, as well as
of the mean value of f in every generation _ _ _ _

Iterations 1 50 100 150 200 250 300 350 400 450 500
Parents 5.422 1.062 0.518 0.159 0.156 0.156 0.142 0.033 0.032 0.013 0.009
Best 1.793 0.116 0.116 0.116 0.116 0.116 0.086 0.021 0.021 0.011 0.000

( ) 0821,1,1,,1 22 ≠+= zzB

( ) 071,1,1,1, 1
2
1

3
11 ≠+++= zzzzB

( ) 07211,,1,1 3
333 ≠++= zzzB

( ) 081,,1,1,1 4
2
44 ≠++= zzzB

( ) 072,1,1,1,1 5
3
55 ≠++= zzzB
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Using now the previously presented GA
with n=5, k=4, t=12, p= 0.01, c=6 we
obtain that the Optimum value of f in each
generation (denoted by ____) as well as the
mean value of f in each generation parents
(denoted by _ _ _ _ ) converges to 0 (Fig.5
and Table 3). Therefore for this example
M=0 and the polynomial is (Schur)
unstable.

III.  Conclusion
Genetic Algorithms provide us an elegant,
reliable and efficient method for checking
the stability of m-D (m ≥ 3) systems. First
the m-D stability problem is reduced to an
appropriate minimization problem by using
the last condition of the DeCarlo-Strintzis
Theorem. Investigation of concepts like m-
D stability margin are left for future
research. Furthermore the present method
can be improved if we use some heuristics
techniques like zooming, etc [20].
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